1
|
Lin J, Ran H, Feng Q, Shen Q, Zhou S, Sun Y, Hou D. Unveiling the differences between vitexin and isovitexin: From the perspective of sources, green advanced extraction technologies, biological activities, and safety. Food Chem 2025; 485:144600. [PMID: 40334576 DOI: 10.1016/j.foodchem.2025.144600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 04/29/2025] [Accepted: 04/30/2025] [Indexed: 05/09/2025]
Abstract
Vitexin and isovitexin, as the two of representative flavonoid C-glycosides, are naturally occurring bioactive compounds predominantly found in food plants. Their multiple pharmacological activities have generated a lot of interest in their application in disease management. However, as isomers, vitexin and isovitexin show differences between them in various aspects. To achieve their personalized application in precision nutrition, further research is needed to reveal their differences. Based on the various sources and distribution of vitexin and isovitexin, the advantages and limitations of various green advanced extraction technologies are discussed to improve their purity and activity. Furthermore, vitexin and isovitexin exhibit shared and diverse health benefits from the perspective of in vitro and in vivo research reports. This review contributes to a better understanding of the sustainable production of natural vitexin and isovitexin based on their differences, thus promoting the personalized application of them in the functional foods or pharmaceutical industries.
Collapse
Affiliation(s)
- Jinquan Lin
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China
| | - Hao Ran
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China
| | - Qiqian Feng
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China
| | - Qun Shen
- College of Food Science and Nutritional Engineering, Key Laboratory of Plant Protein and Grain Processing, China Agricultural University, Beijing 100083, China
| | - Sumei Zhou
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China
| | - Yuanlin Sun
- Shanxi Technology Innovation Center of High Value-Added Echelon Utilization of Premium Agro-Products, Yuncheng 044011, China
| | - Dianzhi Hou
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China.
| |
Collapse
|
2
|
Chávez A, Schreyer A, Prüsener P, Schäfer M, Xu S, Huber M. Copper-Induced Transgenerational Plasticity in Plant Defence Boosts Aphid Fitness. PLANT, CELL & ENVIRONMENT 2025; 48:3997-4010. [PMID: 39866088 PMCID: PMC12050396 DOI: 10.1111/pce.15406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/05/2024] [Accepted: 01/12/2025] [Indexed: 01/28/2025]
Abstract
Transgenerational plasticity in plants is an increasingly recognized phenomenon, yet it is mostly unclear whether transgenerational plasticity is relevant to both the fitness of the plant and its interacting species. Using monoclonal strains of the giant duckweed (Spirodela polyrhiza) and its native herbivore, the waterlily aphid (Rhopalosiphum nymphaeae), we assessed whether pre-treating plants with copper excess, both indoors and outdoors, induces transgenerational plasticity in plant defences that alter plant and herbivore fitness. Outdoors, copper pre-treatment tended to increase plant growth rates under recurring copper excess. Indoors, copper pre-treatment either increased or decreased plant growth rates under recurring conditions, depending on the plant genotype. Copper pre-treatment induced anthocyanins that protected plants against copper toxicity, and these elevated levels were transgenerationally retained. Copper pre-treatment also transgenerationally increased the levels of 12-oxo-phytodienoic acid (OPDA), a jasmonate precursor. Nevertheless, aphids grew up to 50% better when the plants were pre-treated with copper. The increased aphid growth was likely caused by transgenerationally elevated OPDA levels, as aphids grew better when jasmonates were externally applied to plants. Taken together, this study shows that transgenerational plasticity is relevant to both plant and herbivore fitness, which highlights the role of transgenerational plasticity in plant evolution and species interactions.
Collapse
Affiliation(s)
- Alexandra Chávez
- Institute of Organismic and Molecular EvolutionUniversity of MainzMainzRheinland‐PfalzGermany
- Institute of Plant Biology and BiotechnologyUniversity of MünsterMünsterNordrhein‐WestfalenGermany
- Institute for Evolution and BiodiversityUniversity of MünsterMünsterNordrhein‐WestfalenGermany
| | - Anne Schreyer
- Institute of Organismic and Molecular EvolutionUniversity of MainzMainzRheinland‐PfalzGermany
| | - Pauline Prüsener
- Institute of Plant Biology and BiotechnologyUniversity of MünsterMünsterNordrhein‐WestfalenGermany
- Institute for Evolution and BiodiversityUniversity of MünsterMünsterNordrhein‐WestfalenGermany
| | - Martin Schäfer
- Institute of Organismic and Molecular EvolutionUniversity of MainzMainzRheinland‐PfalzGermany
| | - Shuqing Xu
- Institute of Organismic and Molecular EvolutionUniversity of MainzMainzRheinland‐PfalzGermany
- Institute for Evolution and BiodiversityUniversity of MünsterMünsterNordrhein‐WestfalenGermany
| | - Meret Huber
- Institute of Organismic and Molecular EvolutionUniversity of MainzMainzRheinland‐PfalzGermany
- Institute of Plant Biology and BiotechnologyUniversity of MünsterMünsterNordrhein‐WestfalenGermany
- Institute for Quantitative and Computational BiosciencesJohannes Gutenberg University of MainzMainzRheinland‐PfalzGermany
| |
Collapse
|
3
|
Ziting L, Xiaoqing W, Kemei W, Yachao B, Aimin G, Huang L, Bin L, Jun Z. Systematical accumulating and regulating evaluations of leaf functional metabolites in geographically isolated edible medicinal plants of Piper sarmentosum. JOURNAL OF PLANT PHYSIOLOGY 2025; 310:154512. [PMID: 40349452 DOI: 10.1016/j.jplph.2025.154512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 05/01/2025] [Accepted: 05/02/2025] [Indexed: 05/14/2025]
Abstract
The edible medicinal plant Piper sarmentosum is widely distributed in south China. This study raised a hypothesis of geographically isolated P. sarmentosum plants possessing potential site- or/and plant-dependent accumulating metabolites, expressing genes, and colonizing bacteria. Here, P. sarmentosum plants of Guangzhou City (PG, comparison group) and Hainan Island (PH, control group) were collected for assaying leaf metabolomes (LMs), leaf transcriptomes (LTs), and leaf-assembled bacterial communities (LABCs), respectively. In LMs and LTs, 930 metabolites and 82,606 unigenes were identified with 552 differently accumulated metabolites (DAMs) and 28,177 differently expressed genes (DEGs), respectively. In LABCs, cluster analysis yielded 822 PG-PH-common, 1114 PG-unique, and 203 PH-unique operational taxonomic units (OTUs). In contrast of PH-LMs, the elevated accumulations of alkaloids and lipids and the decreased accumulations of flavonoids and phenolic acids were observed in PG-LMs. Typically, the DAMs and DEGs were co-enriched in two metabolic pathways of phenylpropanoids and flavonoids, visibly displaying the related DEGs, such as chalcone synthase (CHS), chalcone isomerase (CHI) and phenylalanine amino lyase (PAL), with regulating the functional DAMs, such as phenylalanine, tyrosine, p-coumaric acid, and naringenin. Noticeably, these DAMs were also significantly correlated with a number of different types or/and abundances of leaf-assembled bacteria (DTAB) between PG- and PH-LABCs, such as Flavobacterium and Pseudomonas. Therefore, this study clearly elucidated the functional metabolite accumulations and the close relationships with plant mRNA expressions and bacterial colonizations in geographically isolated plants of P. sarmentosum, providing new insight of selectively utilizing leaf food- and medicine-associated metabolites in different habitats of edible medicinal plants.
Collapse
Affiliation(s)
- Liu Ziting
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Wu Xiaoqing
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Wang Kemei
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Bai Yachao
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Guo Aimin
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Linan Huang
- School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Liao Bin
- School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Zhang Jun
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| |
Collapse
|
4
|
Raza Ishaq A, A S El-Nashar H, M Al-Qaaneh A, Asfandyar, Bashir A, Younis T. Orientin: a natural glycoside with versatile pharmacological activities. Nat Prod Res 2025:1-23. [PMID: 39757367 DOI: 10.1080/14786419.2024.2436119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 10/31/2024] [Accepted: 11/26/2024] [Indexed: 01/07/2025]
Abstract
Orientin is one of the flavonoid glycosides with diverse biological properties such as anticancer, antioxidant, neuroprotective, cardioprotective, antiallergic, and anti-inflammatory. It is found in several plants like rooibos tea, Ocimum sanctum, Trollius, Passiflora, and Phyllostachys species. This review aimed to summarise the various medicinal properties of the orientin focusing on its underlying molecular mechanism reported based on in-vitro and in-vivo studies. The data were collected using various search engines, incorporating PubMed/Medline, Scopus, Science Direct, Google Scholar, Web of Science, and SpringerLink. Our findings showed that orientin exhibited promising anticancer, neuroprotective, anti-inflammatory, and antioxidant activities. Hopefully, this information could assist drug researchers and pharmaceutical entities in finding an effective herbal drug for the treatment of different disorders with potential mechanisms of action. Meanwhile, further investigations are warranted such as oral bioavailability, pharmacokinetics and pharmacodynamic characteristics of orientin to establish fully drug profiling suitable for clinical trials.
Collapse
Affiliation(s)
- Ali Raza Ishaq
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei, College of Life Science, Hubei University, Wuhan, China
| | - Heba A S El-Nashar
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Abbassia, Egypt
| | - Ayman M Al-Qaaneh
- Faculty of Allied Medical Sciences, Al-Balqa Applied University (BAU), Al-Salt, Jordan
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Jordan University of Science and Technology (JUST), Irbid, Jordan
| | - Asfandyar
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei, College of Life Science, Hubei University, Wuhan, China
| | - Aneela Bashir
- School of Life Sciences, Chongqing UniversityShazheng, Chongqing, China
| | - Tahira Younis
- Department of Biochemistry and Biotechnology, Faculty of Life Sciences, The Women University Multan, Multan, Pakistan
| |
Collapse
|
5
|
Li M, Fu Y, Li J, Shen W, Wang L, Li Z, Zhang S, Liu H, Su X, Zhao J. Why the adventitious roots of poplar are so colorful: RNAseq and metabolomic analysis reveal anthocyanin accumulation in canker pathogens-induced adventitious roots in poplar. PLANTA 2024; 261:19. [PMID: 39694940 DOI: 10.1007/s00425-024-04583-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 11/25/2024] [Indexed: 12/20/2024]
Abstract
MAIN CONCLUSION This study revealed a substrate-level synthesis of pigment cyanidin-3-O-glucoside and the redirection of metabolomic flux in the flavonoid/anthocyanin biosynthesis pathway in poplar adventitious roots (ARs) induced by stem canker pathogens. Recently, we observed a novel allometry on poplar stems, with copious colorful adventitious roots (ARs) induced by fungal canker pathogens. Here, we reveal chemical, physiological, and molecular mechanisms of AR coloration in poplar-pathogens (Valsa sordida/Botrosphaeria dothidea) interaction system using our phloem girdling-inoculation system. Light-induced coloration in ARs: red/rosy under sunlight, and milky white under shading. Chemical and metabolomic analyses indicated that numerous (93 in all 110) and high relative intensities/contents of flavonoids metabolites (mainly including flavonols, flavones, and anthocyanins class) accumulate in red ARs, some flavones and anthocyanins metabolites all contribute to the color of poplar ARs, and cyanidin-3-O-glucoside is the most abundant colorant. Integrated analysis of metabolomic and transcriptomic analysis suggested that sunlight exposure redirected the metabolomic flux from the flavonoid biosynthesis pathway to the flavonols and flavones branch pathways, induced by the upregulation of FLS (flavonol synthase/flavanone 3-hydroxylase) and other structural genes. The anthocyanins metabolomic analysis and the downregulation of the ANS (anthocyanin synthase) gene illustrated a retard of metabolomic flux from leucoanthocyanidins to anthocyanidins. Metabolomic results and the upregulation of the gene BZ1 (Bronze 1, anthocyanin 3-O-glucosyltransferase) illustrated that sunlight triggered a rapid biosynthesis of anthocyanin metabolites in poplar ARs, which based on the substrate level of anthocyanidins. Transcriptomic and RT-qPCR analyses showed that transcriptional factor MYB113, HY5 (Elongated hypocotyl 5), and COP1 (Ring-finger protein CONSTITUTIVE PHOTOMORPHOGENIC1) genes positively regulated the expression of the flavonoid/anthocyanin biosynthesis structural genes (such as the BZ1, FLS and LAR gene) in both sunlight-exposed red ARs and white ARs after light-exposure, suggesting sunlight induces anthocyanins biosynthesis through the interaction between "MBW" complex and COP1-HY5 module. Moreover, one SPL gene (squamosa promoter-binding-like protein gene, target of miR156, and one component of miR156-SPL module) was down-regulated in sunlight-exposed poplar ARs, implying the biosynthesis flavonoid/anthocyanin be regulated at the posttranscriptional level. This study provides a potential AR experimental system for research on flavonoid/anthocyanin biosynthesis in tree species.
Collapse
Affiliation(s)
- Min Li
- State Key Laboratory of Tree Genetics and Breeding, Institute of Ecological Conservation and Restoration, Chinese Academy of Forestry, Beijing, China
- Comprehensive Experimental Center in Yellow River Delta of Chinese Academy of Forestry, Dongying, Shandong, China
| | - Yuchen Fu
- State Key Laboratory of Tree Genetics and Breeding, Institute of Ecological Conservation and Restoration, Chinese Academy of Forestry, Beijing, China
- Comprehensive Experimental Center in Yellow River Delta of Chinese Academy of Forestry, Dongying, Shandong, China
| | - Jinxin Li
- State Key Laboratory of Tree Genetics and Breeding, Institute of Ecological Conservation and Restoration, Chinese Academy of Forestry, Beijing, China
- Comprehensive Experimental Center in Yellow River Delta of Chinese Academy of Forestry, Dongying, Shandong, China
| | - Wanna Shen
- State Key Laboratory of Tree Genetics and Breeding, Institute of Ecological Conservation and Restoration, Chinese Academy of Forestry, Beijing, China
- Comprehensive Experimental Center in Yellow River Delta of Chinese Academy of Forestry, Dongying, Shandong, China
| | - Li Wang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Zheng Li
- State Key Laboratory of Tree Genetics and Breeding, Institute of Ecological Conservation and Restoration, Chinese Academy of Forestry, Beijing, China
- Comprehensive Experimental Center in Yellow River Delta of Chinese Academy of Forestry, Dongying, Shandong, China
| | - Shiqi Zhang
- State Key Laboratory of Tree Genetics and Breeding, Institute of Ecological Conservation and Restoration, Chinese Academy of Forestry, Beijing, China
- Comprehensive Experimental Center in Yellow River Delta of Chinese Academy of Forestry, Dongying, Shandong, China
| | - Huixiang Liu
- Shandong Research Center for Forestry Harmful Biological Control Engineering and Technology, College of Plant Protection, Shandong Agricultural University, Taian, China
| | - Xiaohua Su
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Jiaping Zhao
- State Key Laboratory of Tree Genetics and Breeding, Institute of Ecological Conservation and Restoration, Chinese Academy of Forestry, Beijing, China.
- Comprehensive Experimental Center in Yellow River Delta of Chinese Academy of Forestry, Dongying, Shandong, China.
| |
Collapse
|
6
|
Cai Z, Yu T, Tan W, Zhou Q, Liu L, Nian H, Lian T. GmAMT2.1/2.2-dependent ammonium nitrogen and metabolites shape rhizosphere microbiome assembly to mitigate cadmium toxicity. NPJ Biofilms Microbiomes 2024; 10:60. [PMID: 39043687 PMCID: PMC11266425 DOI: 10.1038/s41522-024-00532-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 07/12/2024] [Indexed: 07/25/2024] Open
Abstract
Cadmium (Cd), a heavy metal, is negatively associated with plant growth. AMT (ammonium transporter) genes can confer Cd resistance and enhance nitrogen (N) uptake in soybeans. The potential of AMT genes to alleviate Cd toxicity by modulating rhizosphere microbiota remains unkonwn. Here, the rhizosphere microbial taxonomic and metabolic differences in three genotypes, i.e., double knockout and overexpression lines and wild type, were identified. The results showed that GmAMT2.1/2.2 genes could induce soybean to recruit beneficial microorganisms, such as Tumebacillus, Alicyclobacillus, and Penicillium, by altering metabolites. The bacterial, fungal, and cross-kingdom synthetic microbial communities (SynComs) formed by these microorganisms can help soybean resist Cd toxicity. The mechanisms by which SynComs help soybeans resist Cd stress include reducing Cd content, increasing ammonium (NH4+-N) uptake and regulating specific functional genes in soybeans. Overall, this study provides valuable insights for the developing microbial formulations that enhance Cd resistance in sustainable agriculture.
Collapse
Affiliation(s)
- Zhandong Cai
- South China Institute for Soybean Innovation Research, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan, 512000, China
| | - Taobing Yu
- South China Institute for Soybean Innovation Research, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, China
| | - Weiyi Tan
- South China Institute for Soybean Innovation Research, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan, 512000, China
- Guangdong Provincial Key Laboratory for the Development Biology and Environmental Adaptation of Agricultural Organisms, South China Agricultural University, Guangzhou, Guangdong, China
- Key Laboratory for Enhancing Resource Use Efficiency of Crops in South China, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, Guangdong, China
| | - Qianghua Zhou
- South China Institute for Soybean Innovation Research, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, China
| | - Lingrui Liu
- South China Institute for Soybean Innovation Research, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, China
| | - Hai Nian
- South China Institute for Soybean Innovation Research, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, China.
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan, 512000, China.
- Guangdong Provincial Key Laboratory for the Development Biology and Environmental Adaptation of Agricultural Organisms, South China Agricultural University, Guangzhou, Guangdong, China.
- Key Laboratory for Enhancing Resource Use Efficiency of Crops in South China, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, Guangdong, China.
| | - Tengxiang Lian
- South China Institute for Soybean Innovation Research, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, China.
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan, 512000, China.
- Guangdong Provincial Key Laboratory for the Development Biology and Environmental Adaptation of Agricultural Organisms, South China Agricultural University, Guangzhou, Guangdong, China.
- Key Laboratory for Enhancing Resource Use Efficiency of Crops in South China, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, Guangdong, China.
| |
Collapse
|
7
|
Wang Y, Yao Y, Cui Y, An L, Li X, Bai Y, Ding B, Yao X, Wu K. Unveiling the mysteries of HvANS: a study on anthocyanin biosynthesis in qingke (hordeum vulgare L. var. Nudum hook. f.) seeds. BMC PLANT BIOLOGY 2024; 24:637. [PMID: 38971739 PMCID: PMC11227189 DOI: 10.1186/s12870-024-05364-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 07/01/2024] [Indexed: 07/08/2024]
Abstract
BACKGROUND Based on our previous research, a full-length cDNA sequence of HvANS gene was isolated from purple and white Qingke. The open reading frame (ORF) in the purple variety Nierumuzha was 1320 base pairs (bp), encoding 439 amino acids, while the ORF in the white variety Kunlun 10 was 1197 bp, encoding 398 amino acids. A nonsynonymous mutation was found at the position of 1195 bp (T/C) in the coding sequence (CDS) of the HvANS gene. We carried out a series of studies to further clarify the relationship between the HvANS gene and anthocyanin synthesis in Qingke. RESULTS The conservative structural domain prediction results showed that the encoded protein belonged to the PLN03178 superfamily. Multiple comparisons showed that this protein had the highest homology with Hordeum vulgare, at 88.61%. The approximately 2000 bp promoter sequence of the HvANS gene was identical in both varieties. The real-time fluorescence PCR (qRT-PCR) results revealed that HvANS expression was either absent or very low in the roots, stems, leaves, and awns of Nierumuzha. In contrast, the HvANS expression was high in the seed coats and seeds of Nierumuzha. Likewise, in Kunlun 10, HvANS expression was either absent or very low, indicating a tissue-specific and variety-specific pattern for HvANS expression. The subcellular localization results indicated that HvANS was in the cell membrane. Metabolomic results indicated that the HvANS gene is closely related to the synthesis of three anthocyanin substances (Idaein chloride, Kinetin 9-riboside, and Cyanidin O-syringic acid). Yeast single hybridization experiments showed that the HvANS promoter interacted with HvANT1, which is the key anthocyanin regulatory protein. In a yeast two-hybrid experiment, we obtained two significantly different proteins (ZWY2020 and POMGNT2-like) and verified the results by qRT-PCR. CONCLUSIONS These results provide a basis for further studies on the regulatory mechanism of HvANS in the synthesis of anthocyanins in Qingke purple grains.
Collapse
Affiliation(s)
- Yan Wang
- Qinghai Academy of Agricultural and Forestry Sciences, Qinghai University, Xining, Qinghai, China
- Qinghai Key Laboratory of Hulless Barley Genetics and Breeding, Xining, Qinghai, China
- Qinghai Subcenter of National Hulless Barley Improvement, Xining, Qinghai, China
- Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Xining, Qinghai, China
| | - Youhua Yao
- Qinghai Academy of Agricultural and Forestry Sciences, Qinghai University, Xining, Qinghai, China
- Qinghai Key Laboratory of Hulless Barley Genetics and Breeding, Xining, Qinghai, China
- Qinghai Subcenter of National Hulless Barley Improvement, Xining, Qinghai, China
- Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Xining, Qinghai, China
| | - Yongmei Cui
- Qinghai Academy of Agricultural and Forestry Sciences, Qinghai University, Xining, Qinghai, China
- Qinghai Key Laboratory of Hulless Barley Genetics and Breeding, Xining, Qinghai, China
- Qinghai Subcenter of National Hulless Barley Improvement, Xining, Qinghai, China
- Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Xining, Qinghai, China
| | - Likun An
- Qinghai Academy of Agricultural and Forestry Sciences, Qinghai University, Xining, Qinghai, China
- Qinghai Key Laboratory of Hulless Barley Genetics and Breeding, Xining, Qinghai, China
- Qinghai Subcenter of National Hulless Barley Improvement, Xining, Qinghai, China
- Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Xining, Qinghai, China
| | - Xin Li
- Qinghai Academy of Agricultural and Forestry Sciences, Qinghai University, Xining, Qinghai, China
- Qinghai Key Laboratory of Hulless Barley Genetics and Breeding, Xining, Qinghai, China
- Qinghai Subcenter of National Hulless Barley Improvement, Xining, Qinghai, China
- Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Xining, Qinghai, China
| | - Yixiong Bai
- Qinghai Academy of Agricultural and Forestry Sciences, Qinghai University, Xining, Qinghai, China
- Qinghai Key Laboratory of Hulless Barley Genetics and Breeding, Xining, Qinghai, China
- Qinghai Subcenter of National Hulless Barley Improvement, Xining, Qinghai, China
- Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Xining, Qinghai, China
| | - Baojun Ding
- Qinghai Academy of Agricultural and Forestry Sciences, Qinghai University, Xining, Qinghai, China
- Qinghai Key Laboratory of Hulless Barley Genetics and Breeding, Xining, Qinghai, China
- Qinghai Subcenter of National Hulless Barley Improvement, Xining, Qinghai, China
- Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Xining, Qinghai, China
| | - Xiaohua Yao
- Qinghai Academy of Agricultural and Forestry Sciences, Qinghai University, Xining, Qinghai, China.
- Qinghai Key Laboratory of Hulless Barley Genetics and Breeding, Xining, Qinghai, China.
- Qinghai Subcenter of National Hulless Barley Improvement, Xining, Qinghai, China.
- Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Xining, Qinghai, China.
| | - Kunlun Wu
- Qinghai Academy of Agricultural and Forestry Sciences, Qinghai University, Xining, Qinghai, China.
- Qinghai Key Laboratory of Hulless Barley Genetics and Breeding, Xining, Qinghai, China.
- Qinghai Subcenter of National Hulless Barley Improvement, Xining, Qinghai, China.
- Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Xining, Qinghai, China.
| |
Collapse
|
8
|
Zhu M, Sun Y, Su Y, Guan W, Wang Y, Han J, Wang S, Yang B, Wang Q, Kuang H. Luteolin: A promising multifunctional natural flavonoid for human diseases. Phytother Res 2024; 38:3417-3443. [PMID: 38666435 DOI: 10.1002/ptr.8217] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 04/06/2024] [Accepted: 04/14/2024] [Indexed: 07/12/2024]
Abstract
Natural products are closely associated with human health. Luteolin (LUT), a flavonoid polyphenolic compound, is widely found in fruits, vegetables, flowers, and herbs. It is noteworthy that LUT exhibits a variety of beneficial pharmacological properties and holds significant potential for clinical applications, particularly in antitumor, anti-convulsion, diabetes control, anti-inflammatory, neuroprotection, anti-oxidation, anti-cardiovascular, and other aspects. The potential mechanism of action has been partially elucidated, including the mediation of NF-κB, toll-like receptor, MAPK, Wnt/β-catenin, PI3K/Akt, AMPK/mTOR, and Nrf-2, among others. The review that aimed to comprehensively consolidate essential information on natural sources, pharmacological effects, therapeutic and preventive potential, as well as potential mechanisms of LUT. The objective is to establish a theoretical basis for the continued development and application of LUT.
Collapse
Affiliation(s)
- Mingtao Zhu
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, China
| | - Yanping Sun
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, China
| | - Yang Su
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, China
| | - Wei Guan
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, China
| | - Yu Wang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, China
| | - Jianwei Han
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, China
| | - Shuang Wang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, China
| | - Bingyou Yang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, China
| | - Qiuhong Wang
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Haixue Kuang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, China
| |
Collapse
|
9
|
Yadav N, Patel AB, Debbarma S, Priyadarshini MB, Priyadarshi H. Characterization of Bioactive Metabolites and Antioxidant Activities in Solid and Liquid Fractions of Fresh Duckweed ( Wolffia globosa) Subjected to Different Cell Wall Rupture Methods. ACS OMEGA 2024; 9:19940-19955. [PMID: 38737040 PMCID: PMC11080017 DOI: 10.1021/acsomega.3c09674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 04/04/2024] [Accepted: 04/10/2024] [Indexed: 05/14/2024]
Abstract
Fresh Wolffia globosa, the smallest flowering plant well-known for its favorable nutrient composition and rich content of bioactive compounds, was subjected to boiling, freeze-thawing, and mechanical crushing to reduce its excessive (95-96%) moisture level and consequent drying time. The resultant three wolffia matrixes were filtered through a plankton net to fractionate into the residue and the filtrate. The proximate composition, bioactive metabolites, antioxidant activity, and characterization of bioactive metabolites by LC-ESI-QTOF-MS/MS and Fourier transform infrared spectroscopy were made from oven-dried residues and filtrates. Among residues, crude protein (29.84%), crude lipid (5.77%), total carotenoids (TCC; 722.8 μg/g), and vitamin C (70.02 mg/100 g) were the highest (p < 0.05) for freeze-thawing against higher ash (7.99%), total phenolic content (TPC; 191.47 mg GAE g-1 dry weight), total flavonoid content (TFC; 91.54 mg QE g-1 dry weight), DPPH activity (47.46%), and ferric reducing antioxidant power (FRAP) activity (570.19 μmol FeSO4 equiv/mg) for the crushed counterpart and Chl-b in residues from boiling. No significant variation was evident in the total tannin content (TTC). Among filtrates, higher total phenolic content (773.29 mg GAE g-1 dry weight), TFC (392.77 mg QE g-1 dry weight), TTC (22.51 mg TAE g-1), and antioxidant activity as DPPH activity (66.46%) and FRAP (891.62 μmol FeSO4 equiv/mg) were evident for boiling, while that from crushing exhibited the highest TCC (1997.38 μg/g DM). LC-ESI-QTOF-MS/MS analysis identified 72 phenolic compounds with the maximum in residue (33) and filtrate (33) from freeze-thawing, followed by crushing (18 and 19) and boiling (14 and 13) in order, respectively. The results indicated that the predrying cell rupturing method significantly impacted quantitative, as well as qualitative compositions of residues and filtrates from fresh wolffia.
Collapse
Affiliation(s)
- Nitesh
Kumar Yadav
- Department
of Aquaculture, College of Fisheries, Central
Agriculture University (Imphal), Lembucherra, Agartala, Tripura (West) 799210, India
| | - Arun Bhai Patel
- Department
of Aquaculture, College of Fisheries, Central
Agriculture University (Imphal), Lembucherra, Agartala, Tripura (West) 799210, India
| | - Sourabh Debbarma
- Department
of Aquatic Health & Environment, College of Fisheries, Central Agriculture University (Imphal), Lembucherra, Agartala, Tripura
(West) 799210, India
| | - M. Bhargavi Priyadarshini
- Department
of Fish Processing Technology& Engineering, College of Fisheries, Central Agriculture University (Imphal), Lembucherra, Agartala, Tripura
(West) 799210, India
| | - Himanshu Priyadarshi
- Department
of Fish Genetics and Reproduction, College of Fisheries, Central Agriculture University (Imphal), Lembucherra, Agartala, Tripura
(West) 799210, India
| |
Collapse
|
10
|
Su Y, Huang J, Guo Q, Shi H, Wei M, Wang C, Zhao K, Bao T. Combined metabolomic and transcriptomic analysis reveals the characteristics of the lignan in Isatis indigotica Fortune. Gene 2023; 888:147752. [PMID: 37661029 DOI: 10.1016/j.gene.2023.147752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/23/2023] [Accepted: 08/30/2023] [Indexed: 09/05/2023]
Abstract
Isatis indigotica Fortune is a plant species containing lignan compounds of significant economic value. Its root plays a crucial role in treating viruses and exhibits antitumor, anti-inflammatory, antibacterial, and other biological activities. Now, I. indigotica has been included in Isatis tinctoria Linnaeus. In this study, the roots of diploid I. indigotica, tetraploid I. indigotica, and Isatis tinctoria Linnaeus were analyzed using metabolome and transcriptome analysis. The metabolomic analysis detected 48 lignan metabolites, including Lirioresinol A, Vladinol A, Syringaresinol, Arctigenin, Acanthoside B, and Sesamin as characteristic compounds, without significant variations among the remaining metabolites. The transcriptomic analysis identified 41 differentially expressed phenylpropanoid synthase genes, which were further analyzed for variations in lignan transcriptome profiles across different samples. RT-qPCR analysis also revealed differential genes expression related to lignan biosynthesis pathway among the three sample groups. The analysis of transcription factors showed that the AP2-EREBP family (Iin24319), MYB family (Iin24843), and WRKY family (Iin08158) displayed expression patterns similar to Iin14549. Phylogenetic analyses also indicate that Iin14549 may play a role in lignan synthesis. These transcription factor families exhibited high expression in tetraploid I. indigotica, moderate expression in diploid I. indigotica, and low expression in I. tinctoria. The findings of this study can serve as a reference for improving the quality of I. indigotica and developing germplasms with high lignan content. Additionally, these results lay a foundation for the functional characterization of UGTs in lignan biosynthesis pathway.
Collapse
Affiliation(s)
- Yong Su
- Institute of Chinese Medicinal Materials, Nanjing Agricultural University, Nanjing City, Jiangsu Province 210095, PR China
| | - Jiabin Huang
- Institute of Chinese Medicinal Materials, Nanjing Agricultural University, Nanjing City, Jiangsu Province 210095, PR China
| | - Qiaosheng Guo
- Institute of Chinese Medicinal Materials, Nanjing Agricultural University, Nanjing City, Jiangsu Province 210095, PR China.
| | - Hongzhuan Shi
- Institute of Chinese Medicinal Materials, Nanjing Agricultural University, Nanjing City, Jiangsu Province 210095, PR China
| | - Min Wei
- Institute of Chinese Medicinal Materials, Nanjing Agricultural University, Nanjing City, Jiangsu Province 210095, PR China; China Resources Sanjiu Medical & Pharmaceutical Co., Ltd, Shenzhen City, Guangdong Province 518000, PR China
| | - Chengxiang Wang
- Institute of Chinese Medicinal Materials, Nanjing Agricultural University, Nanjing City, Jiangsu Province 210095, PR China
| | - Kun Zhao
- Institute of Chinese Medicinal Materials, Nanjing Agricultural University, Nanjing City, Jiangsu Province 210095, PR China
| | - Tao Bao
- Institute of Chinese Medicinal Materials, Nanjing Agricultural University, Nanjing City, Jiangsu Province 210095, PR China
| |
Collapse
|
11
|
He M, Zhang G, Huo D, Yang S. Combined Metabolome and Transcriptome Analysis of Creamy Yellow and Purple Colored Panax notoginseng Roots. Life (Basel) 2023; 13:2100. [PMID: 37895482 PMCID: PMC10607970 DOI: 10.3390/life13102100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/03/2023] [Accepted: 10/07/2023] [Indexed: 10/29/2023] Open
Abstract
Panax notoginseng (Burk.) F.H. Chen is a species of the Araliaceae family that inhabits southwestern China, Burma, and Nepal. It is cultivated on a commercial scale in Yunnan province, China, owing to its significance in traditional Chinese medicine. Panax notoginseng roots are usually yellow-white (HS); however, purple roots (ZS) have also been reported. The majority of P. notoginseng research has concentrated on the identification and production of natural chemicals in HS; however, there is little to no information about the composition of ZS. Using UPLC-MS/MS, we investigated the global metabolome profile of both ZS- and HS-type roots and discovered 834 metabolites from 11 chemical groups. There were 123 differentially accumulated metabolites (DAM) in the HS and ZS roots, which were classified as lipids and lipid-like molecules, polyketides, organoheterocyclic chemicals, and organooxygen compounds. We investigated the associated compounds in the DAMs because of the importance of anthocyanins in color and saponins and ginsenosides in health benefits. In general, we discovered that pigment compounds such as petunidin 3-glucoside, delphinidin 3-glucoside, and peonidin-3-O-beta-galactoside were more abundant in ZS. The saponin (eight compounds) and ginsenoside (26 compounds) content of the two varieties of roots differed as well. Transcriptome sequencing revealed that flavonoid and anthocyanin production genes were more abundant in ZS than in HS. Similarly, we found differences in gene expression in genes involved in terpenoid production and related pathways. Overall, these findings suggest that the purple roots of P. notoginseng contain varying amounts of ginsenosides and anthocyanins compared to roots with a creamy yellow color.
Collapse
Affiliation(s)
- Muhan He
- Office of Academic Affairs, Yunnan Forestry Technological College, Kunming 650224, China; (M.H.); (D.H.)
| | - Guanghui Zhang
- State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan, The Key Laboratory of Medicinal Plant Biology of Yunnan Province, National & Local Joint Engineering Research Center on Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming 650201, China;
| | - Dongfang Huo
- Office of Academic Affairs, Yunnan Forestry Technological College, Kunming 650224, China; (M.H.); (D.H.)
| | - Shengchao Yang
- State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan, The Key Laboratory of Medicinal Plant Biology of Yunnan Province, National & Local Joint Engineering Research Center on Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming 650201, China;
| |
Collapse
|
12
|
Qiao F, Lu Y, Geng G, Zhou L, Chen Z, Wang L, Xie H, Qiu QS. Flavonoid synthesis in Lamiophlomis rotata from Qinghai-Tibet Plateau is influenced by soil properties, microbial community, and gene expression. JOURNAL OF PLANT PHYSIOLOGY 2023; 287:154043. [PMID: 37392527 DOI: 10.1016/j.jplph.2023.154043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/16/2023] [Accepted: 06/17/2023] [Indexed: 07/03/2023]
Abstract
Lamiophlomis rotata is a medicinal plant in Qinghai-Tibet Plateau, in which flavonoid compounds are the major medicinal components. However, it remains unclear how flavonoid metabolism of L. rotata is influenced by soil properties and microbial community. In this study, we collected L. rotata seedlings and rhizosphere soils from five habitats ranging from 3750 to 4270 m of altitude and analyzed the effects of habitat conditions on flavonoid metabolism. The activities of peroxidase, cellulase, and urease were increased with altitude, while those of alkaline phosphatase, alkaline protease, and sucrase were decreased with altitude. Analysis of OTUs showed that the total number of bacterial genera was higher than that of fungal genera. The highest number of fungal genera was 132, and that of bacterial genera was 33 in Batang (BT) town in Yushu County at an altitude of 3880 m, suggesting that the fungal communities may play a critical role in L. rotata rhizosphere soils. Flavonoids in leaves and roots of L. rotata shared a similar pattern, with a trend of increasing levels with altitude. The highest flavonoid content measured, 12.94 mg/g in leaves and 11.43 mg/g in roots, was from Zaduo (ZD) County at an altitude of 4208 m. Soil peroxidases affected quercetin content in leaves of L. rotata, while the fungus Sebacina affected flavonoid content in leaves and roots of L. rotata. The expression of PAL, F3'H, FLS, and FNS genes showed a declining trend in leaves with altitude, while F3H showed an increasing trend in both leaves and roots. Overall, soil physicochemical properties and microbial community affect flavonoid metabolism in L. rotata in Qinghai-Tibet Plateau. The variations in flavonoid content and gene expression as well as their associations with soil factors revealed the complexity of the growth conditions and genetic makeup in L. rotata habitats of Qinghai-Tibet Plateau.
Collapse
Affiliation(s)
- Feng Qiao
- School of Life Sciences, Qinghai Normal University, Xining, 810008, China; Academy of Plateau Science and Sustainability, Qinghai Normal University, Xining, 810008, China; Key Laboratory of Tibetan Plateau Medicinal Plant and Animal Resources, Qinghai Normal University, Xining, 810008, China; Qinghai Ecosystem Observation and Research Station in the Southern Qilian Mountains, Haidong, 810500, China
| | - Yueheng Lu
- School of Life Sciences, Qinghai Normal University, Xining, 810008, China
| | - Guigong Geng
- Academy of Agricultural and Forestry Sciences, Qinghai University, Xining, 810016, China; Qinghai Ecosystem Observation and Research Station in the Southern Qilian Mountains, Haidong, 810500, China
| | - Lianyu Zhou
- School of Life Sciences, Qinghai Normal University, Xining, 810008, China; Academy of Plateau Science and Sustainability, Qinghai Normal University, Xining, 810008, China; Key Laboratory of Tibetan Plateau Medicinal Plant and Animal Resources, Qinghai Normal University, Xining, 810008, China; Qinghai Ecosystem Observation and Research Station in the Southern Qilian Mountains, Haidong, 810500, China
| | - Zhenning Chen
- School of Life Sciences, Qinghai Normal University, Xining, 810008, China; Academy of Plateau Science and Sustainability, Qinghai Normal University, Xining, 810008, China; Key Laboratory of Tibetan Plateau Medicinal Plant and Animal Resources, Qinghai Normal University, Xining, 810008, China
| | - Luhao Wang
- School of Life Sciences, Qinghai Normal University, Xining, 810008, China
| | - Huichun Xie
- School of Life Sciences, Qinghai Normal University, Xining, 810008, China; Academy of Plateau Science and Sustainability, Qinghai Normal University, Xining, 810008, China; Key Laboratory of Tibetan Plateau Medicinal Plant and Animal Resources, Qinghai Normal University, Xining, 810008, China; Qinghai Ecosystem Observation and Research Station in the Southern Qilian Mountains, Haidong, 810500, China.
| | - Quan-Sheng Qiu
- School of Life Sciences, Qinghai Normal University, Xining, 810008, China; Academy of Plateau Science and Sustainability, Qinghai Normal University, Xining, 810008, China; MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, 730000, China; College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China; State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Lanzhou University, Lanzhou, Gansu, 730000, China.
| |
Collapse
|
13
|
Maissour A, Bouqadida M, Oualili H, El Omari R, Belfaiza M, Makroum K. Characterization of the physico-chemical properties of the natural habitat and in vitro culture effects on the biochemistry, proliferation and morphology of Lemna minuta. BMC PLANT BIOLOGY 2023; 23:234. [PMID: 37138221 PMCID: PMC10155455 DOI: 10.1186/s12870-023-04249-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 04/25/2023] [Indexed: 05/05/2023]
Abstract
In this study, the ecological conditions of the natural habitat of Lemna minuta Kunth in Morocco were investigated, and the impact of five synthetic growth media (Murashige-Skoog (MS), Schenk-Hildebrand (SH), Hoagland medium (HM), 10X Algal Assay Procedure (AAP), and Swedish Standard Institute medium (SIS)) on the morphophysiological and biochemical parameters was analysed. The morphophysiological parameters included root length, frond surface area, and fresh weight, while the biochemical parameters included photosynthetic pigments, carbohydrates, and protein content. The study was conducted in vitro in two phases: an uncontrolled aeration system (Phase I) and a controlled aeration system (Phase II).The results showed that the pH, conductivity, salinity, and ammonium levels in the natural habitat were within the optimal range for duckweed growth. The measured orthophosphate concentrations were higher compared to previous observations, while the recorded chemical oxygen demand values were low. The study also revealed a significant effect of the culture medium composition on the morphophysiological and biochemical parameters of the duckweed. The fresh weight biomass, relative growth rate in fronds, relative growth rate in surface area, root length, protein content, carbohydrates, chlorophyll (a), chlorophyll (b), total chlorophyll, carotenoids, and the chlorophyll (a/b) ratio were all affected by the culture medium.The most accurate regression models described the growth index GI(F) based on time and in vitro culture conditions in both phases. In Phase I, the best models for MS, SIS, AAP, and SH media were linear, weighted quadratic, cubic, and weighted cubic, respectively. In Phase II, the best models for all growth media were linear. The time coefficients (in days) for Phase II were 0.321, 0.547, 1.232, 1.470, and 0.306 for AAP, HM, MS, SH, and SIS, respectively.Comparing the morphophysiological and biochemical parameters of fronds from different media and analysing the regression model results showed that the SH and MS media were the best among the tested media for the in vitro culture of L. minuta in controlled aeration conditions. However, further research is needed to develop new synthetic media that best promote the growth and maintenance of this duckweed in long-term culture.
Collapse
Affiliation(s)
- Abdellah Maissour
- Laboratory of Plant Biotechnology, Ecology and Ecosystem Valorization, URL-CNRST n°10, Faculty of Sciences, University Chouaib Doukkali, P.O. Box 20, El Jadida, M-24000, Morocco.
| | - Mohammed Bouqadida
- Laboratory of Plant Biotechnology, Ecology and Ecosystem Valorization, URL-CNRST n°10, Faculty of Sciences, University Chouaib Doukkali, P.O. Box 20, El Jadida, M-24000, Morocco
| | - Hanane Oualili
- Laboratory of Plant Biotechnology, Ecology and Ecosystem Valorization, URL-CNRST n°10, Faculty of Sciences, University Chouaib Doukkali, P.O. Box 20, El Jadida, M-24000, Morocco
| | - Redouane El Omari
- Laboratory of Plant Biotechnology, Ecology and Ecosystem Valorization, URL-CNRST n°10, Faculty of Sciences, University Chouaib Doukkali, P.O. Box 20, El Jadida, M-24000, Morocco
| | - Malika Belfaiza
- Laboratory of Plant Biotechnology, Ecology and Ecosystem Valorization, URL-CNRST n°10, Faculty of Sciences, University Chouaib Doukkali, P.O. Box 20, El Jadida, M-24000, Morocco
| | - Kacem Makroum
- Laboratory of Plant Biotechnology, Ecology and Ecosystem Valorization, URL-CNRST n°10, Faculty of Sciences, University Chouaib Doukkali, P.O. Box 20, El Jadida, M-24000, Morocco
| |
Collapse
|
14
|
Phylogenetic Analysis of R2R3-MYB Family Genes in Tetrastigma hemsleyanum Diels et Gilg and Roles of ThMYB4 and ThMYB7 in Flavonoid Biosynthesis. Biomolecules 2023; 13:biom13030531. [PMID: 36979467 PMCID: PMC10046264 DOI: 10.3390/biom13030531] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/12/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023] Open
Abstract
Tetrastigma hemsleyanum Diels et Gilg (T. hemsleyanum) is an extensively used Chinese folk herb with multiple bioactivities. Among these bioactivities, flavonoids are recognized as the representative active ingredients. We previously found an elevated accumulation of flavonoids in T. hemsleyanum under water stress; however, the mechanism remains unclear. R2R3-MYB transcription factors play vital roles in the plant response to environmental stress and the regulation of secondary metabolites. Herein, a systematic transcriptome identification of R2R3-MYB family genes under water stress in T. hemsleyanum was performed to explore their potential function in the biosynthesis of flavonoids. A total of 26 R2R3-MYB genes were identified, most of which were clustered into functional branches of abiotic stress. ThMYB4 and ThMYB7 were then screened out to be associated with the biosynthesis of flavonoids through a protein-protein interaction prediction. An expression correlation analysis based on RNA-seq further confirmed that ThMYB4 and ThMYB7 were positively related to the flavonoid biosynthetic pathway genes of T. hemsleyanum. In ThMYB4- and ThMYB7-overexpression hairy roots, it was found that the expression of ThCHS and ThCHI was significantly increased, suggesting that ThMYB4 and ThMYB7 may act as regulators in flavonoid biosynthesis. This will shed new light on the promotion of flavonoid production and the medicinal value of T. hemsleyanum by manipulating transcription factors.
Collapse
|
15
|
Qiao F, Zhang K, Zhou L, Qiu QS, Chen Z, Lu Y, Wang L, Geng G, Xie H. Analysis of flavonoid metabolism during fruit development of Lycium chinense. JOURNAL OF PLANT PHYSIOLOGY 2022; 279:153856. [PMID: 36375401 DOI: 10.1016/j.jplph.2022.153856] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 10/16/2022] [Accepted: 10/23/2022] [Indexed: 06/16/2023]
Abstract
Lycium chinense is an important medicinal plant in the northwest of China. Flavonoids are the major pharmacological components of L. chinense fruits. However, flavonoid metabolism during fruit development of L. chinense remains to be studied. Here, we analyzed the change of flavonoid contents, enzyme activity, and gene expression during fruit development of L. chinense. We found that flavonoids, anthocyanins, and catechins are the most important components of L. chinense fruits. Flavonoid content was increased with fruit development and was high at the late developmental stage. PAL, CHS, and F3H enzymes played a significant role in flavonoid accumulation in fruits. Transcriptomic analysis showed that anthocyanin pathway, flavonol pathway, flavonoid biosynthesis, and phenylpropanoid synthesis pathway were the major pathways involved in flavonoid metabolism in L. chinense. Gene expression analysis indicated that PAL1 and CHS2 genes were critical for flavonoid metabolism in L. chinense fruits. These discoveries help us understand the dynamic changes in flavonoids during fruit development and enhance the use of L. chinense fruits.
Collapse
Affiliation(s)
- Feng Qiao
- School of Life Sciences, Qinghai Normal University, Xining, 810008, China; Academy of Plateau Science and Sustainability, Qinghai Normal University, Xining, 810008, China; Key Laboratory of Tibetan Plateau Medicinal Plant and Animal Resources, Qinghai Normal University, Xining, 810008, China
| | - Kaimin Zhang
- School of Life Sciences, Qinghai Normal University, Xining, 810008, China
| | - Lianyu Zhou
- School of Life Sciences, Qinghai Normal University, Xining, 810008, China; Academy of Plateau Science and Sustainability, Qinghai Normal University, Xining, 810008, China; Key Laboratory of Tibetan Plateau Medicinal Plant and Animal Resources, Qinghai Normal University, Xining, 810008, China
| | - Quan-Sheng Qiu
- School of Life Sciences, Qinghai Normal University, Xining, 810008, China; Academy of Plateau Science and Sustainability, Qinghai Normal University, Xining, 810008, China; MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, 730000, China; State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Lanzhou University, Lanzhou, Gansu, 730000, China; College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China
| | - Zhenning Chen
- School of Life Sciences, Qinghai Normal University, Xining, 810008, China; Academy of Plateau Science and Sustainability, Qinghai Normal University, Xining, 810008, China; Key Laboratory of Tibetan Plateau Medicinal Plant and Animal Resources, Qinghai Normal University, Xining, 810008, China
| | - Yueheng Lu
- School of Life Sciences, Qinghai Normal University, Xining, 810008, China
| | - Luhao Wang
- School of Life Sciences, Qinghai Normal University, Xining, 810008, China
| | - Guigong Geng
- Academy of Agricultural and Forestry Sciences, Qinghai University, Xining, 810016, China; Qinghai Ecosystem Observation and Research Station in the Southern Qilian Mountains, Haidong, 810500, China.
| | - Huichun Xie
- School of Life Sciences, Qinghai Normal University, Xining, 810008, China; Academy of Plateau Science and Sustainability, Qinghai Normal University, Xining, 810008, China; Key Laboratory of Tibetan Plateau Medicinal Plant and Animal Resources, Qinghai Normal University, Xining, 810008, China; Qinghai Ecosystem Observation and Research Station in the Southern Qilian Mountains, Haidong, 810500, China.
| |
Collapse
|