1
|
Daniel-Fischer L, Sobieszek IJ, Wagner A, Sacnun JM, Watschinger B, Aufricht C, Kratochwill K, Herzog R. In-Depth Analysis of the Extracorporeal Proteome Adsorbed to Dialysis Membranes during Hemodialysis. MEMBRANES 2022; 12:1120. [PMID: 36363675 PMCID: PMC9695746 DOI: 10.3390/membranes12111120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 10/31/2022] [Accepted: 11/03/2022] [Indexed: 06/16/2023]
Abstract
Used hemodialysis membranes (HD-M) are a valuable reservoir of biological information. Proteins bind to HD-M, but whether this process depends on the type of membrane or patient factors or selectively affects specific protein classes has not been adequately elucidated. State-of-the-art proteomics techniques are capable of identifying and quantifying this therapy-specific subproteome to enable the analysis of disease- or membrane-induced pathophysiologies. We demonstrate the feasibility of the deep proteomic characterization of the extracorporeal proteome adsorbed to HD-M. A shotgun proteomics approach using nano-flow liquid chromatography coupled to mass-spectrometry identified 1648 unique proteins eluted by a chaotropic buffer from the HD-M of eight patients. In total, 995 proteins were present in all eluates; a more stringent approach showed that a core proteome of 310 proteins could be identified independently in all samples. Stability of the dialyzer proteome was demonstrated by a >90% re-identification rate on longitudinal samples of a single patient. The core proteome showed an overrepresentation of pathways of hemostasis and the immune system, and showed differences in membrane materials (polysulfone vs. helixone). This study demonstrates that optimized conditions combined with high-performance proteomics enable the in-depth exploration of the subproteome bound to HD-M, yielding a stable core proteome that can be exploited to study patient-specific factors and improve hemodialysis therapy.
Collapse
Affiliation(s)
- Lisa Daniel-Fischer
- Division of Pediatric Nephrology and Gastroenterology, Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics, Medical University of Vienna, 1090 Vienna, Austria
- Christian Doppler Laboratory for Molecular Stress Research in Peritoneal Dialysis, Medical University of Vienna, 1090 Vienna, Austria
| | - Isabel J. Sobieszek
- Division of Pediatric Nephrology and Gastroenterology, Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics, Medical University of Vienna, 1090 Vienna, Austria
- Christian Doppler Laboratory for Molecular Stress Research in Peritoneal Dialysis, Medical University of Vienna, 1090 Vienna, Austria
| | - Anja Wagner
- Division of Pediatric Nephrology and Gastroenterology, Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics, Medical University of Vienna, 1090 Vienna, Austria
- Christian Doppler Laboratory for Molecular Stress Research in Peritoneal Dialysis, Medical University of Vienna, 1090 Vienna, Austria
| | - Juan Manuel Sacnun
- Division of Pediatric Nephrology and Gastroenterology, Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics, Medical University of Vienna, 1090 Vienna, Austria
- Christian Doppler Laboratory for Molecular Stress Research in Peritoneal Dialysis, Medical University of Vienna, 1090 Vienna, Austria
| | - Bruno Watschinger
- Division of Nephrology and Dialysis, Department of Inner Medicine III, Medical University of Vienna, 1090 Vienna, Austria
| | - Christoph Aufricht
- Division of Pediatric Nephrology and Gastroenterology, Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics, Medical University of Vienna, 1090 Vienna, Austria
| | - Klaus Kratochwill
- Division of Pediatric Nephrology and Gastroenterology, Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics, Medical University of Vienna, 1090 Vienna, Austria
- Christian Doppler Laboratory for Molecular Stress Research in Peritoneal Dialysis, Medical University of Vienna, 1090 Vienna, Austria
| | - Rebecca Herzog
- Division of Pediatric Nephrology and Gastroenterology, Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics, Medical University of Vienna, 1090 Vienna, Austria
- Christian Doppler Laboratory for Molecular Stress Research in Peritoneal Dialysis, Medical University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
2
|
Huang X, Wang Z, Su B, He X, Liu B, Kang B. A computational strategy for metabolic network construction based on the overlapping ratio: Study of patients' metabolic responses to different dialysis patterns. Comput Biol Chem 2021; 93:107539. [PMID: 34246891 DOI: 10.1016/j.compbiolchem.2021.107539] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/25/2021] [Accepted: 07/01/2021] [Indexed: 11/16/2022]
Abstract
BACKGROUND Uremia is a worldwide epidemic disease and poses a serious threat to human health. Both maintenance hemodialysis (HD) and maintenance high flux hemodialysis (HFD) are common treatments for uremia and are generally used in clinical applications. In-depth exploration of patients' metabolic responses to different dialysis patterns can facilitate the understanding of pathological alterations associated with uremia and the effects of different dialysis methods on uremia, which may be used for future personalized therapy. However, due to variations of multiple factors (i.e., genetic, epigenetic and environment) in the process of disease treatments, identification of the similarities and differences in plasma metabolite changes in uremic patients in response to HD and HFD remains challenging. METHODS In this study, a computational strategy for metabolic network construction based on the overlapping ratio (MNC-OR) was proposed for disease treatment effect research. In MNC-OR, the overlapping ratio was introduced to measure metabolic reactions and to construct metabolic networks for analysis of different treatment options. Then, MNC-OR was employed to analyze HD-pattern-dependent changes in plasma metabolites to explore the pathological alterations associated with uremia and the effectiveness of different dialysis patterns (i.e., HD and HFD) on uremia. Based on the networks constructed by MNC-OR, two network analysis techniques, namely, similarity analysis and difference analysis of network topology, were used to find the similarity and differences in metabolic signals in patients under treatment with either HD or HFD, which can facilitate the understanding of pathological alterations associated with uremia and provide the guidance for personalized dialysis therapy. RESULTS Similarity analysis of network topology suggested that abnormal energy metabolism, gut metabolism and pyrimidine metabolism might occur in uremic patients, and maintenance of both HFD and HD therapies have beneficial effects on uremia. Then, difference analysis of network topology was employed to extract the crucial information related to HD-pattern-dependent changes in plasma metabolites. Experimental results indicated that the amino acid metabolism was closer to the normal status in HFD-treated patients; however, in HD-treated patients, the ability of antioxidation showed greater reduction, and the protein O-GlcNAcylation level was higher. Our findings demonstrate the potential of MNC-OR for explaining the metabolic similarities and differences of patients in response to different dialysis methods, thereby contributing to the guidance of personalized dialysis therapy.
Collapse
Affiliation(s)
- Xin Huang
- School of Mathematics and Information Science, Anshan Normal University, Anshan, Liaoning, China.
| | - Zeyu Wang
- School of Mathematics and Information Science, Anshan Normal University, Anshan, Liaoning, China
| | - Benzhe Su
- School of Computer Science and Technology, Dalian University of Technology, Dalian, Liaoning, China
| | - Xinyu He
- School of Computer and Information Technology, Liaoning Normal University, Dalian, Liaoning, China
| | - Bing Liu
- School of Mathematics and Information Science, Anshan Normal University, Anshan, Liaoning, China
| | - Baolin Kang
- School of Mathematics and Information Science, Anshan Normal University, Anshan, Liaoning, China
| |
Collapse
|
3
|
van Vuuren S, Frank L. Review: Southern African medicinal plants used as blood purifiers. JOURNAL OF ETHNOPHARMACOLOGY 2020; 249:112434. [PMID: 31812645 DOI: 10.1016/j.jep.2019.112434] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 11/26/2019] [Accepted: 11/26/2019] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMALOGICAL RELEVANCE Blood purification practices, also referred to as blood cleansing or detoxification, is an ancient concept which is widespread amongst African traditional medicine, but for which no modern scientific basis exists. There prevails considerable ambiguity in defining what a blood purifier is. AIM OF THE STUDY The purpose of this review is to firstly define what a blood purifier is in the context of African traditional medicine and compare to other cultural and westernized interpretations. Thereafter, this study identifies traditionally used medicinal plants used as blood purifiers in southern Africa and correlates these species to scientific studies, which may support evidence for these "blood purifying plant species". MATERIALS AND METHODS Ethnobotanical books and review articles were used to identify medicinal plants used for blood purification. Databases such as Scopus, ScienceDirect, PubMed and Google Scholar were used to source scientific articles. An evaluation was made to try correlate traditional use to scientific value of the plant species. RESULTS One hundred and fifty nine plant species have been documented as traditional remedies for blood purification. Most of the plant species have some pharmacological activity, however, very little link to the traditional use for blood purification. There has been some justification of the link between blood purification and the use as an antimicrobial and this has been explored in many of the plant species identified as blood purifiers. Other pharmacological studies specifically pertaining to the blood require further attention. CONCLUSION Irrespective of the ambiguity of interpretation, medicinal plants used to "cleanse the blood", play an important holistic role in traditional medicine and this review with recommendations for further study provides some value of exploring this theme in the future.
Collapse
Affiliation(s)
- S van Vuuren
- Department of Pharmacy and Pharmacology, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, 2193, South Africa.
| | - L Frank
- Department of Pharmacy and Pharmacology, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, 2193, South Africa
| |
Collapse
|
4
|
Li Y, He M, Zou Z, Bian X, Huang X, Yang C, Wei S, Dai S. Artificial liver research output and citations from 2004 to 2017: a bibliometric analysis. PeerJ 2019; 6:e6178. [PMID: 30647995 PMCID: PMC6330953 DOI: 10.7717/peerj.6178] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 11/28/2018] [Indexed: 12/13/2022] Open
Abstract
Background Researches on artificial livers greatly contribute to the clinical treatments for liver failure. This study aimed to evaluate the research output of artificial livers and citations from 2004 to 2017 through a bibliometric analysis. Methods A list of included articles on artificial livers were generated after a comprehensive search of the Web of Science Core Collection (from 2004 to 2017) with the following basic information: number of publications, citations, publication year, country of origin, authors and authorship, funding source, journals, institutions, keywords, and research area. Results A total of 968 included articles ranged from 47 citations to 394 citations with a fluctuation. The publications were distributed in 12 countries, led by China (n = 212) and the US (n = 207). There were strong correlations of the number of citations with authors (r 2 = 0.133, p < 0.001), and countries (r 2 = 0.275, p < 0.001), while no correlations of the number of citations with the years since publication (r 2 = 0.016, p = 0.216), and funding (r 2 < 0.001, p = 0.770) were identified. Keyword analysis demonstrated that with the specific change of "acute liver failure," decrease in "bioartificial livers" and "hepatocyte," and increase in "tissue engineering" were identified. The top 53 cited keyword and keyword plus (including some duplicates counts) were identified, led by bioartificial liver (405 citations) and hepatocyte (248 citations). The top 50 cited keywords bursts were mainly "Blood" (2004-2008), "hepatocyte like cell" (2008-2015), and "tissue engineering" (2014-2017). All keywords could be classified into four categories: bioartificial livers (57.40%), blood purification (25.00%), clinical (14.81%), and other artificial organs (2.78%). Discussion This study shows the process and tendency of artificial liver research with a comprehensive analysis on artificial livers. However, although it seems that the future of artificial livers seems brighter for hepatocyte transplantation, the systems of artificial livers now are inclined on focusing on blood purification, plasma exchange, etc.
Collapse
Affiliation(s)
- Yan Li
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Meizhi He
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Ziyuan Zou
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Xiaohui Bian
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Xiaowen Huang
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Chen Yang
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Shuyi Wei
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Shixue Dai
- Department of Gastroenterology, Guangdong General Hospital and Guangdong Academy of Medical Sciences, South China University of Technology, Guangzhou, Guangdong, China.,Guangdong Geriatrics Institute, Guangdong General Hospital and Guangdong Academy of Medical Sciences, South China University of Technology, Guangzhou, Guangdong, China
| |
Collapse
|
5
|
Ronci M, Leporini L, Felaco P, Sirolli V, Pieroni L, Greco V, Aceto A, Urbani A, Bonomini M. Proteomic Characterization of a New asymmetric Cellulose Triacetate Membrane for Hemodialysis. Proteomics Clin Appl 2018; 12:e1700140. [PMID: 29808585 DOI: 10.1002/prca.201700140] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 04/27/2018] [Indexed: 12/24/2022]
Abstract
PURPOSE The artificial membrane inside the haemodialyzer is the main determinant of the quality and success of haemodialysis therapy. The performances of haemodialysis membranes are highly influenced by the interactions with plasma proteins, which in turn are related to the physical and chemical characteristics of the membrane material. The present cross-over study is aimed to analyse the haemodialysis performance of a newly developed asymmetric cellulose triacetate membrane (ATA) in comparison to the conventional parent symmetric polymer (CTA). EXPERIMENTAL DESIGN In four chronic non diabetic haemodialysis patients, the protein constituents of the adsorbed material from the filters after the haemodialysis session, and the proteins recovered in the ultrafiltrate during the session, are identified using a bottom-up shotgun proteomics approach. RESULTS The ATA membrane shows a lower protein adsorption rate and a lower mass distribution pattern of the proteinaceous material. CONCLUSIONS AND CLINICAL RELEVANCE By highlighting the differences between the two haemodialysis filters in terms of adsorbed proteins and flow through, it is demonstrated the higher biocompatibility of the novel ATA membrane, that fulfils the indications for the development of more performant membranes and may represent a step forward for the treatment of patients on chronic haemodialysis.
Collapse
Affiliation(s)
- Maurizio Ronci
- Department of Medical, Oral and Biotechnological Sciences, University "G. D'Annunzio" of Chieti-Pescara, Chieti 66100, Italy.,IRCCS-Santa Lucia Foundation, Rome 00144, Italy
| | - Lidia Leporini
- Department of Pharmacy, University "G. D'Annunzio" of Chieti-Pescara, Chieti 66100, Italy
| | - Paolo Felaco
- Department of Medicine and Aging Sciences, University "G. D'Annunzio" of Chieti-Pescara, Chieti 66100, Italy
| | - Vittorio Sirolli
- Department of Medicine and Aging Sciences, University "G. D'Annunzio" of Chieti-Pescara, Chieti 66100, Italy
| | | | | | - Antonio Aceto
- Department of Medical, Oral and Biotechnological Sciences, University "G. D'Annunzio" of Chieti-Pescara, Chieti 66100, Italy
| | - Andrea Urbani
- IRCCS-Santa Lucia Foundation, Rome 00144, Italy.,Institute of Biochemistry and Clinical Biochemistry, School of Medicine, Catholic University, Rome 00144, Italy
| | - Mario Bonomini
- Department of Medicine and Aging Sciences, University "G. D'Annunzio" of Chieti-Pescara, Chieti 66100, Italy
| |
Collapse
|
6
|
Chen L, Su W, Chen H, Chen DQ, Wang M, Guo Y, Zhao YY. Proteomics for Biomarker Identification and Clinical Application in Kidney Disease. Adv Clin Chem 2018; 85:91-113. [PMID: 29655463 DOI: 10.1016/bs.acc.2018.02.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Treatment effectiveness for kidney disease is limited by lack of accuracy, sensitivity, specificity of diagnostic, prognostic, and therapeutic biomarkers. The gold standard test renal biopsy along with serum creatinine and proteinuria is often necessary to establish a diagnosis, particularly in glomerular disease. Proteomics has become a powerful tool for novel biomarker discovery in kidney disease. Novel proteomics offer earlier and more accurate diagnosis of renal pathology than possible with traditional biomarkers such as serum creatinine and urine protein. In addition, proteomic biomarkers could also be useful to choose the most suitable therapeutic targets. This review focuses on the current status of proteomic biomarkers from animal models (5/6 nephrectomy, unilateral ureteral obstruction, and diabetic nephropathy) and human studies (chronic kidney disease, glomerular diseases, transplantation, dialysis, acute and drug-induced kidney injury) to assess relevant findings and clinical usefulness. Current issues and problems related to the discovery, validation, and clinical application of proteomic biomarkers are discussed. We also describe several proteomic strategies highlighting technologic advancements, specimen selection, data processing and analysis. This review might provide help in future proteomic studies to improve the diagnosis and management of kidney disease.
Collapse
Affiliation(s)
- Lin Chen
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Science, Northwest University, Xi'an, China
| | - Wei Su
- Baoji Central Hospital, Baoji, China
| | - Hua Chen
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Science, Northwest University, Xi'an, China
| | - Dan-Qian Chen
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Science, Northwest University, Xi'an, China
| | - Ming Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Science, Northwest University, Xi'an, China
| | - Yan Guo
- University of New Mexico, Comprehensive Cancer Center, Albuquerque, NM, United States
| | - Ying-Yong Zhao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Science, Northwest University, Xi'an, China.
| |
Collapse
|
7
|
Bonomini M, Pieroni L, Di Liberato L, Sirolli V, Urbani A. Examining hemodialyzer membrane performance using proteomic technologies. Ther Clin Risk Manag 2017; 14:1-9. [PMID: 29296087 PMCID: PMC5739111 DOI: 10.2147/tcrm.s150824] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The success and the quality of hemodialysis therapy are mainly related to both clearance and biocompatibility properties of the artificial membrane packed in the hemodialyzer. Performance of a membrane is strongly influenced by its interaction with the plasma protein repertoire during the extracorporeal procedure. Recognition that a number of medium-high molecular weight solutes, including proteins and protein-bound molecules, are potentially toxic has prompted the development of more permeable membranes. Such membrane engineering, however, may cause loss of vital proteins, with membrane removal being nonspecific. In addition, plasma proteins can be adsorbed onto the membrane surface upon blood contact during dialysis. Adsorption can contribute to the removal of toxic compounds and governs the biocompatibility of a membrane, since surface-adsorbed proteins may trigger a variety of biologic blood pathways with pathophysiologic consequences. Over the last years, use of proteomic approaches has allowed polypeptide spectrum involved in the process of hemodialysis, a key issue previously hampered by lack of suitable technology, to be assessed in an unbiased manner and in its full complexity. Proteomics has been successfully applied to identify and quantify proteins in complex mixtures such as dialysis outflow fluid and fluid desorbed from dialysis membrane containing adsorbed proteins. The identified proteins can also be characterized by their involvement in metabolic and signaling pathways, molecular networks, and biologic processes through application of bioinformatics tools. Proteomics may thus provide an actual functional definition as to the effect of a membrane material on plasma proteins during hemodialysis. Here, we review the results of proteomic studies on the performance of hemodialysis membranes, as evaluated in terms of solute removal efficiency and blood-membrane interactions. The evidence collected indicates that the information provided by proteomic investigations yields improved molecular and functional knowledge and may lead to the development of more efficient membranes for the potential benefit of the patient.
Collapse
Affiliation(s)
- Mario Bonomini
- Department of Medicine, G. d'Annunzio University, Chieti
| | - Luisa Pieroni
- Proteomic and Metabonomic Units, IRCCS S. Lucia Foundation, Rome
| | | | | | - Andrea Urbani
- Proteomic and Metabonomic Units, IRCCS S. Lucia Foundation, Rome.,Faculty of Medicine, Biochemistry and Clinical Biochemistry Institute, Catholic University of the "Sacred Heart", Rome, Italy
| |
Collapse
|
8
|
Sun Z, Wang J, Weng M, Tang J, Wang J, Xu J, Lin L, Yuan H. Role of Small Interfering RNA Silencing Protein Kinase C‐α Gene on the Occurrence of Ultrafiltration Failure in Peritoneal Dialysis Rats. J Cell Biochem 2017; 118:4607-4616. [PMID: 28485503 DOI: 10.1002/jcb.26125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 05/08/2017] [Indexed: 11/07/2022]
Affiliation(s)
- Zhi‐Wei Sun
- Department of Hepatobiliary SurgeryThe First People's Hospital of Yunnan ProvinceKunhua Hospital Affiliated to Kunming University of Science and TechnologyKunming650031P. R. China
| | - Jian Wang
- Department of NephrologyThe First People's Hospital of Yunnan ProvinceKunhua Hospital Affiliated to Kunming University of Science and TechnologyKunming650031P. R. China
| | - Min Weng
- Department of NutritionThe First Affiliated Hospital of Kunming Medical UniversityKunming650032P. R. China
| | - Jian‐Zhong Tang
- Department of Hepatobiliary SurgeryThe First People's Hospital of Yunnan ProvinceKunhua Hospital Affiliated to Kunming University of Science and TechnologyKunming650031P. R. China
| | - Jun‐Feng Wang
- Department of Hepatobiliary SurgeryThe First People's Hospital of Yunnan ProvinceKunhua Hospital Affiliated to Kunming University of Science and TechnologyKunming650031P. R. China
| | - Jian Xu
- Department of NephrologyThe First People's Hospital of Yunnan ProvinceKunhua Hospital Affiliated to Kunming University of Science and TechnologyKunming650031P. R. China
| | - Ling Lin
- Department of Geriatric CardiologyThe First Affiliated Hospital of Kunming Medical UniversityKunming650032P. R. China
| | - Hong‐Ling Yuan
- Department of NephrologyThe First Affiliated Hospital of Kunming Medical UniversityKunming650032P. R. China
| |
Collapse
|
9
|
A cost-effective method to get insight into the peritoneal dialysate effluent proteome. J Proteomics 2016; 145:207-213. [PMID: 27216641 DOI: 10.1016/j.jprot.2016.05.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 04/13/2016] [Accepted: 05/07/2016] [Indexed: 11/21/2022]
Abstract
Protein depletion with acetonitrile and protein equalization with dithiothreitol have been assessed with success as proteomics tools for getting insight into the peritoneal dialysate effluent proteome. The methods proposed are cost-effective, fast and easy of handling, and they match the criteria of analytical minimalism: low sample volume and low reagent consumption. Using two-dimensional gel electrophoresis and peptide mass fingerprinting, a total of 72 unique proteins were identified. Acetonitrile depletes de PDE proteome from high-abundance proteins, such as albumin, and enriches the sample in apolipo-like proteins. Dithiothreitol equalizes the PDE proteome by diminishing the levels of albumin and enriching the extract in immunoglobulin-like proteins. The annotation per gene ontology term reveals the same biological paths being affected for patients undergoing peritoneal dialysis, namely that the largest number of proteins lost through peritoneal dialysate are extracellular proteins involved in regulation processes through binding. SIGNIFICANCE Renal failure is a growing problem worldwide, and particularly in Europe where the population is getting older.
Up-to-date there is a focus of interest in peritoneal dialysis (PD), as it provides a better quality of life and autonomy of the patients than other renal replacement therapies such as haemodialysis. However, PD can only be used during a short period of years, as the peritoneum lost its permeability through time. Therefore to make a breakthrough in PD and consequently contribute to better healthcare system it is urgent to find a group of biomarkers of peritoneum degradation.
Here we report on two cost-effective methods for protein depletion in peritoneal dialysate effluent (PDE). The use of ACN and DTT over PDE to deplete high abundant proteins or to equalize the concentration of proteins, respectively, performs well and with similar protein profiles than when the same chemicals are used in human plasma samples.
ACN depletes de PDE proteome from large proteins, such as albumin, and enriches the sample in apolipoproteins.
DTT equalizes the PDE proteome by diminishing the levels of large proteins such as albumin and enriching the extract in immunoglobulins.
Although the number and type of proteins identified are different, the annotation per gene ontology term reveals the same biological paths being affected for patients undergoing peritoneal dialysate. Thus, the largest number of proteins lost through peritoneal dialysate belongs to the group of extracellular proteins involved in regulation processes through binding. As for the searching of biomarkers, DTT seems to be the most promising of the two methods because acts as an equalizer and it allows interrogating more proteins in the same sample.
Collapse
|
10
|
Bonomini M, Sirolli V, Pieroni L, Felaco P, Amoroso L, Urbani A. Proteomic Investigations into Hemodialysis Therapy. Int J Mol Sci 2015; 16:29508-21. [PMID: 26690416 PMCID: PMC4691132 DOI: 10.3390/ijms161226189] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 11/26/2015] [Accepted: 12/02/2015] [Indexed: 01/07/2023] Open
Abstract
The retention of a number of solutes that may cause adverse biochemical/biological effects, called uremic toxins, characterizes uremic syndrome. Uremia therapy is based on renal replacement therapy, hemodialysis being the most commonly used modality. The membrane contained in the hemodialyzer represents the ultimate determinant of the success and quality of hemodialysis therapy. Membrane's performance can be evaluated in terms of removal efficiency for unwanted solutes and excess fluid, and minimization of negative interactions between the membrane material and blood components that define the membrane's bio(in)compatibility. Given the high concentration of plasma proteins and the complexity of structural functional relationships of this class of molecules, the performance of a membrane is highly influenced by its interaction with the plasma protein repertoire. Proteomic investigations have been increasingly applied to describe the protein uremic milieu, to compare the blood purification efficiency of different dialyzer membranes or different extracorporeal techniques, and to evaluate the adsorption of plasma proteins onto hemodialysis membranes. In this article, we aim to highlight investigations in the hemodialysis setting making use of recent developments in proteomic technologies. Examples are presented of why proteomics may be helpful to nephrology and may possibly affect future directions in renal research.
Collapse
Affiliation(s)
- Mario Bonomini
- Nephrology and Dialysis Institute, Department of Medicine, G. d'Annunzio University, Chieti-Pescara, SS. Annunziata Hospital, Via dei Vestini, 66013 Chieti, Italy.
| | - Vittorio Sirolli
- Nephrology and Dialysis Institute, Department of Medicine, G. d'Annunzio University, Chieti-Pescara, SS. Annunziata Hospital, Via dei Vestini, 66013 Chieti, Italy.
| | - Luisa Pieroni
- Proteomics and Metabonomics Laboratory, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) S. Lucia Foundation, 00179 Rome, Italy.
- Department of Surgery and Experimental Medicine, Tor Vergata University, 00134 Rome, Italy.
| | - Paolo Felaco
- Nephrology and Dialysis Institute, Department of Medicine, G. d'Annunzio University, Chieti-Pescara, SS. Annunziata Hospital, Via dei Vestini, 66013 Chieti, Italy.
| | - Luigi Amoroso
- Nephrology and Dialysis Institute, Department of Medicine, G. d'Annunzio University, Chieti-Pescara, SS. Annunziata Hospital, Via dei Vestini, 66013 Chieti, Italy.
| | - Andrea Urbani
- Proteomics and Metabonomics Laboratory, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) S. Lucia Foundation, 00179 Rome, Italy.
- Department of Surgery and Experimental Medicine, Tor Vergata University, 00134 Rome, Italy.
| |
Collapse
|
11
|
Pieroni L, Levi Mortera S, Greco V, Sirolli V, Ronci M, Felaco P, Fucci G, De Fulviis S, Massoud R, Condò S, Capria A, Di Daniele N, Bernardini S, Urbani A, Bonomini M. Biocompatibility assessment of haemodialysis membrane materials by proteomic investigations. MOLECULAR BIOSYSTEMS 2015; 11:1633-43. [DOI: 10.1039/c5mb00058k] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
We examine and compare the protein adsorption capacity and coagulation profiles of different haemodialysis membrane biomaterials.
Collapse
|
12
|
Proteomic analysis in peritoneal dialysis patients with different peritoneal transport characteristics. Biochem Biophys Res Commun 2013; 438:473-8. [DOI: 10.1016/j.bbrc.2013.07.116] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Accepted: 07/28/2013] [Indexed: 11/19/2022]
|
13
|
Zhang L, Wen Q, Mao HP, Luo N, Rong R, Fan JJ, Yu XQ. Developing a reproducible method for the high-resolution separation of peritoneal dialysate proteins on 2-D gels. Protein Expr Purif 2013; 89:196-202. [PMID: 23558012 DOI: 10.1016/j.pep.2013.03.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Revised: 03/20/2013] [Accepted: 03/22/2013] [Indexed: 11/25/2022]
Abstract
PURPOSE Despite recent progress in the proteomic analysis of peritoneal dialysate effluent (PDE), there remains unresolved problems in the development of an optimal sample preparation method. EXPERIMENTAL DESIGN We examined five protocols for concentrating PDE proteins and the effects of immobilized pH gradient (IPG) strips with different pH ranges and sample loading techniques. In addition, we examined three kits for depleting high abundance proteins by SDS-PAGE and two-dimensional gel electrophoresis (2-DE). RESULTS PDE proteins precipitated with 75% acetonitrile (ACN) showed the greatest number of protein spots by 2-DE, with over 800 distinct spots. Higher-resolution images were obtained using IPG strips with a pH range of 4-7. The ProteoPrep immunoaffinity albumin and IgG depletion kit removed high abundance proteins with higher efficiency and more compatibility with isoelectric focusing (IEF). Removing high abundance proteins also increased the resolution and improved the intensity of low abundance proteins. CONCLUSION AND CLINICAL RELEVANCE High-resolution 2-DE images of PDE proteins were obtained by concentrating samples with 75% ACN, using pH 4-7 IPG strips, and depleting high abundance proteins. This optimized method will enable future studies to discover predictive biomarkers of disease in patients on dialysis.
Collapse
Affiliation(s)
- Li Zhang
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Key Laboratory of Nephrology, Ministry of Health, Guangzhou, Guangdong, China
| | | | | | | | | | | | | |
Collapse
|
14
|
Proteomic investigations on the effect of different membrane materials on blood protein adsorption during haemodialysis. BLOOD TRANSFUSION = TRASFUSIONE DEL SANGUE 2012; 10 Suppl 2:s101-12. [PMID: 22890260 DOI: 10.2450/2012.014s] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
BACKGROUND During haemodialysis procedure, the contact of blood with the membrane material contained in the hemodialyser results in protein deposition and adsorption, and surface-adsorbed proteins may trigger a variety of biological pathways with potential pathophysiologic consequences. The present work was undertaken to examine for protein adsorption capacity of two membranes used for clinical haemodialysis, namely cellulose triacetate (a derivatized cellulosic membrane) and the synthetic polymer polysulfone-based helixone. MATERIALS AND METHODS We performed a prospective cross-over study in chronic haemodialysis patients, routinely treated with a cellulose triacetate dialyser (n=3) or with a helixone dialyser (n=3). Dialysers from each patient were obtained after dialysis session, and flushed with a litre of saline to remove residual blood. Adsorbed proteins were then eluted by a strong chaotropic buffer. Patients were next switched to the other membrane dialyser for four weeks, at the end of this period protein adsorption being evaluated again. After silver staining, expression profile protein of the two groups was analyzed by 2-DE gels, analyzed and identified by Peptide Mass-finger printing and MALDI-TOF-MS/MS sequency. Moreover nanoLC-MS/MS shotgun profiling was pursued using a semi-quantitative label free approach by emPAI data analysis. RESULTS A total of 54 differentially expressed proteins were identified: 22 proteins more concentrated in helixone membrane (predominantly low abundant plasma proteins) and 32 in cellulose triacetate (most represented by high abundant plasma proteins). The difference proved to be related to membrane material and not to patient's characteristics. DISCUSSION Proteomic techniques represent a useful approach for the investigation of proteins surface-adsorbed onto a haemodialysis membrane, and can also be applied for critical assessment to compare efficiencies of different dialyser membrane materials in the adsorption of plasma proteins.
Collapse
|
15
|
Konvalinka A, Scholey JW, Diamandis EP. Searching for new biomarkers of renal diseases through proteomics. Clin Chem 2011; 58:353-65. [PMID: 21980170 DOI: 10.1373/clinchem.2011.165969] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
BACKGROUND Technological advances have resulted in a renaissance of proteomic studies directed at finding markers of disease progression, diagnosis, or responsiveness to therapy. Renal diseases are ideally suited for such research, given that urine is an easily accessible biofluid and its protein content is derived mainly from the kidney. Current renal prognostic markers have limited value, and renal biopsy remains the sole method for establishing a diagnosis. Mass spectrometry instruments, which can detect thousands of proteins at nanomolar (or even femtomolar) concentrations, may be expected to allow the discovery of improved markers of progression, diagnosis, or treatment responsiveness. CONTENT In this review we describe the strengths and limitations of proteomic methods and the drawbacks of existing biomarkers, and provide an overview of opportunities in the field. We also highlight several proteomic studies of biomarkers of renal diseases selected from the plethora of studies performed. SUMMARY It is clear that the field of proteomics has not yet fulfilled its promise. However, ongoing efforts to standardize sample collection and preparation, improve study designs, perform multicenter validations, and create joint industry-regulatory bodies offer promise for the recognition of novel molecules that could change clinical nephrology forever.
Collapse
Affiliation(s)
- Ana Konvalinka
- Department of Medicine, Division of Nephrology, University of Toronto, Toronto, Ontario, Canada
| | | | | |
Collapse
|
16
|
Qi X, Zhang Y, Gao J, Chen T, Zhao A, Yan Y, Jia W. Metabolite profiling of hemodialysate using gas chromatography time-of-flight mass spectrometry. J Pharm Biomed Anal 2011; 55:1142-7. [DOI: 10.1016/j.jpba.2011.04.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2010] [Revised: 04/01/2011] [Accepted: 04/04/2011] [Indexed: 11/29/2022]
|
17
|
Brewis IA, Topley N. Proteomics and peritoneal dialysis: early days but clear potential. Nephrol Dial Transplant 2010; 25:1749-53. [PMID: 20348542 PMCID: PMC2875986 DOI: 10.1093/ndt/gfq145] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|