1
|
El-Shiekh RA, Elshimy R. Therapeutic effects of Stemmoside C against Salmonella enterica serotype typhimurium infected BALB/c mice. Steroids 2023; 199:109296. [PMID: 37591445 DOI: 10.1016/j.steroids.2023.109296] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/09/2023] [Accepted: 08/14/2023] [Indexed: 08/19/2023]
Abstract
Salmonella is a Gram-negative bacterium that causes gastrointestinal diseases in 20 to 40 million people globally. Stemmoside C is a steroidal glycoside isolated from Argel, although its antibacterial and antibiofilm properties have not been studied. The antibacterial activity of Stemmoside C against Salmonella enterica was revealed, where MIC of the compound was 16 μg/mL (0.15 µM). Biofilm-associated Stemmoside C treatment destroyed S. typhi cells and reduced viable S. typhi numbers below detectable levels. When compared to Stemmoside C or Ciprofluxacin-treated mice, infected BALB/c mice had a greater death rate and a larger bacterial blood burden. The protective effects of orally administered Stemmoside C at dose of 25 and 50 mg/kg b.wt. against bacterial infection was associated with reduction in the levels of inflammatory cytokines (IFN-γ, Il-1β, IL-2, IL-6, MPO, and TNF-α) and elevation of anti-inflammatory cytokine (IL-10 and IL-12) in serum. Where, Stemmoside C at dose of 50 mg/kg b.wt. regulated the levels almost as normal control group and demonstrated apparently normal intestinal sections. It also resulted in a decrease in the number of viable S. typhi retrieved from feces. Stemmoside C is a promising drug for the treatment or prevention of S. typhimurium infection.
Collapse
Affiliation(s)
- Riham A El-Shiekh
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Kasr el Aini st., Cairo 11562, Egypt.
| | - Rana Elshimy
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ahram Canadian University, Giza, Egypt; Department of Microbiology and Immunology, Egyptian Drug Authority, Cairo, Egypt.
| |
Collapse
|
2
|
Zhang JB, Zou XJ, Zhang Q, Wang AY, Amir MB, Du YM, Liu XQ, Chen W, Lu ZJ, Yu HZ. Quantitative ubiquitylome crosstalk with proteome analysis revealed cytoskeleton proteins influence CLas pathogen infection in Diaphorina citri. Int J Biol Macromol 2023; 232:123411. [PMID: 36706880 DOI: 10.1016/j.ijbiomac.2023.123411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 01/19/2023] [Accepted: 01/20/2023] [Indexed: 01/26/2023]
Abstract
Huanglongbing (HLB), also known as citrus greening disease, is caused by Candidatus Liberbacter asiaticus (CLas) and transmitted by Diaphorina citri. Previous studies reported that CLas infection significantly influences the structure of the D. citri cytoskeleton. However, the mechanisms through which CLas manipulates cytoskeleton-related proteins remain unclear. In this study, we performed quantitative ubiquitylome crosstalk with the proteome to reveal the roles of cytoskeleton-related proteins during the infection of D. citri by CLas. Western blotting revealed a significant difference in ubiquitination levels between the CLas-free and CLas-infected groups. According to ubiquitylome and 4D label-free proteome analysis, 343 quantified lysine ubiquitination (Kub) sites and 666 differentially expressed proteins (DEPs) were identified in CLas-infected groups compared with CLas-free groups. A total of 53 sites in 51 DEPs were upregulated, while 290 sites in 192 DEPs were downregulated. Furthermore, functional enrichment analysis indicated that 18 DEPs and 21 lysine ubiquitinated proteins were associated with the cytoskeleton, showing an obvious interaction. Ubiquitination of D. citri tropomyosin was confirmed by immunoprecipitation, Western blotting, and LC-MS/MS. RNAi-mediated knockdown of tropomyosin significantly increased CLas bacterial content in D. citri. In summary, we provided the most comprehensive lysine ubiquitinome analysis of the D. citri response to CLas infection, thus furthering our understanding of the role of the ubiquitination of cytoskeleton proteins in CLas infection.
Collapse
Affiliation(s)
- Jin-Bo Zhang
- College of Life Sciences, Gannan Normal University, Ganzhou, Jiangxi 341000, China
| | - Xiao-Jin Zou
- College of Life Sciences, Gannan Normal University, Ganzhou, Jiangxi 341000, China
| | - Qin Zhang
- College of Life Sciences, Gannan Normal University, Ganzhou, Jiangxi 341000, China
| | - Ai-Yun Wang
- Fruit Bureau of Xinfeng County, Ganzhou, Jiangxi 341000, China
| | - Muhammad Bilal Amir
- College of Life Sciences, Gannan Normal University, Ganzhou, Jiangxi 341000, China; South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Yi-Min Du
- College of Life Sciences, Gannan Normal University, Ganzhou, Jiangxi 341000, China; National Navel Orange Engineering Research Center, Ganzhou, Jiangxi 341000, China; Ganzhou Key Laboratory of Nanling Insect Biology, Ganzhou, Jiangxi 341000, China
| | - Xiao-Qiang Liu
- College of Life Sciences, Gannan Normal University, Ganzhou, Jiangxi 341000, China
| | - Wei Chen
- College of Life Sciences, Gannan Normal University, Ganzhou, Jiangxi 341000, China; National Navel Orange Engineering Research Center, Ganzhou, Jiangxi 341000, China; Ganzhou Key Laboratory of Nanling Insect Biology, Ganzhou, Jiangxi 341000, China
| | - Zhan-Jun Lu
- College of Life Sciences, Gannan Normal University, Ganzhou, Jiangxi 341000, China; National Navel Orange Engineering Research Center, Ganzhou, Jiangxi 341000, China; Ganzhou Key Laboratory of Nanling Insect Biology, Ganzhou, Jiangxi 341000, China.
| | - Hai-Zhong Yu
- College of Life Sciences, Gannan Normal University, Ganzhou, Jiangxi 341000, China; National Navel Orange Engineering Research Center, Ganzhou, Jiangxi 341000, China; Ganzhou Key Laboratory of Nanling Insect Biology, Ganzhou, Jiangxi 341000, China.
| |
Collapse
|
3
|
Transmission Cycle of Tick-Borne Infections and Co-Infections, Animal Models and Diseases. Pathogens 2022; 11:pathogens11111309. [PMID: 36365060 PMCID: PMC9696261 DOI: 10.3390/pathogens11111309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/02/2022] [Accepted: 11/04/2022] [Indexed: 11/09/2022] Open
Abstract
Tick-borne pathogens such as species of Borrelia, Babesia, Anaplasma, Rickettsia, and Ehrlichia are widespread in the United States and Europe among wildlife, in passerines as well as in domestic and farm animals. Transmission of these pathogens occurs by infected ticks during their blood meal, carnivorism, and through animal bites in wildlife, whereas humans can become infected either by an infected tick bite, through blood transfusion and in some cases, congenitally. The reservoir hosts play an important role in maintaining pathogens in nature and facilitate transmission of individual pathogens or of multiple pathogens simultaneously to humans through ticks. Tick-borne co-infections were first reported in the 1980s in white-footed mice, the most prominent reservoir host for causative organisms in the United States, and they are becoming a major concern for public health now. Various animal infection models have been used extensively to better understand pathogenesis of tick-borne pathogens and to reveal the interaction among pathogens co-existing in the same host. In this review, we focus on the prevalence of these pathogens in different reservoir hosts, animal models used to investigate their pathogenesis and host responses they trigger to understand diseases in humans. We also documented the prevalence of these pathogens as correlating with the infected ticks’ surveillance studies. The association of tick-borne co-infections with other topics such as pathogens virulence factors, host immune responses as they relate to diseases severity, identification of vaccine candidates, and disease economic impact are also briefly addressed here.
Collapse
|
4
|
In vivo Proteomics Approaches for the Analysis of Bacterial Adaptation Reactions in Host-Pathogen Settings. Methods Mol Biol 2018. [PMID: 30259489 DOI: 10.1007/978-1-4939-8695-8_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Proteome profiling of bacteria internalized by host cells is still a challenging task, due to low amounts of bacterial proteins in host-pathogen settings and the high amounts of contaminating host proteins. Here, we describe a workflow for the enrichment of intracellular bacteria by fluorescence activated cell sorting which in combination with highly sensitive LC-MS/MS allows monitoring of about 1200 proteins from 2 to 4 × 106 internalized bacterial cells as starting material.
Collapse
|
5
|
Kamaladevi A, Marudhupandiyan S, Balamurugan K. Model system based proteomics to understand the host response during bacterial infections. MOLECULAR BIOSYSTEMS 2018; 13:2489-2497. [PMID: 29082410 DOI: 10.1039/c7mb00372b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Infectious diseases caused by bacterial pathogens pose a major concern to public health and, thus, greater attention must be given to providing insightful knowledge on host-pathogen interactions. There are several theories addressing the dynamics of complex mechanisms of host-pathogen interactions. The availability of an ample number of universally accepted model systems, including vertebrates, invertebrates, and mammalian cells, provides in-depth transcriptomics data to evaluate these complex mechanisms during host-pathogen interactions. Recent model system based proteomic studies have addressed the issues related to human diseases by establishing the protein profile of model animals that closely resemble the environment. As a result, model system based proteomics has been widely accepted as a powerful and effective approach to understand the highly complex host-pathogen interfaces at their protein levels. This review offers a snapshot of the contributions of selective model systems on host-bacterial pathogen interactions through proteomic approaches.
Collapse
Affiliation(s)
- Arumugam Kamaladevi
- Department of Biotechnology, Science Campus, Alagappa University, Karaikudi 630003, Tamil Nadu, India.
| | | | | |
Collapse
|
6
|
Semini G, Aebischer T. Phagosome proteomics to study Leishmania's intracellular niche in macrophages. Int J Med Microbiol 2017; 308:68-76. [PMID: 28927848 DOI: 10.1016/j.ijmm.2017.09.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 08/23/2017] [Accepted: 09/03/2017] [Indexed: 12/14/2022] Open
Abstract
Intracellular pathogens invade their host cells and replicate within specialized compartments. In turn, the host cell initiates a defensive response trying to kill the invasive agent. As a consequence, intracellular lifestyle implies morphological and physiological changes in both pathogen and host cell. Leishmania spp. are medically important intracellular protozoan parasites that are internalized by professional phagocytes such as macrophages, and reside within the parasitophorous vacuole inhibiting their microbicidal activity. Whereas the proteome of the extracellular promastigote form and the intracellular amastigote form have been extensively studied, the constituents of Leishmania's intracellular niche, an endolysosomal compartment, are not fully deciphered. In this review we discuss protocols to purify such compartments by means of an illustrating example to highlight generally relevant considerations and innovative aspects that allow purification of not only the intracellular parasites but also the phagosomes that harbor them and analyze the latter by gel free proteomics.
Collapse
Affiliation(s)
- Geo Semini
- Mycotic and Parasitic Agents and Mycobacteria, Department of Infectious Diseases, Robert Koch Institute, Berlin, Germany.
| | - Toni Aebischer
- Mycotic and Parasitic Agents and Mycobacteria, Department of Infectious Diseases, Robert Koch Institute, Berlin, Germany
| |
Collapse
|
7
|
Omics Approaches for the Study of Adaptive Immunity to Staphylococcus aureus and the Selection of Vaccine Candidates. Proteomes 2016; 4:proteomes4010011. [PMID: 28248221 PMCID: PMC5217363 DOI: 10.3390/proteomes4010011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 02/05/2016] [Accepted: 03/01/2016] [Indexed: 01/20/2023] Open
Abstract
Staphylococcus aureus is a dangerous pathogen both in hospitals and in the community. Due to the crisis of antibiotic resistance, there is an urgent need for new strategies to combat S. aureus infections, such as vaccination. Increasing our knowledge about the mechanisms of protection will be key for the successful prevention or treatment of S. aureus invasion. Omics technologies generate a comprehensive picture of the physiological and pathophysiological processes within cells, tissues, organs, organisms and even populations. This review provides an overview of the contribution of genomics, transcriptomics, proteomics, metabolomics and immunoproteomics to the current understanding of S. aureus‑host interaction, with a focus on the adaptive immune response to the microorganism. While antibody responses during colonization and infection have been analyzed in detail using immunoproteomics, the full potential of omics technologies has not been tapped yet in terms of T-cells. Omics technologies promise to speed up vaccine development by enabling reverse vaccinology approaches. In consequence, omics technologies are powerful tools for deepening our understanding of the “superbug” S. aureus and for improving its control.
Collapse
|
8
|
Herweg JA, Hansmeier N, Otto A, Geffken AC, Subbarayal P, Prusty BK, Becher D, Hensel M, Schaible UE, Rudel T, Hilbi H. Purification and proteomics of pathogen-modified vacuoles and membranes. Front Cell Infect Microbiol 2015; 5:48. [PMID: 26082896 PMCID: PMC4451638 DOI: 10.3389/fcimb.2015.00048] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 05/14/2015] [Indexed: 01/08/2023] Open
Abstract
Certain pathogenic bacteria adopt an intracellular lifestyle and proliferate in eukaryotic host cells. The intracellular niche protects the bacteria from cellular and humoral components of the mammalian immune system, and at the same time, allows the bacteria to gain access to otherwise restricted nutrient sources. Yet, intracellular protection and access to nutrients comes with a price, i.e., the bacteria need to overcome cell-autonomous defense mechanisms, such as the bactericidal endocytic pathway. While a few bacteria rupture the early phagosome and escape into the host cytoplasm, most intracellular pathogens form a distinct, degradation-resistant and replication-permissive membranous compartment. Intracellular bacteria that form unique pathogen vacuoles include Legionella, Mycobacterium, Chlamydia, Simkania, and Salmonella species. In order to understand the formation of these pathogen niches on a global scale and in a comprehensive and quantitative manner, an inventory of compartment-associated host factors is required. To this end, the intact pathogen compartments need to be isolated, purified and biochemically characterized. Here, we review recent progress on the isolation and purification of pathogen-modified vacuoles and membranes, as well as their proteomic characterization by mass spectrometry and different validation approaches. These studies provide the basis for further investigations on the specific mechanisms of pathogen-driven compartment formation.
Collapse
Affiliation(s)
- Jo-Ana Herweg
- Chair of Microbiology, Biocenter, University of Würzburg Würzburg, Germany
| | - Nicole Hansmeier
- Division of Microbiology, University of Osnabrück Osnabrück, Germany
| | - Andreas Otto
- Institute of Microbiology, Ernst-Moritz-Arndt University Greifswald Greifswald, Germany
| | - Anna C Geffken
- Priority Area Infections, Cellular Microbiology, Research Center Borstel, Leibniz Center for Medicine and Biosciences Borstel, Germany
| | - Prema Subbarayal
- Chair of Microbiology, Biocenter, University of Würzburg Würzburg, Germany
| | - Bhupesh K Prusty
- Chair of Microbiology, Biocenter, University of Würzburg Würzburg, Germany
| | - Dörte Becher
- Institute of Microbiology, Ernst-Moritz-Arndt University Greifswald Greifswald, Germany
| | - Michael Hensel
- Division of Microbiology, University of Osnabrück Osnabrück, Germany
| | - Ulrich E Schaible
- Priority Area Infections, Cellular Microbiology, Research Center Borstel, Leibniz Center for Medicine and Biosciences Borstel, Germany
| | - Thomas Rudel
- Chair of Microbiology, Biocenter, University of Würzburg Würzburg, Germany
| | - Hubert Hilbi
- Department of Medicine, Max von Pettenkofer Institute, Ludwig-Maximilians University Munich Munich, Germany ; Department of Medicine, Institute of Medical Microbiology, University of Zürich Zürich, Switzerland
| |
Collapse
|
9
|
Quero S, Párraga-Niño N, García-Núñez M, Sabrià M. [Proteomics in infectious diseases]. Enferm Infecc Microbiol Clin 2015; 34:253-60. [PMID: 25583331 DOI: 10.1016/j.eimc.2014.07.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 07/22/2014] [Accepted: 07/30/2014] [Indexed: 11/27/2022]
Abstract
Infectious diseases have a high incidence in the population, causing a major impact on global health. In vitro culture of microorganisms is the first technique applied for infection diagnosis which is laborious and time consuming. In recent decades, efforts have been focused on the applicability of "Omics" sciences, highlighting the progress provided by proteomic techniques in the field of infectious diseases. This review describes the management, processing and analysis of biological samples for proteomic research.
Collapse
Affiliation(s)
- Sara Quero
- Unitat de Malalties Infeccioses, Fundació Institut d'Investigació Germans Trias i Pujol, Badalona, Barcelona, España; Universitat Autònoma de Barcelona, Cerdanyola, Barcelona, España
| | - Noemí Párraga-Niño
- Unitat de Malalties Infeccioses, Fundació Institut d'Investigació Germans Trias i Pujol, Badalona, Barcelona, España.
| | - Marian García-Núñez
- Unitat de Malalties Infeccioses, Fundació Institut d'Investigació Germans Trias i Pujol, Badalona, Barcelona, España; CIBER de Enfermedades Respiratorias, Bunyola, Illes Balears, España
| | - Miquel Sabrià
- Universitat Autònoma de Barcelona, Cerdanyola, Barcelona, España; CIBER de Enfermedades Respiratorias, Bunyola, Illes Balears, España; Unitat de Malalties Infeccioses, Hospital Universitari Germans Trias i Pujol, Badalona, Barcelona, España
| |
Collapse
|
10
|
Ortega AD, Quereda JJ, Pucciarelli MG, García-del Portillo F. Non-coding RNA regulation in pathogenic bacteria located inside eukaryotic cells. Front Cell Infect Microbiol 2014; 4:162. [PMID: 25429360 PMCID: PMC4228915 DOI: 10.3389/fcimb.2014.00162] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 10/20/2014] [Indexed: 01/06/2023] Open
Abstract
Intracellular bacterial pathogens have evolved distinct lifestyles inside eukaryotic cells. Some pathogens coexist with the infected cell in an obligate intracellular state, whereas others transit between the extracellular and intracellular environment. Adaptation to these intracellular lifestyles is regulated in both space and time. Non-coding small RNAs (sRNAs) are post-transcriptional regulatory molecules that fine-tune important processes in bacterial physiology including cell envelope architecture, intermediate metabolism, bacterial communication, biofilm formation, and virulence. Recent studies have shown production of defined sRNA species by intracellular bacteria located inside eukaryotic cells. The molecules targeted by these sRNAs and their expression dynamics along the intracellular infection cycle remain, however, poorly characterized. Technical difficulties linked to the isolation of “intact” intracellular bacteria from infected host cells might explain why sRNA regulation in these specialized pathogens is still a largely unexplored field. Transition from the extracellular to the intracellular lifestyle provides an ideal scenario in which regulatory sRNAs are intended to participate; so much work must be done in this direction. This review focuses on sRNAs expressed by intracellular bacterial pathogens during the infection of eukaryotic cells, strategies used with these pathogens to identify sRNAs required for virulence, and the experimental technical challenges associated to this type of studies. We also discuss varied techniques for their potential application to study RNA regulation in intracellular bacterial infections.
Collapse
Affiliation(s)
- Alvaro D Ortega
- Centro Nacional de Biotecnología - Consejo Superior de Investigaciones Científicas (CNB-CSIC) Madrid, Spain
| | - Juan J Quereda
- Centro Nacional de Biotecnología - Consejo Superior de Investigaciones Científicas (CNB-CSIC) Madrid, Spain
| | - M Graciela Pucciarelli
- Centro Nacional de Biotecnología - Consejo Superior de Investigaciones Científicas (CNB-CSIC) Madrid, Spain ; Departamento de Biología Molecular, Universidad Autónoma de Madrid, Centro de Biología Molecular 'Severo Ochoa' (CBMSO-CSIC) Madrid, Spain
| | | |
Collapse
|
11
|
Correia S, Nunes-Miranda JD, Pinto L, Santos HM, de Toro M, Sáenz Y, Torres C, Capelo JL, Poeta P, Igrejas G. Complete proteome of a quinolone-resistant Salmonella Typhimurium phage type DT104B clinical strain. Int J Mol Sci 2014; 15:14191-219. [PMID: 25196519 PMCID: PMC4159846 DOI: 10.3390/ijms150814191] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2014] [Revised: 06/27/2014] [Accepted: 07/25/2014] [Indexed: 11/26/2022] Open
Abstract
Salmonellosis is one of the most common and widely distributed foodborne diseases. The emergence of Salmonella strains that are resistant to a variety of antimicrobials is a serious global public health concern. Salmonella enterica serovar Typhimurium definitive phage type 104 (DT104) is one of these emerging epidemic multidrug resistant strains. Here we collate information from the diverse and comprehensive range of experiments on Salmonella proteomes that have been published. We then present a new study of the proteome of the quinolone-resistant Se20 strain (phage type DT104B), recovered after ciprofloxacin treatment and compared it to the proteome of reference strain SL1344. A total of 186 and 219 protein spots were recovered from Se20 and SL1344 protein extracts, respectively, after two-dimensional gel electrophoresis. The signatures of 94% of the protein spots were successfully identified through matrix-assisted laser desorption/ionization mass spectrometry (MALDI-TOF MS). Three antimicrobial resistance related proteins, whose genes were previously detected by polymerase chain reaction (PCR), were identified in the clinical strain. The presence of these proteins, dihydropteroate synthase type-2 (sul2 gene), aminoglycoside resistance protein A (strA gene) and aminoglycoside 6'-N-acetyltransferase type Ib-cr4 (aac(6')-Ib-cr4 gene), was confirmed in the DT104B clinical strain. The aac(6')-Ib-cr4 gene is responsible for plasmid-mediated aminoglycoside and quinolone resistance. This is a preliminary analysis of the proteome of these two S. Typhimurium strains and further work is being developed to better understand how antimicrobial resistance is developing in this pathogen.
Collapse
Affiliation(s)
- Susana Correia
- Institute for Biotechnology and Bioengineering, Centre of Genomics and Biotechnology, University of Trás-os-Montes and Alto Douro, 5001-801 Vila Real, Portugal.
| | - Júlio D Nunes-Miranda
- Institute for Biotechnology and Bioengineering, Centre of Genomics and Biotechnology, University of Trás-os-Montes and Alto Douro, 5001-801 Vila Real, Portugal.
| | - Luís Pinto
- Institute for Biotechnology and Bioengineering, Centre of Genomics and Biotechnology, University of Trás-os-Montes and Alto Douro, 5001-801 Vila Real, Portugal.
| | - Hugo M Santos
- BIOSCOPE group, REQUIMTE-CQFB, Chemistry Department, Faculty of Science and Technology, University NOVA of Lisbon, 2829-516 Monte de Caparica, Portugal.
| | - María de Toro
- Departamento de Biología Molecular (Universidad de Cantabria) and Instituto de Biomedicina y Biotecnología de Cantabria IBBTEC (UC-SODERCAN-CSIC), Santander 39011, Spain.
| | - Yolanda Sáenz
- Microbiología Molecular, Centro de Investigación Biomédica de La Rioja, C/Piqueras 98, 26006 Logroño, La Rioja, Spain.
| | - Carmen Torres
- Microbiología Molecular, Centro de Investigación Biomédica de La Rioja, C/Piqueras 98, 26006 Logroño, La Rioja, Spain.
| | - José Luis Capelo
- BIOSCOPE group, REQUIMTE-CQFB, Chemistry Department, Faculty of Science and Technology, University NOVA of Lisbon, 2829-516 Monte de Caparica, Portugal.
| | - Patrícia Poeta
- Centre of Studies of Animal and Veterinary Sciences, University of Trás-os-Montes and Alto Douro, 5001-801 Vila Real, Portugal.
| | - Gilberto Igrejas
- Institute for Biotechnology and Bioengineering, Centre of Genomics and Biotechnology, University of Trás-os-Montes and Alto Douro, 5001-801 Vila Real, Portugal.
| |
Collapse
|
12
|
|
13
|
Stekhoven DJ, Omasits U, Quebatte M, Dehio C, Ahrens CH. Proteome-wide identification of predominant subcellular protein localizations in a bacterial model organism. J Proteomics 2014; 99:123-37. [PMID: 24486812 DOI: 10.1016/j.jprot.2014.01.015] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Revised: 01/12/2014] [Accepted: 01/15/2014] [Indexed: 01/04/2023]
Abstract
UNLABELLED Proteomics data provide unique insights into biological systems, including the predominant subcellular localization (SCL) of proteins, which can reveal important clues about their functions. Here we analyzed data of a complete prokaryotic proteome expressed under two conditions mimicking interaction of the emerging pathogen Bartonella henselae with its mammalian host. Normalized spectral count data from cytoplasmic, total membrane, inner and outer membrane fractions allowed us to identify the predominant SCL for 82% of the identified proteins. The spectral count proportion of total membrane versus cytoplasmic fractions indicated the propensity of cytoplasmic proteins to co-fractionate with the inner membrane, and enabled us to distinguish cytoplasmic, peripheral inner membrane and bona fide inner membrane proteins. Principal component analysis and k-nearest neighbor classification training on selected marker proteins or predominantly localized proteins, allowed us to determine an extensive catalog of at least 74 expressed outer membrane proteins, and to extend the SCL assignment to 94% of the identified proteins, including 18% where in silico methods gave no prediction. Suitable experimental proteomics data combined with straightforward computational approaches can thus identify the predominant SCL on a proteome-wide scale. Finally, we present a conceptual approach to identify proteins potentially changing their SCL in a condition-dependent fashion. BIOLOGICAL SIGNIFICANCE The work presented here describes the first prokaryotic proteome-wide subcellular localization (SCL) dataset for the emerging pathogen B. henselae (Bhen). The study indicates that suitable subcellular fractionation experiments combined with straight-forward computational analysis approaches assessing the proportion of spectral counts observed in different subcellular fractions are powerful for determining the predominant SCL of a large percentage of the experimentally observed proteins. This includes numerous cases where in silico prediction methods do not provide any prediction. Avoiding a treatment with harsh conditions, cytoplasmic proteins tend to co-fractionate with proteins of the inner membrane fraction, indicative of close functional interactions. The spectral count proportion (SCP) of total membrane versus cytoplasmic fractions allowed us to obtain a good indication about the relative proximity of individual protein complex members to the inner membrane. Using principal component analysis and k-nearest neighbor approaches, we were able to extend the percentage of proteins with a predominant experimental localization to over 90% of all expressed proteins and identified a set of at least 74 outer membrane (OM) proteins. In general, OM proteins represent a rich source of candidates for the development of urgently needed new therapeutics in combat of resurgence of infectious disease and multi-drug resistant bacteria. Finally, by comparing the data from two infection biology relevant conditions, we conceptually explore methods to identify and visualize potential candidates that may partially change their SCL in these different conditions. The data are made available to researchers as a SCL compendium for Bhen and as an assistance in further improving in silico SCL prediction algorithms.
Collapse
Affiliation(s)
- Daniel J Stekhoven
- Quantitative Model Organism Proteomics (Q-MOP), Institute of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland.
| | - Ulrich Omasits
- Quantitative Model Organism Proteomics (Q-MOP), Institute of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland; Institute of Molecular Systems Biology, ETH Zurich, Auguste-Piccard-Hof 1, 8093 Zurich, Switzerland
| | - Maxime Quebatte
- Biozentrum, University of Basel, Klingelbergstrasse 50/70, 4056 Basel, Switzerland
| | - Christoph Dehio
- Biozentrum, University of Basel, Klingelbergstrasse 50/70, 4056 Basel, Switzerland
| | - Christian H Ahrens
- Quantitative Model Organism Proteomics (Q-MOP), Institute of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland.
| |
Collapse
|
14
|
Diep BA, Phung Q, Date S, Arnott D, Bakalarski C, Xu M, Nakamura G, Swem DL, Alexander MK, Le HN, Mai TT, Tan MW, Brown EJ, Nishiyama M. Identifying potential therapeutic targets of methicillin-resistant Staphylococcus aureus through in vivo proteomic analysis. J Infect Dis 2013; 209:1533-41. [PMID: 24280367 DOI: 10.1093/infdis/jit662] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Detailed knowledge on protein repertoire of a pathogen during host infection is needed for both developing a better understanding of the pathogenesis and defining potential therapeutic targets. Such data, however, have been missing for Staphylococcus aureus, a major human pathogen. METHODS We determined the surface proteome of methicillin-resistant S. aureus (MRSA) clone usa300 derived directly from murine systemic infectiON. RESULTS The majority of the in vivo-expressed surface-associated proteins were lipoproteins involved in nutrient acquisition, especially uptake of metal ions. Enzyme-linked immunosorbent assay (ELISA) of convalescent human serum samples revealed that proteins that were highly produced during murine experimental infection were also produced during natural human infection. We found that among the 7 highly abundant lipoproteins only MntC, which is the manganese-binding protein of the MntABC system, was essential for MRSA virulence during murine systemic infection. Moreover, we show that MntA and MntB are equally important for MRSA virulence. CONCLUSIONS Besides providing experimental evidence that MntABC might be a potential therapeutic target for the development of antibiotics, our in vivo proteomics data will serve as a valuable basis for defining potential antigen combinations for multicomponent vaccines.
Collapse
Affiliation(s)
- Binh An Diep
- Department of Medicine, University of California, San Francisco
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Pávková I, Brychta M, Strašková A, Schmidt M, Macela A, Stulík J. Comparative proteome profiling of host–pathogen interactions: insights into the adaptation mechanisms of Francisella tularensis in the host cell environment. Appl Microbiol Biotechnol 2013; 97:10103-15. [DOI: 10.1007/s00253-013-5321-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Revised: 09/30/2013] [Accepted: 10/09/2013] [Indexed: 11/30/2022]
|
16
|
Armengaud J, Christie-Oleza JA, Clair G, Malard V, Duport C. Exoproteomics: exploring the world around biological systems. Expert Rev Proteomics 2013. [PMID: 23194272 DOI: 10.1586/epr.12.52] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The term 'exoproteome' describes the protein content that can be found in the extracellular proximity of a given biological system. These proteins arise from cellular secretion, other protein export mechanisms or cell lysis, but only the most stable proteins in this environment will remain in abundance. It has been shown that these proteins reflect the physiological state of the cells in a given condition and are indicators of how living systems interact with their environments. High-throughput proteomic approaches based on a shotgun strategy, and high-resolution mass spectrometers, have modified the authors' view of exoproteomes. In the present review, the authors describe how these new approaches should be exploited to obtain the maximum useful information from a sample, whatever its origin. The methodologies used for studying secretion from model cell lines derived from eukaryotic, multicellular organisms, virulence determinants of pathogens and environmental bacteria and their relationships with their habitats are illustrated with several examples. The implication of such data, in terms of proteogenomics and the discovery of novel protein functions, is discussed.
Collapse
Affiliation(s)
- Jean Armengaud
- CEA, DSV, IBEB, Lab Biochim System Perturb, Bagnols-sur-Cèze, F-30207, France.
| | | | | | | | | |
Collapse
|
17
|
Ladjouzi R, Bizzini A, Lebreton F, Sauvageot N, Rincé A, Benachour A, Hartke A. Analysis of the tolerance of pathogenic enterococci and Staphylococcus aureus to cell wall active antibiotics. J Antimicrob Chemother 2013; 68:2083-91. [PMID: 23649229 DOI: 10.1093/jac/dkt157] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
OBJECTIVES Tolerance refers to the phenomenon that bacteria do not significantly die when exposed to bactericidal antibiotics. Enterococci are known for their high tolerance to these drugs, but the molecular reasons why they resist killing are not understood. In a previous study we showed that the superoxide dismutase (SOD) is implicated in this tolerance. This conclusion was based on the results obtained with one particular strain of Enterococcus faecalis and therefore the objective of the present communication was to analyse whether dependence of tolerance on active SOD is a general phenomenon for enterococci and another Gram-positive pathogen, Staphylococcus aureus. METHODS Mutants deficient in SOD activity were constructed in pathogenic enterococci. The wild-type sodA gene was cloned into an expression vector and transformed into SOD-deficient strains for complementation with varying levels of SOD activity. Previously constructed SOD-deficient strains of S. aureus were also included in this study. Tolerance to vancomycin and penicillin was then tested. RESULTS We demonstrated that the dependence on SOD of tolerance to vancomycin and penicillin is a common trait of antibiotic-susceptible pathogenic enterococci. By varying the levels of expression we could also show that tolerance to vancomycin is directly correlated to SOD activity. Interestingly, deletion of the sodA gene in a non-tolerant Enterococcus faecium strain did not further sensitize the mutant to bactericidal antibiotics. Finally, we showed that the SOD enzymes of S. aureus are also implicated in tolerance to vancomycin. CONCLUSION High tolerance of enterococci to cell wall active antibiotics can be reversed by SOD deficiency.
Collapse
Affiliation(s)
- Rabia Ladjouzi
- Université de Caen Basse-Normandie, EA4655 U2RM-Stress and Virulence, F-14032 Caen, France.
| | | | | | | | | | | | | |
Collapse
|
18
|
Steeb B, Claudi B, Burton NA, Tienz P, Schmidt A, Farhan H, Mazé A, Bumann D. Parallel exploitation of diverse host nutrients enhances Salmonella virulence. PLoS Pathog 2013; 9:e1003301. [PMID: 23633950 PMCID: PMC3636032 DOI: 10.1371/journal.ppat.1003301] [Citation(s) in RCA: 133] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Accepted: 02/26/2013] [Indexed: 12/20/2022] Open
Abstract
Pathogen access to host nutrients in infected tissues is fundamental for pathogen growth and virulence, disease progression, and infection control. However, our understanding of this crucial process is still rather limited because of experimental and conceptual challenges. Here, we used proteomics, microbial genetics, competitive infections, and computational approaches to obtain a comprehensive overview of Salmonella nutrition and growth in a mouse typhoid fever model. The data revealed that Salmonella accessed an unexpectedly diverse set of at least 31 different host nutrients in infected tissues but the individual nutrients were available in only scarce amounts. Salmonella adapted to this situation by expressing versatile catabolic pathways to simultaneously exploit multiple host nutrients. A genome-scale computational model of Salmonella in vivo metabolism based on these data was fully consistent with independent large-scale experimental data on Salmonella enzyme quantities, and correctly predicted 92% of 738 reported experimental mutant virulence phenotypes, suggesting that our analysis provided a comprehensive overview of host nutrient supply, Salmonella metabolism, and Salmonella growth during infection. Comparison of metabolic networks of other pathogens suggested that complex host/pathogen nutritional interfaces are a common feature underlying many infectious diseases.
Collapse
Affiliation(s)
- Benjamin Steeb
- Focal Area Infection Biology, Biozentrum, University of Basel, Basel, Switzerland
| | - Beatrice Claudi
- Focal Area Infection Biology, Biozentrum, University of Basel, Basel, Switzerland
| | - Neil A. Burton
- Focal Area Infection Biology, Biozentrum, University of Basel, Basel, Switzerland
| | - Petra Tienz
- Focal Area Infection Biology, Biozentrum, University of Basel, Basel, Switzerland
| | - Alexander Schmidt
- Proteomics Core Facility, Biozentrum, University of Basel, Basel, Switzerland
| | - Hesso Farhan
- Focal Area Infection Biology, Biozentrum, University of Basel, Basel, Switzerland
| | - Alain Mazé
- Focal Area Infection Biology, Biozentrum, University of Basel, Basel, Switzerland
| | - Dirk Bumann
- Focal Area Infection Biology, Biozentrum, University of Basel, Basel, Switzerland
| |
Collapse
|
19
|
Seifert J, Taubert M, Jehmlich N, Schmidt F, Völker U, Vogt C, Richnow HH, von Bergen M. Protein-based stable isotope probing (protein-SIP) in functional metaproteomics. MASS SPECTROMETRY REVIEWS 2012; 31:683-97. [PMID: 22422553 DOI: 10.1002/mas.21346] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Revised: 01/24/2012] [Accepted: 01/24/2012] [Indexed: 05/08/2023]
Abstract
The community phenotype as the sum of molecular functions of organisms living in consortia strongly depends on interactions within these communities. Therefore, the analyses of the most significant molecules in terms of the phenotype, the proteins, have to be performed on samples without disrupting the meta-species environment. Due to the increasing genomic information, proteins provide insights into a potential molecular function and the phylogenetic structure of the community. Unfortunately, the lists of identified proteins are often based first on the technical capacity of the used methods or instruments, and second on the interpretation of them by the assignment of molecular functions to proteins in databases. Especially in non-model organisms the functions of many proteins are often not known and an increasing number of studies indicate a significant amount of uncertainty. To decrease the dependency on assumptions and to enable functional insights by metaproteome approaches, the metabolic labeling from an isotopically labeled substrate can be used. Since the metabolites deriving from the substrate are very rarely species-specific, the incorporation of the stable isotope into proteins can be used as a surrogate marker for metabolic activity. The degree of incorporation can be determined accurately on the peptide level by mass spectrometry; additionally, the peptide sequence provides information on the metabolic active species. Thereby, protein-stable isotope probing (protein-SIP) adds functional information to metaproteome approaches. The classical metaproteome approaches will be reviewed with an emphasis on their attempts towards functional interpretation. The gain from functional insights into metaproteomics by using metabolic labeling of stable isotopes of carbon, nitrogen, and sulfur is reviewed with a focus on the techniques of measurement, calculation of incorporation and data processing.
Collapse
Affiliation(s)
- Jana Seifert
- Department of Proteomics, Helmholtz Centre for Environmental Research-UFZ, Permoserstrasse 15, D-04318 Leipzig, Germany
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Two-dimensional gel electrophoresis in bacterial proteomics. Protein Cell 2012; 3:346-63. [PMID: 22610887 DOI: 10.1007/s13238-012-2034-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2012] [Accepted: 02/22/2012] [Indexed: 02/01/2023] Open
Abstract
Two-dimensional gel electrophoresis (2-DE) is a gel-based technique widely used for analyzing the protein composition of biological samples. It is capable of resolving complex mixtures containing more than a thousand protein components into individual protein spots through the coupling of two orthogonal biophysical separation techniques: isoelectric focusing (first dimension) and polyacrylamide gel electrophoresis (second dimension). 2-DE is ideally suited for analyzing the entire expressed protein complement of a bacterial cell: its proteome. Its relative simplicity and good reproducibility have led to 2-DE being widely used for exploring proteomics within a wide range of environmental and medically-relevant bacteria. Here we give a broad overview of the basic principles and historical development of gel-based proteomics, and how this powerful approach can be applied for studying bacterial biology and physiology. We highlight specific 2-DE applications that can be used to analyze when, where and how much proteins are expressed. The links between proteomics, genomics and mass spectrometry are discussed. We explore how proteomics involving tandem mass spectrometry can be used to analyze (post-translational) protein modifications or to identify proteins of unknown origin by de novo peptide sequencing. The use of proteome fractionation techniques and non-gel-based proteomic approaches are also discussed. We highlight how the analysis of proteins secreted by bacterial cells (secretomes or exoproteomes) can be used to study infection processes or the immune response. This review is aimed at non-specialists who wish to gain a concise, comprehensive and contemporary overview of the nature and applications of bacterial proteomics.
Collapse
|
21
|
Dandekar T, Astrid F, Jasmin P, Hensel M. Salmonella enterica: a surprisingly well-adapted intracellular lifestyle. Front Microbiol 2012; 3:164. [PMID: 22563326 PMCID: PMC3342586 DOI: 10.3389/fmicb.2012.00164] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Accepted: 04/12/2012] [Indexed: 11/15/2022] Open
Abstract
The infectious intracellular lifestyle of Salmonella enterica relies on the adaptation to nutritional conditions within the Salmonella-containing vacuole (SCV) in host cells. We summarize latest results on metabolic requirements for Salmonella during infection. This includes intracellular phenotypes of mutant strains based on metabolic modeling and experimental tests, isotopolog profiling using 13C-compounds in intracellular Salmonella, and complementation of metabolic defects for attenuated mutant strains towards a comprehensive understanding of the metabolic requirements of the intracellular lifestyle of Salmonella. Helpful for this are also genomic comparisons. We outline further recent studies and which analyses of intracellular phenotypes and improved metabolic simulations were done and comment on technical required steps as well as progress involved in the iterative refinement of metabolic flux models, analyses of mutant phenotypes, and isotopolog analyses. Salmonella lifestyle is well-adapted to the SCV and its specific metabolic requirements. Salmonella metabolism adapts rapidly to SCV conditions, the metabolic generalist Salmonella is quite successful in host infection.
Collapse
Affiliation(s)
- Thomas Dandekar
- Department of Bioinformatics, Biocenter, University of Würzburg, Würzburg, Germany
| | | | | | | |
Collapse
|
22
|
Marcelino I, de Almeida AM, Ventosa M, Pruneau L, Meyer DF, Martinez D, Lefrançois T, Vachiéry N, Coelho AV. Tick-borne diseases in cattle: applications of proteomics to develop new generation vaccines. J Proteomics 2012; 75:4232-50. [PMID: 22480908 DOI: 10.1016/j.jprot.2012.03.026] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2012] [Revised: 03/13/2012] [Accepted: 03/15/2012] [Indexed: 01/11/2023]
Abstract
Tick-borne diseases (TBDs) affect 80% of the world's cattle population, hampering livestock production throughout the world. Livestock industry is important to rural populations not only as food supply, but also as a source of income. Tick control is usually achieved by using acaricides which are expensive, deleterious to the environment and can induce chemical resistance of vectors; the development of more effective and sustainable control methods is therefore required. Theileriosis, babesiosis, anaplasmosis and heartwater are the most important TBDs in cattle. Immunization strategies are currently available but with variable efficacy. To develop a new generation of vaccines which are more efficient, cheaper and safer, it is first necessary to better understand the mechanisms by which these parasites are transmitted, multiply and cause disease; this becomes especially difficult due to their complex life cycles, in vitro culture conditions and the lack of genetic tools to manipulate them. Proteomics and other complementary post-genomic tools such as transcriptomics and metabolomics in a systems biology context are becoming key tools to increase knowledge on the biology of infectious diseases. Herein, we present an overview of the so called "Omics" studies currently available on these tick-borne pathogens, giving emphasis to proteomics and how it may help to discover new vaccine candidates to control TBDs.
Collapse
|
23
|
Global relative and absolute quantitation in microbial proteomics. Curr Opin Microbiol 2012; 15:364-72. [PMID: 22445110 DOI: 10.1016/j.mib.2012.02.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Revised: 02/15/2012] [Accepted: 02/20/2012] [Indexed: 11/21/2022]
Abstract
Proteomic studies are designed to yield either qualitative information on proteins (identification, distribution, posttranslational modifications, interactions, structure and function) or quantitative information (abundance, distribution within different localizations, temporal changes in abundance due to synthesis and degradation or both). To this end these studies can draw upon a wide range of qualitative and quantitative gel-based and gel-free techniques. This review summarizes current proteomic workflows for global relative or absolute protein quantitation and their application in microbial physiology.
Collapse
|
24
|
Bermúdez-Crespo J, Balboa S, Alonso J, Romalde J. Two-dimensional proteome reference map of Vibrio tapetis, the aetiological agent of brown ring disease in clams. J Appl Microbiol 2012; 112:853-64. [DOI: 10.1111/j.1365-2672.2012.05271.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
25
|
Kumar R, Lawrence ML, Watt J, Cooksey AM, Burgess SC, Nanduri B. RNA-seq based transcriptional map of bovine respiratory disease pathogen "Histophilus somni 2336". PLoS One 2012; 7:e29435. [PMID: 22276113 PMCID: PMC3262788 DOI: 10.1371/journal.pone.0029435] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Accepted: 11/28/2011] [Indexed: 01/08/2023] Open
Abstract
Genome structural annotation, i.e., identification and demarcation of the boundaries for all the functional elements in a genome (e.g., genes, non-coding RNAs, proteins and regulatory elements), is a prerequisite for systems level analysis. Current genome annotation programs do not identify all of the functional elements of the genome, especially small non-coding RNAs (sRNAs). Whole genome transcriptome analysis is a complementary method to identify “novel” genes, small RNAs, regulatory regions, and operon structures, thus improving the structural annotation in bacteria. In particular, the identification of non-coding RNAs has revealed their widespread occurrence and functional importance in gene regulation, stress and virulence. However, very little is known about non-coding transcripts in Histophilus somni, one of the causative agents of Bovine Respiratory Disease (BRD) as well as bovine infertility, abortion, septicemia, arthritis, myocarditis, and thrombotic meningoencephalitis. In this study, we report a single nucleotide resolution transcriptome map of H. somni strain 2336 using RNA-Seq method. The RNA-Seq based transcriptome map identified 94 sRNAs in the H. somni genome of which 82 sRNAs were never predicted or reported in earlier studies. We also identified 38 novel potential protein coding open reading frames that were absent in the current genome annotation. The transcriptome map allowed the identification of 278 operon (total 730 genes) structures in the genome. When compared with the genome sequence of a non-virulent strain 129Pt, a disproportionate number of sRNAs (∼30%) were located in genomic region unique to strain 2336 (∼18% of the total genome). This observation suggests that a number of the newly identified sRNAs in strain 2336 may be involved in strain-specific adaptations.
Collapse
Affiliation(s)
- Ranjit Kumar
- College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi, United States of America
- Institute for Genomics, Biocomputing and Biotechnology, Mississippi State University, Mississippi State, Mississippi, United States of America
- Center for Clinical and Translational Science, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Mark L. Lawrence
- College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi, United States of America
- Institute for Genomics, Biocomputing and Biotechnology, Mississippi State University, Mississippi State, Mississippi, United States of America
| | - James Watt
- Eagle Applied Sciences LLC, San Antonio, Texas, United States of America
| | - Amanda M. Cooksey
- Institute for Genomics, Biocomputing and Biotechnology, Mississippi State University, Mississippi State, Mississippi, United States of America
| | - Shane C. Burgess
- College of Agriculture and Life Sciences, The University of Arizona, Tucson, Arizona, United States of America
| | - Bindu Nanduri
- College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi, United States of America
- Institute for Genomics, Biocomputing and Biotechnology, Mississippi State University, Mississippi State, Mississippi, United States of America
- * E-mail:
| |
Collapse
|
26
|
Chao TC, Hansmeier N. The current state of microbial proteomics: Where we are and where we want to go. Proteomics 2012; 12:638-50. [DOI: 10.1002/pmic.201100381] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2011] [Revised: 08/15/2011] [Accepted: 08/22/2011] [Indexed: 11/11/2022]
|
27
|
Abstract
Meningococcal mechanisms of adhesion are complex, involving multiple adhesins and their respective target receptors on host cells. Three major surface structures--pili, Opa, and Opc--have been known for some time to mediate meningococcal adhesion to target human cells. More recently, several other relatively minor adhesins have also come to light. The literature on bacterial adhesion mechanisms provides numerous examples of various adhesins acting cooperatively in an apparently hierarchical and sequential manner; in other instances, adhesins may act in concert leading to high avidity interactions, often a prelude to cellular invasion and tissue penetration. Such examples are also present in the case of meningococci, although our knowledge of adhesin cooperation and synergy is far from complete. Meningococcal mechanisms used to target the host, which are often specific for the host or a tissue within the host, include both lectin-like interactions and protein-protein interactions; the latter tend to determine specificity in general. Understanding (a) what determines specificity (i.e. molecular features of adhesins and receptors), (b) encourages cellular penetration (i.e. adhesin pairs, which act in concert or synergistically to deliver effective signals for invasion and induce other cellular responses), (c) level of redundancy (more than one mechanisms of targeting host receptors), (d) host situations that encourage tissue penetration (inflammatory situations during which circulating cytokines upregulate target cell receptors, effectively encouraging greater adhesion/invasion), and (e) down-stream effects on host functions in general are all clearly important in our future strategies of controlling meningococcal pathogenesis.
Collapse
|
28
|
Schmidt F, Völker U. Proteome analysis of host-pathogen interactions: Investigation of pathogen responses to the host cell environment. Proteomics 2011; 11:3203-11. [DOI: 10.1002/pmic.201100158] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2011] [Accepted: 04/20/2011] [Indexed: 11/06/2022]
|
29
|
Bagnoli F, Baudner B, Mishra RPN, Bartolini E, Fiaschi L, Mariotti P, Nardi-Dei V, Boucher P, Rappuoli R. Designing the next generation of vaccines for global public health. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2011; 15:545-66. [PMID: 21682594 DOI: 10.1089/omi.2010.0127] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Vaccine research and development are experiencing a renaissance of interest from the global scientific community. There are four major reasons for this: (1) the lack of efficacious treatment for many devastating infections; (2) the emergence of multidrug resistant bacteria; (3) the need for improving the safety of the more traditional licensed vaccines; and finally, (4) the great promise for innovative vaccine design and research with convergence of omics sciences, such as genomics, proteomics, immunomics, and vaccinology. Our first project based on omics was initiated in 2000 and was termed reverse vaccinology. At that time, antigen identification was mainly based on bioinformatic analysis of a singular genome. Since then, omics-guided approaches have been applied to its full potential in several proof-of-concept studies in the industry, with the first reverse vaccinology-derived vaccine now in late stage clinical trials and several vaccines developed by omics in preclinical studies. In the meantime, vaccine discovery and development has been further improved with the support of proteomics, functional genomics, comparative genomics, structural biology, and most recently vaccinomics. We illustrate in this review how omics biotechnologies and integrative biology are expected to accelerate the identification of vaccine candidates against difficult pathogens for which traditional vaccine development has thus far been failing, and how research will provide safer vaccines and improved formulations for immunocompromised patients in the near future. Finally, we present a discussion to situate omics-guided rational vaccine design in the broader context of global public health and how it can benefit citizens in both developed and developing countries.
Collapse
|
30
|
Gyles CL. Relevance in pathogenesis research. Vet Microbiol 2011; 153:2-12. [PMID: 21592684 DOI: 10.1016/j.vetmic.2011.04.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Revised: 04/09/2011] [Accepted: 04/13/2011] [Indexed: 01/28/2023]
Abstract
Research on pathogenesis of bacterial diseases involves exploration of the intricate and complex interactions among pathogen, host, and environment. Host-parasite-environment interactions that were relatively simple were the first to be understood. They include intoxications in which ingestion of a powerful bacterial toxin was sufficient to cause disease. In more complex cases bacteria occupy a variety of niches in the host and attack at an opportune time. Some bacterial pathogens have a brief encounter with the host; others are long-term guests. This variety of relationships involves a wide range of strategies for survival and transmission of bacterial pathogens. Molecular genetics, genomics and proteomics have facilitated understanding of the pathogens and hosts. Massive information often results from such studies and determining the relevance of the data is frequently a challenge. In vitro studies often attempt to simulate one or two critical aspects of the environment, such as temperature, pH, and iron concentration, that may provide clues as to what goes on in the host. These studies sometimes identify critical bacterial virulence factors but regulation of bacterial virulence and host response is complex and often not well understood. Pathogenesis is a process of continuous change in which timing and degree of gene expression are critical and are highly regulated by the environment. It is impossible to get the full picture without the use of natural or experimental infections, although experimental infections involve ethical and economic considerations which may act as a deterrent.
Collapse
Affiliation(s)
- Carlton L Gyles
- Department of Pathobiology, University of Guelph, Guelph, Ontario, N1G 2W1 Canada.
| |
Collapse
|
31
|
Müller B, Grossniklaus U. Model organisms--A historical perspective. J Proteomics 2010; 73:2054-63. [PMID: 20727995 DOI: 10.1016/j.jprot.2010.08.002] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2010] [Revised: 08/03/2010] [Accepted: 08/11/2010] [Indexed: 12/17/2022]
Abstract
Much of our knowledge on heredity, development, physiology and the underlying cellular and molecular processes is derived from the studies of model, or reference, organisms. Despite the great variety of life, a common base of shared principles could be extracted by studying a few life forms, selected based on their amenability to experimental studies. Very briefly, the origins of a few model organisms are described, including E. coli, yeast, C. elegans, Drosophila, Xenopus, zebrafish, mouse, maize and Arabidopsis. These model organisms were chosen because of their importance and wide use, which made them systems of choice for genome-wide studies. Many of their genomes were between the first to be fully sequenced, opening unprecedented opportunities for large-scale transcriptomics and proteomics studies.
Collapse
Affiliation(s)
- Bruno Müller
- Institute of Plant Biology, University of Zürich, Zürich, Switzerland.
| | | |
Collapse
|