1
|
Mendybayeva A, Makhambetov A, Yanin K, Taskuzhina A, Khusnitdinova M, Gritsenko D. Metagenomic Analysis of Wild Apple ( Malus sieversii) Trees from Natural Habitats of Kazakhstan. PLANTS (BASEL, SWITZERLAND) 2025; 14:1511. [PMID: 40431076 PMCID: PMC12114784 DOI: 10.3390/plants14101511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2025] [Revised: 05/15/2025] [Accepted: 05/16/2025] [Indexed: 05/29/2025]
Abstract
Kazakhstan's rich biodiversity includes diverse apple populations, notably the wild apple tree (Malus sieversii) prized for traits like disease resistance and adaptability, potentially aiding breeding programs. Analyzing their microbiomes offers insights into bacterial diversity and how it influences apple tree development, making it a reliable method for understanding ecological interactions. In this research, 334 apple tree samples were collected from different mountain ranges in southeastern Kazakhstan. An analysis using nanopore-based 16S rRNA sequencing showed a distinct similarity in the microbiome compositions of samples from the Zhongar and Ile Alatau mountain ranges, with a predominance of Pseudomonadaceae, Enterobacteriaceae, and Microbacteriaceae. In contrast, samples from Ketmen ridge showed a higher prevalence of Enterobacteriaceae. Alongside the less represented Pseudomonadaceae family, in the Ketmen ridge region, bacteria of the Xanthomonadaceae, Alcaligenaceae, and Brucellaceae families were also present. Across all regions, beneficial plant-associated bacteria were identified, such as Pseudomonas veronii, Stenotrophomonas geniculata, and Kocuria rhizophila, potentially enhancing plant resilience. However, opportunistic phytopathogens were also detected, including Pseudomonas viridiflava and Serratia marcescens, particularly in the Ile Alatau region. These findings highlight the complex microbial interactions in M. sieversii, thus offering key insights into host-microbe relationships that can inform apple breeding and ecological preservation efforts.
Collapse
Affiliation(s)
- Aruzhan Mendybayeva
- Laboratory of Molecular Biology, Institute of Plant Biology and Biotechnology, Almaty 050040, Kazakhstan; (A.M.); (A.M.); (K.Y.); (A.T.); (M.K.)
- Research Center AgriBioTech, Almaty 050040, Kazakhstan
| | - Alibek Makhambetov
- Laboratory of Molecular Biology, Institute of Plant Biology and Biotechnology, Almaty 050040, Kazakhstan; (A.M.); (A.M.); (K.Y.); (A.T.); (M.K.)
- Department of Molecular Biology and Genetics, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan
| | - Kirill Yanin
- Laboratory of Molecular Biology, Institute of Plant Biology and Biotechnology, Almaty 050040, Kazakhstan; (A.M.); (A.M.); (K.Y.); (A.T.); (M.K.)
| | - Aisha Taskuzhina
- Laboratory of Molecular Biology, Institute of Plant Biology and Biotechnology, Almaty 050040, Kazakhstan; (A.M.); (A.M.); (K.Y.); (A.T.); (M.K.)
- Research Center AgriBioTech, Almaty 050040, Kazakhstan
- Department of Molecular Biology and Genetics, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan
| | - Marina Khusnitdinova
- Laboratory of Molecular Biology, Institute of Plant Biology and Biotechnology, Almaty 050040, Kazakhstan; (A.M.); (A.M.); (K.Y.); (A.T.); (M.K.)
- Research Center AgriBioTech, Almaty 050040, Kazakhstan
| | - Dilyara Gritsenko
- Laboratory of Molecular Biology, Institute of Plant Biology and Biotechnology, Almaty 050040, Kazakhstan; (A.M.); (A.M.); (K.Y.); (A.T.); (M.K.)
- Research Center AgriBioTech, Almaty 050040, Kazakhstan
- Department of Molecular Biology and Genetics, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan
| |
Collapse
|
2
|
Mayer C, Urrutia C, Jerez-Quezada C, Barra PJ, Abanto M. Genomic Insights into Phosphorus Solubilization of Pseudomonas extremaustralis. Microorganisms 2025; 13:911. [PMID: 40284747 PMCID: PMC12029462 DOI: 10.3390/microorganisms13040911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Revised: 04/12/2025] [Accepted: 04/14/2025] [Indexed: 04/29/2025] Open
Abstract
Pseudomonas extremaustralis was first isolated from Antarctica and gained interest for its ability to thrive in extreme environmental conditions and degrade recalcitrant compounds. Some strains have been identified as phosphobacteria, which play a significant role in phosphorus (P) cycling by solubilizing or mineralizing insoluble phosphate forms for plant uptake. However, there is limited knowledge about the genomic mechanisms involved in P-cycling in the species P. extremaustralis. In this study, we aimed to evaluate the genomic potential of P. extremautralis as a phosphobacteria species by screening genes related to P-cycling. Two P. extremaustralis strains from pisciculture sludge residues were selected to sequence their complete genomes based on their ability to solubilize inorganic P in vitro, and an in silico analysis with all the P. extremaustralis genomes was performed to identify the presence of phosphorus-cycling-related genes. Genes mainly involved in the metabolic processes of two-component systems and transporters, and genes involved in organic acid production and alkaline phosphatases, were identified. This study helps us to understand the metabolic potential of this species and its role as a solubilizer of phosphates and thus a facilitator of plant-available phosphorus, which could guide the use of this species of phosphobacteria in the development of sustainable agriculture.
Collapse
Affiliation(s)
- Carolyn Mayer
- Facultad de Ciencias Agropecuarias y Medioambiente, Universidad de La Frontera, Temuco 4811230, Chile; (C.M.); (C.U.)
- Programa de Doctorado en Ciencias Mención Biología Celular y Molecular Aplicada, Universidad de La Frontera, Temuco 4811230, Chile
| | - Catherine Urrutia
- Facultad de Ciencias Agropecuarias y Medioambiente, Universidad de La Frontera, Temuco 4811230, Chile; (C.M.); (C.U.)
- Programa de Doctorado en Ciencias Mención Biología Celular y Molecular Aplicada, Universidad de La Frontera, Temuco 4811230, Chile
| | - Carol Jerez-Quezada
- Programa de Doctorado en Ciencias de Recursos Naturales, Universidad de La Frontera, Temuco 4811230, Chile;
- Center of Plant, Soil Interaction and Natural Resources Biotechnology, Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco 4811230, Chile;
- Genomics and Bioinformatics Unit, Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco 4811230, Chile
| | - Patricio Javier Barra
- Center of Plant, Soil Interaction and Natural Resources Biotechnology, Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco 4811230, Chile;
- Biocontrol Research Laboratory, Universidad de La Frontera, Temuco 4811230, Chile
| | - Michel Abanto
- Center of Plant, Soil Interaction and Natural Resources Biotechnology, Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco 4811230, Chile;
- Genomics and Bioinformatics Unit, Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco 4811230, Chile
| |
Collapse
|
3
|
Babar S, Baloch A, Qasim M, Wang J, Wang X, Abd-Elkader AM, El-Desouki Z, Xia X, Jiang C. Unraveling the synergistic effect of biochar and potassium solubilizing bacteria on potassium availability and rapeseed growth in acidic soil. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 380:125109. [PMID: 40138938 DOI: 10.1016/j.jenvman.2025.125109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 03/20/2025] [Accepted: 03/20/2025] [Indexed: 03/29/2025]
Abstract
Potassium (K) is an essential macronutrient for plant growth. However, its bioavailability is low in acidic soils. Excessive K fertilization deteriorates the soil health, thus highlighting the need for sustainable alternatives. In previous studies, biochar application has been proven to be an effective amendment. Meanwhile, various potassium solubilizing bacteria (KSB) have been identified in soil that contributes to K bioavailability. However, their interaction under combine (co) application in acidic soil and its effects on K availability remain poorly understood. Therefore, a pot experiment was conducted to investigate the synergistic effect of co-application of rice straw biochar (BC) and KSB consortium on K availability to promote rapeseed growth. The treatment plan consisted of CK (control), recommended K fertilizer, 2 % BC (2 % w/w), KSB consortium, KSB consortium + 2 % BC (2 % w/w). Results of soil analysis conducted after crop maturity showed that co-application of 2 % BC and KSB consortium significantly improved the soil pH and organic matter contents by 0.62 and 12.52 units respectively, relative to CK. Meanwhile, soil available nutrients were greatly enhanced, as available K content increased by 52.1 %, which indicated that co-application of 2 % BC and KSB consortium could facilitate the better conversion of different forms of soil K and make it available for plant uptake. Furthermore, it also improved extracellular enzymatic activities (26.7-71.6 %) and soil bacterial community (Actinobacteriota and Firmicutes). These improvements greatly enhanced plant biomass (46 %) and yield (31 %). Overall results proved that co-application of 2 % BC and KSB effectively enhanced K availability for sustainable plant growth. Still, there is a need to identify the most efficient KSB strains that, in conjugation with BC, reduce the K fertilizer usage.
Collapse
Affiliation(s)
- Saba Babar
- Microelement Research Center, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, Hubei, PR China.
| | - Amanullah Baloch
- National Key Laboratory of Crop Genetic Improvement and College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, PR China.
| | - Muhammad Qasim
- Microelement Research Center, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, Hubei, PR China.
| | - Jiyuan Wang
- Microelement Research Center, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, Hubei, PR China.
| | - Xiangling Wang
- Microelement Research Center, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, Hubei, PR China.
| | - Ali M Abd-Elkader
- Microelement Research Center, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, Hubei, PR China; Department of Agricultural Botany Faculty of Agriculture, Ain Shams University, Cario, 11241, Egypt.
| | - Zeinab El-Desouki
- Microelement Research Center, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, Hubei, PR China.
| | - Xiaoyang Xia
- Microelement Research Center, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, Hubei, PR China.
| | - Cuncang Jiang
- Microelement Research Center, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, Hubei, PR China.
| |
Collapse
|
4
|
Kaur T, Devi R, Negi R, Kour H, Singh S, Khan SS, Kumari C, Kour D, Chowdhury S, Kapoor M, Rai AK, Rustagi S, Shreaz S, Yadav AN. Macronutrients-availing microbiomes: biodiversity, mechanisms, and biotechnological applications for agricultural sustainability. Folia Microbiol (Praha) 2025; 70:293-319. [PMID: 39592542 DOI: 10.1007/s12223-024-01220-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 10/24/2024] [Indexed: 11/28/2024]
Abstract
Nitrogen, phosphorus, and potassium are the three most essential micronutrients which play major roles in plant survivability by being a structural or non-structural component of the cell. Plants acquire these nutrients from soil in the fixed (NO3¯, NH4+) and solubilized forms (K+, H2PO4- and HPO42-). In soil, the fixed and solubilized forms of nutrients are unavailable or available in bare minimum amounts; therefore, agrochemicals were introduced. Agrochemicals, mined from the deposits or chemically prepared, have been widely used in the agricultural farms over the decades for the sake of higher production of the crops. The excessive use of agrochemicals has been found to be deleterious for humans, as well as the environment. In the environment, agrochemical usage resulted in soil acidification, disturbance of microbial ecology, and eutrophication of aquatic and terrestrial ecosystems. A solution to such devastating agro-input was found to be substituted by macronutrients-availing microbiomes. Macronutrients-availing microbiomes solubilize and fix the insoluble form of nutrients and convert them into soluble forms without causing any significant harm to the environment. Microbes convert the insoluble form to the soluble form of macronutrients (nitrogen, phosphorus, and potassium) through different mechanisms such as fixation, solubilization, and chelation. The microbiomes having capability of fixing and solubilizing nutrients contain some specific genes which have been reported in diverse microbial species surviving in different niches. In the present review, the biodiversity, mechanism of action, and genomics of different macronutrients-availing microbiomes are presented.
Collapse
Affiliation(s)
- Tanvir Kaur
- Department of Biotechnology, Graphic Era Deemed to Be University, Dehradun, Uttarakhand, India
| | - Rubee Devi
- Department of Genetics, Plant Breeding and Biotechnology, Dr. Khem Singh Gill Akal College of Agriculture, Eternal University, Baru Sahib, Sirmour, Himachal Pradesh, India
| | - Rajeshwari Negi
- Department of Genetics, Plant Breeding and Biotechnology, Dr. Khem Singh Gill Akal College of Agriculture, Eternal University, Baru Sahib, Sirmour, Himachal Pradesh, India
| | - Harpreet Kour
- Department of Botany, University of Jammu, Jammu, Jammu and Kashmir, India
| | - Sangram Singh
- Department of Biochemistry, Dr. Ram Manohar Lohia Avadh University, Ayodhya, Faizabad, Uttar Pradesh, India
| | - Sofia Sharief Khan
- Department of Biotechnology, Shri Mata Vaishno Devi University, Katra, Jammu and Kashmir, India
| | - Chandresh Kumari
- Faculty of Applied Sciences and Biotechnology, Shoolini University, Bhajhol, Solan, Himachal Pradesh, India
| | - Divjot Kour
- University Centre for Research and Development, Chandigarh University, Mohali, Punjab, India
| | - Sohini Chowdhury
- Chitkara Centre for Research and Development, Chitkara University, Himachal Pradesh, India
| | - Monit Kapoor
- Centre for Research Impact and Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, Punjab, India
| | - Ashutosh Kumar Rai
- Department of Biochemistry, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Kingdom of Saudi Arabia
| | - Sarvesh Rustagi
- Department of Food Technology, School of Applied and Life Sciences, Uttaranchal University, Dehradun, Uttarakhand, India
| | - Sheikh Shreaz
- Desert Agriculture and Ecosystem Department, Environment and Life Sciences Research Center, Kuwait Institute for Scientific Research, Safat, Kuwait
| | - Ajar Nath Yadav
- Department of Genetics, Plant Breeding and Biotechnology, Dr. Khem Singh Gill Akal College of Agriculture, Eternal University, Baru Sahib, Sirmour, Himachal Pradesh, India.
| |
Collapse
|
5
|
Li Z, Li J, Liu G, Li Y, Wu X, Liang J, Wang Z, Chen Q, Peng F. Isolation, Characterization and Growth-Promoting Properties of Phosphate-Solubilizing Bacteria (PSBs) Derived from Peach Tree Rhizosphere. Microorganisms 2025; 13:718. [PMID: 40284555 PMCID: PMC12029301 DOI: 10.3390/microorganisms13040718] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 03/17/2025] [Accepted: 03/20/2025] [Indexed: 04/29/2025] Open
Abstract
Microbial fertilizers have a significant role in promoting plant growth, resistance to environmental stresses, and soil remediation. Microbial fertilizers are mainly composed of beneficial microorganisms that contain specific functions. Focusing on the peach tree rhizosphere region, this study aimed to isolate and screen bacteria with efficient phosphate-solubilizing capacity for application in microbial fertilizers, as well as to dig deeper into the other properties of the strains to further explore the roles of these phosphate-solubilizing bacteria (PSBs) in terms of plant growth in order to provide valuable microbial resources for microbial fertilizer development. By collecting soil samples from peach tree rhizospheres, we initially screened 86 PSB strains using the plate method and determined the phosphate-solubilizing capacity (ranged from 0 to 14 μg/mL). Afterwards, 51 strains with strong phosphate-solubilizing capacity were selected for molecular identification; the strains belonged to 12 genera, with Bacillus and Burkholderia accounting for the majority. Concurrent evaluation of iron carriers and indoleacetic-3-acid (IAA) production capabilities identified strain WPD85 as exhibiting dual functionality with strong performance in both parameters. Subsequently, we combined the analysis of phosphate-solubilizing capacity and growth-promoting properties to select eight strains of PSBs; characterized them physiologically, biochemically, and molecularly; determined the biofilm-forming capacity; and conducted potting experiments. Notably, strain WPD103 exhibited exceptional biofilm-forming capacity (OD595 = 1.09). Of particular interest, strain WPD16 demonstrated both an elevated inorganic phosphate solubilization index (D/d = 2.99) and remarkable iron carriers production capacity, while peach seedlings treated with WPD16 exhibited 119% enhancement in plant height increment compared to the control. This study enhances our understanding of PSB traits and identifies Burkholderia sp. WPD16 as a strategic candidate for developing targeted microbial fertilizers, offering a sustainable solution to reduce reliance on chemical inputs in orchard management.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Futian Peng
- College of Horticultural Science and Engineering, Shandong Agricultural University, Tai’an 271018, China; (Z.L.); (J.L.); (G.L.); (Y.L.); (X.W.); (J.L.); (Z.W.); (Q.C.)
| |
Collapse
|
6
|
Zhu L, Zhang P, Ma S, Yu Q, Wang H, Liu Y, Yang S, Chen Y. Enhancing carrot ( Daucus carota var. sativa Hoffm.) plant productivity with combined rhizosphere microbial consortium. Front Microbiol 2024; 15:1466300. [PMID: 39633805 PMCID: PMC11615968 DOI: 10.3389/fmicb.2024.1466300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 10/31/2024] [Indexed: 12/07/2024] Open
Abstract
Background Plant growth-promoting rhizobacteria (PGPR) are an integral part of agricultural practices due to their roles in promoting plant growth, improving soil conditions, and suppressing diseases. However, researches on the PGPR in the rhizosphere of carrots, an important vegetable crop, is relative limited. Therefore, this study aimed to isolate and characterize PGPR strains from the rhizosphere soil of greenhouse-grown carrots, with a focus on their potential to stimulate carrot growth. Methods Through a screening process, 12 high-efficiency phosphorus-solubilizing bacteria, one nitrogen-fixing strain, and two potassium-solubilizing strains were screened. Prominent among these were Bacillus firmus MN3 for nitrogen fixation ability, Acinetobacter pittii MP41 for phosphate solubilization, and Bacillus subtilis PK9 for potassium-solubilization. These strains were used to formulate a combined microbial consortium, N3P41K9, for inoculation and further analysis. Results The application of N3P41K9, significantly enhanced carrot growth, with an increase in plant height by 17.1% and root length by 54.5% in a pot experiment, compared to the control group. This treatment also elevated alkaline-hydrolyzable nitrogen levels by 72.4%, available phosphorus by 48.2%, and available potassium by 23.7%. Subsequent field trials confirmed the efficacy of N3P41K9, with a notable 12.5% increase in carrot yields. The N3P41K9 treatment had a minimal disturbance on soil bacterial diversity and abundance, but significantly increased the prevalence of beneficial genera such as Gemmatimonas and Nitrospira. Genus-level redundancy analysis indicated that the pH and alkali-hydrolyzable nitrogen content were pivotal in shaping the bacterial community composition. Discussion The findings of this study highlight the feasibility of combined microbial consortium in promoting carrot growth, increasing yield, and enriching the root environment with beneficial microbes. Furthermore, these results suggest the potential of the N3P41K9 consortium for soil amelioration, offering a promising strategy for sustainable agricultural practices.
Collapse
Affiliation(s)
- Liping Zhu
- Shandong Provincial Key Laboratory of Applied Mycology, School of Life Sciences, College of Resource and Environment Science, Qingdao Agricultural University, Qingdao, Shandong, China
- Postdoctoral Research Station, Rushan Hanwei Bio-Technical & Science CO., LTD., Weihai, Shandong, China
| | - Peiqiang Zhang
- Shandong Provincial Key Laboratory of Applied Mycology, School of Life Sciences, College of Resource and Environment Science, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Shunan Ma
- Shandong Provincial Key Laboratory of Applied Mycology, School of Life Sciences, College of Resource and Environment Science, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Quan Yu
- Shandong Provincial Key Laboratory of Applied Mycology, School of Life Sciences, College of Resource and Environment Science, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Haibing Wang
- Shandong Provincial Key Laboratory of Applied Mycology, School of Life Sciences, College of Resource and Environment Science, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Yuexuan Liu
- Shandong Provincial Key Laboratory of Applied Mycology, School of Life Sciences, College of Resource and Environment Science, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Song Yang
- Shandong Provincial Key Laboratory of Applied Mycology, School of Life Sciences, College of Resource and Environment Science, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Yanling Chen
- Shandong Provincial Key Laboratory of Applied Mycology, School of Life Sciences, College of Resource and Environment Science, Qingdao Agricultural University, Qingdao, Shandong, China
| |
Collapse
|
7
|
Babar S, Baloch A, Qasim M, Wang J, Wang X, Li Y, Khalid S, Jiang C. Unearthing the soil-bacteria nexus to enhance potassium bioavailability for global sustainable agriculture: A mechanistic preview. Microbiol Res 2024; 288:127885. [PMID: 39236472 DOI: 10.1016/j.micres.2024.127885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 08/02/2024] [Accepted: 08/25/2024] [Indexed: 09/07/2024]
Abstract
Established as a plant macronutrient, potassium (K) substantially bestows plant growth and thus, global food production. It is absorbed by plants as potassium cation (K+) from soil solution, which is enriched through slow-release from soil minerals or addition of soluble fertilizers. Contribution of bioavailable K+ from soil is usually insignificant (< 2 %), although the earth's crust is rich in K-bearing minerals. However, K is fixed largely in interlayer spaces of K-bearing minerals, which can be released by K-solubilizing bacteria (KSB) such as Bacillus, Pseudomonas, Enterobacter, and Acidithiobacillus. The underlying mechanisms of K dissolution by KSB include acidolysis, ion exchange reactions, chelation, complexolysis, and release of various organic and inorganic acids such as citric, oxalic, acetic, gluconic, and tartaric acids. These acids cause disintegration of K-bearing minerals and bring K+ into soil solution that becomes available to the plants. Current literature review updates the scientific information about microbial species, factors, and mechanisms governing the bio-intrusion of K-bearing minerals. Moreover, it explores the potential of KSB not only for K-solubilization but also to enhance bioavailability of phosphorus, nitrogen, and micronutrients, as well as its other beneficial impact on plant growth. Thus, in the context of sustainable agricultural production and global food security, utilization of KSB may facilitate plant nutrient availability, conserve natural resources, and reduce environmental impacts caused by chemical fertilizers.
Collapse
Affiliation(s)
- Saba Babar
- Microelement Research Center, College of Resources and Environment, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Amanullah Baloch
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Muhammad Qasim
- Microelement Research Center, College of Resources and Environment, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China.
| | - Jiyuan Wang
- Microelement Research Center, College of Resources and Environment, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Xiangling Wang
- Microelement Research Center, College of Resources and Environment, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Yuxuan Li
- Microelement Research Center, College of Resources and Environment, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Sarmand Khalid
- Key Laboratory of Horticulture Plant Biology of Ministry of Education, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China.
| | - Cuncang Jiang
- Microelement Research Center, College of Resources and Environment, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China.
| |
Collapse
|
8
|
Wu L, Xie Y, Li J, Han M, Yang X, Chang F. The Effect of Two Siderophore-Producing Bacillus Strains on the Growth Promotion of Perennial Ryegrass under Cadmium Stress. Microorganisms 2024; 12:1083. [PMID: 38930464 PMCID: PMC11206020 DOI: 10.3390/microorganisms12061083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/17/2024] [Accepted: 05/20/2024] [Indexed: 06/28/2024] Open
Abstract
Cadmium (Cd) is a highly toxic and cumulative environmental pollutant. Siderophores are heavy metal chelators with high affinity to heavy metals, such as Cd. Ryegrass (Lolium perenne L.) has a potential remediation capacity for soils contaminated by heavy metals. Consequently, using ryegrass alongside beneficial soil microorganisms that produce siderophores may be an effective means to remediate soils contaminated with Cd. In this study, the Bacillus strains WL1210 and CD303, which were previously isolated from the rhizospheres of Nitraria tangutorum in Wulan and Peganum harmala L. in Dachaidan, Qinghai, China, respectively, both arid and sandy environments, were evaluated for heavy metal pollution mitigation. Our quantitative analyses have discerned that the two bacterial strains possess commendable attributes of phosphorus (P) solubilization and potassium (K) dissolution, coupled with the capacity to produce phytohormones. To assess the heavy metal stress resilience of these strains, they were subjected to a cadmium concentration gradient, revealing their incremental growth despite cadmium presence, indicative of a pronounced tolerance threshold. The subsequent phylogenetic analysis, bolstered by robust genomic data from conserved housekeeping genes, including 16S rDNA, gyr B gene sequencing, as well as dnaK and recA, delineated a species-level phylogenetic tree, thereby confirming the strains as Bacillus atrophaeus. Additionally, we identified the types of iron-carrier-producing strains as catechol (WL1210) and carboxylic acid ferrophilin (CD303). A genomic analysis uncovered functional genes in strain CD303 associated with plant growth and iron carrier biosynthesis, such as fnr and iscA. Ryegrass seed germination assays, alongside morphological and physiological evaluations under diverse heavy metal stress, underscored the strains' potential to enhance ryegrass growth under high cadmium stress when treated with bacterial suspensions. This insight probes the strains' utility in leveraging alpine microbial resources and promoting ryegrass proliferation.
Collapse
Affiliation(s)
- Lingling Wu
- College of Agriculture and Animal Husbandry, Qinghai University, Xining 810016, China; (L.W.); (J.L.); (M.H.); (X.Y.); (F.C.)
| | - Yongli Xie
- College of Agriculture and Animal Husbandry, Qinghai University, Xining 810016, China; (L.W.); (J.L.); (M.H.); (X.Y.); (F.C.)
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China
- Key Laboratory of Use of Forage Germplasm Resources on Tibetan Plateau of Qinghai Province, Qinghai University, Xining 810016, China
| | - Junxi Li
- College of Agriculture and Animal Husbandry, Qinghai University, Xining 810016, China; (L.W.); (J.L.); (M.H.); (X.Y.); (F.C.)
| | - Mingrong Han
- College of Agriculture and Animal Husbandry, Qinghai University, Xining 810016, China; (L.W.); (J.L.); (M.H.); (X.Y.); (F.C.)
| | - Xue Yang
- College of Agriculture and Animal Husbandry, Qinghai University, Xining 810016, China; (L.W.); (J.L.); (M.H.); (X.Y.); (F.C.)
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China
| | - Feifei Chang
- College of Agriculture and Animal Husbandry, Qinghai University, Xining 810016, China; (L.W.); (J.L.); (M.H.); (X.Y.); (F.C.)
| |
Collapse
|
9
|
Zhu R, Jin L, Sang Y, Hu S, Wang BT, Jin FJ. Characterization of potassium-solubilizing fungi, Mortierella spp., isolated from a poplar plantation rhizosphere soil. Arch Microbiol 2024; 206:157. [PMID: 38480543 DOI: 10.1007/s00203-024-03912-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/16/2024] [Accepted: 02/26/2024] [Indexed: 04/16/2024]
Abstract
Potassium-solubilizing microorganisms are capable of secreting acidic chemicals that dissolve and release potassium from soil minerals, thus facilitating potassium uptake by plants. In this study, three potassium-dissolving filamentous fungi were isolated from the rhizosphere soil of a poplar plantation in Jiangsu Province, China. Phylogenetic analyses based on ITS, 18 S, and 28 S showed that these three isolates were most similar to Mortierella. These strains also possessed spherical or ellipsoidal spores, produced sporangia at the hyphal tip, and formed petal-like colonies on PDA media resembling those of Mortierella species. These findings, along with further phenotypic observations, suggest that these isolates were Mortierella species. In addition, the potassium-dissolution experiment showed that strain 2K4 had a relatively high potassium-solubilizing capacity among these isolated fungi. By investigating the influences of different nutrient conditions (carbon source, nitrogen source, and inorganic salt) and initial pH values on the potassium-dissolving ability, the optimal potassium-solubilization conditions of the isolate were determined. When potassium feldspar powder was used as an insoluble potassium source, isolate 2K4 exhibited a significantly better polysaccharide aggregation ability on the formed mycelium-potassium feldspar complex. The composition and content of organic acids secreted by strain 2K4 were further detected, and the potassium-dissolution mechanism of the Mortierella species and its growth promotion effect were discussed, using maize as an example.
Collapse
Affiliation(s)
- Rui Zhu
- College of Ecology and Environment, Nanjing Forestry University, 159 Longpan Road, Nanjing, 210037, China
| | - Long Jin
- College of Ecology and Environment, Nanjing Forestry University, 159 Longpan Road, Nanjing, 210037, China
| | - Yue Sang
- College of Ecology and Environment, Nanjing Forestry University, 159 Longpan Road, Nanjing, 210037, China
| | - Shuang Hu
- College of Ecology and Environment, Nanjing Forestry University, 159 Longpan Road, Nanjing, 210037, China
| | - Bao-Teng Wang
- College of Ecology and Environment, Nanjing Forestry University, 159 Longpan Road, Nanjing, 210037, China
| | - Feng-Jie Jin
- College of Ecology and Environment, Nanjing Forestry University, 159 Longpan Road, Nanjing, 210037, China.
| |
Collapse
|