1
|
Demirci H, Popovic S, Dittmayer C, Yilmaz DE, El-Shimy IA, Mülleder M, Hinze C, Su M, Mertins P, Kirchner M, Osmanodja B, Paliege A, Budde K, Amann K, Persson PB, Mutig K, Bachmann S. Immunosuppression with cyclosporine versus tacrolimus shows distinctive nephrotoxicity profiles within renal compartments. Acta Physiol (Oxf) 2024; 240:e14190. [PMID: 38884453 DOI: 10.1111/apha.14190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/18/2024] [Accepted: 06/04/2024] [Indexed: 06/18/2024]
Abstract
AIM Calcineurin inhibitors (CNIs) are the backbone for immunosuppression after solid organ transplantation. Although successful in preventing kidney transplant rejection, their nephrotoxic side effects contribute to allograft injury. Renal parenchymal lesions occur for cyclosporine A (CsA) as well as for the currently favored tacrolimus (Tac). We aimed to study whether chronic CsA and Tac exposures, before reaching irreversible nephrotoxic damage, affect renal compartments differentially and whether related pathogenic mechanisms can be identified. METHODS CsA and Tac were administered chronically in wild type Wistar rats using osmotic minipumps over 4 weeks. Functional parameters were controlled. Electron microscopy, confocal, and 3D-structured illumination microscopy were used for histopathology. Clinical translatability was tested in human renal biopsies. Standard biochemical, RNA-seq, and proteomic technologies were applied to identify implicated molecular pathways. RESULTS Both drugs caused significant albeit differential damage in vasculature and nephron. The glomerular filtration barrier was more affected by Tac than by CsA, showing prominent deteriorations in endothelium and podocytes along with impaired VEGF/VEGFR2 signaling and podocyte-specific gene expression. By contrast, proximal tubule epithelia were more severely affected by CsA than by Tac, revealing lysosomal dysfunction, enhanced apoptosis, impaired proteostasis and oxidative stress. Lesion characteristics were confirmed in human renal biopsies. CONCLUSION We conclude that pathogenetic alterations in the renal compartments are specific for either treatment. Considering translation to the clinical setting, CNI choice should reflect individual risk factors for renal vasculature and tubular epithelia. As a step in this direction, we share protein signatures identified from multiomics with potential pathognomonic relevance.
Collapse
Affiliation(s)
- Hasan Demirci
- Institute of Functional Anatomy, Charité, Universitätsmedizin Berlin, Berlin, Germany
- Department of Cell- and Neurobiology, Charité, Universitätsmedizin Berlin, Berlin, Germany
| | - Suncica Popovic
- Institute of Functional Anatomy, Charité, Universitätsmedizin Berlin, Berlin, Germany
| | - Carsten Dittmayer
- Department of Neuropathology, Charité, Universitätsmedizin Berlin, Berlin, Germany
| | - Duygu Elif Yilmaz
- Institute of Functional Anatomy, Charité, Universitätsmedizin Berlin, Berlin, Germany
| | - Ismail Amr El-Shimy
- Molecular Epidemiology Unit, Berlin Institute of Health, Charité, Universitätsmedizin Berlin, Berlin, Germany
| | - Michael Mülleder
- Core Facility-High-Throughput Mass Spectrometry, Charité, Universitätsmedizin Berlin, Berlin, Germany
| | - Christian Hinze
- Department of Nephrology and Hypertension, Hannover Medical School, Hannover, Germany
| | - Mingzhen Su
- Department of Cell- and Neurobiology, Charité, Universitätsmedizin Berlin, Berlin, Germany
| | - Philipp Mertins
- Core Unit Proteomics, Berlin Institute of Health at Charité, Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Marieluise Kirchner
- Core Unit Proteomics, Berlin Institute of Health at Charité, Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Bilgin Osmanodja
- Department of Nephrology and Medical Intensive Care, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Alexander Paliege
- Department of Nephrology, Universitätsklinikum Carl Gustav Carus Dresden, Dresden, Germany
| | - Klemens Budde
- Department of Nephrology and Medical Intensive Care, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Kerstin Amann
- Department of Nephropathology, Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Pontus B Persson
- Department of Translational Physiology, Charité, Universitätsmedizin Berlin, Berlin, Germany
| | - Kerim Mutig
- Department of Translational Physiology, Charité, Universitätsmedizin Berlin, Berlin, Germany
- Department of Pharmacology, Institute of Pharmacy, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Sebastian Bachmann
- Institute of Functional Anatomy, Charité, Universitätsmedizin Berlin, Berlin, Germany
- Department of Cell- and Neurobiology, Charité, Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
2
|
Kistner A, Chichester JA, Wang L, Calcedo R, Greig JA, Cardwell LN, Wright MC, Couthouis J, Sethi S, McIntosh BE, McKeever K, Wadsworth S, Wilson JM, Kakkis E, Sullivan BA. Prednisolone and rapamycin reduce the plasma cell gene signature and may improve AAV gene therapy in cynomolgus macaques. Gene Ther 2024; 31:128-143. [PMID: 37833563 PMCID: PMC10940161 DOI: 10.1038/s41434-023-00423-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 09/07/2023] [Accepted: 09/28/2023] [Indexed: 10/15/2023]
Abstract
Adeno-associated virus (AAV) vector gene therapy is a promising approach to treat rare genetic diseases; however, an ongoing challenge is how to best modulate host immunity to improve transduction efficiency and therapeutic outcomes. This report presents two studies characterizing multiple prophylactic immunosuppression regimens in male cynomolgus macaques receiving an AAVrh10 gene therapy vector expressing human coagulation factor VIII (hFVIII). In study 1, no immunosuppression was compared with prednisolone, rapamycin (or sirolimus), rapamycin and cyclosporin A in combination, and cyclosporin A and azathioprine in combination. Prednisolone alone demonstrated higher mean peripheral blood hFVIII expression; however, this was not sustained upon taper. Anti-capsid and anti-hFVIII antibody responses were robust, and vector genomes and transgene mRNA levels were similar to no immunosuppression at necropsy. Study 2 compared no immunosuppression with prednisolone alone or in combination with rapamycin or methotrexate. The prednisolone/rapamycin group demonstrated an increase in mean hFVIII expression and a mean delay in anti-capsid IgG development until after rapamycin taper. Additionally, a significant reduction in the plasma cell gene signature was observed with prednisolone/rapamycin, suggesting that rapamycin's tolerogenic effects may include plasma cell differentiation blockade. Immunosuppression with prednisolone and rapamycin in combination could improve therapeutic outcomes in AAV vector gene therapy.
Collapse
Affiliation(s)
| | - Jessica A Chichester
- Gene Therapy Program, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Lili Wang
- Gene Therapy Program, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Roberto Calcedo
- Gene Therapy Program, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Affinia Therapeutics, Waltham, MA, USA
| | - Jenny A Greig
- Gene Therapy Program, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Leah N Cardwell
- Ultragenyx Gene Therapy, Ultragenyx Pharmaceutical Inc., Cambridge, MA, USA
| | | | | | | | | | | | - Samuel Wadsworth
- Ultragenyx Gene Therapy, Ultragenyx Pharmaceutical Inc., Cambridge, MA, USA
| | - James M Wilson
- Gene Therapy Program, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Emil Kakkis
- Ultragenyx Pharmaceutical Inc., Novato, CA, USA
| | | |
Collapse
|
3
|
Rusiñol L, Puig L. Multi-Omics Approach to Improved Diagnosis and Treatment of Atopic Dermatitis and Psoriasis. Int J Mol Sci 2024; 25:1042. [PMID: 38256115 PMCID: PMC10815999 DOI: 10.3390/ijms25021042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 01/07/2024] [Accepted: 01/10/2024] [Indexed: 01/24/2024] Open
Abstract
Psoriasis and atopic dermatitis fall within the category of cutaneous immune-mediated inflammatory diseases (IMIDs). The prevalence of IMIDs is increasing in industrialized societies, influenced by both environmental changes and a genetic predisposition. However, the exact immune factors driving these chronic, progressive diseases are not fully understood. By using multi-omics techniques in cutaneous IMIDs, it is expected to advance the understanding of skin biology, uncover the underlying mechanisms of skin conditions, and potentially devise precise and personalized approaches to diagnosis and treatment. We provide a narrative review of the current knowledge in genomics, epigenomics, and proteomics of atopic dermatitis and psoriasis. A literature search was performed for articles published until 30 November 2023. Although there is still much to uncover, recent evidence has already provided valuable insights, such as proteomic profiles that permit differentiating psoriasis from mycosis fungoides and β-defensin 2 correlation to PASI and its drop due to secukinumab first injection, among others.
Collapse
Affiliation(s)
- Lluís Rusiñol
- Department of Dermatology, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain;
- Institut de Recerca Sant Pau (IR SANT PAU), 08041 Barcelona, Spain
- Unitat Docent Hospital Universitari Sant Pau, Universitat Autònoma de Barcelona, 08025 Barcelona, Spain
| | - Lluís Puig
- Department of Dermatology, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain;
- Institut de Recerca Sant Pau (IR SANT PAU), 08041 Barcelona, Spain
- Unitat Docent Hospital Universitari Sant Pau, Universitat Autònoma de Barcelona, 08025 Barcelona, Spain
| |
Collapse
|
4
|
Immunosuppressive calcineurin inhibitor cyclosporine A induces proapoptotic endoplasmic reticulum stress in renal tubular cells. J Biol Chem 2022; 298:101589. [PMID: 35033536 PMCID: PMC8857494 DOI: 10.1016/j.jbc.2022.101589] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 01/03/2022] [Accepted: 01/05/2022] [Indexed: 12/26/2022] Open
Abstract
Current immunosuppressive strategies in organ transplantation rely on calcineurin inhibitors cyclosporine A (CsA) or tacrolimus (Tac). Both drugs are nephrotoxic, but CsA has been associated with greater renal damage than Tac. CsA inhibits calcineurin by forming complexes with cyclophilins, whose chaperone function is essential for proteostasis. We hypothesized that stronger toxicity of CsA may be related to suppression of cyclophilins with ensuing endoplasmic reticulum (ER) stress and unfolded protein response (UPR) in kidney epithelia. Effects of CsA and Tac (10 µM for 6 h each) were compared in cultured human embryonic kidney 293 (HEK 293) cells, primary human renal proximal tubule (PT) cells, freshly isolated rat PTs, and knockout HEK 293 cell lines lacking the critical ER stress sensors, protein kinase RNA-like ER kinase or activating transcription factor 6 (ATF6). UPR was evaluated by detection of its key components. Compared with Tac treatment, CsA induced significantly stronger UPR in native cultured cells and isolated PTs. Evaluation of proapoptotic and antiapoptotic markers suggested an enhanced apoptotic rate in CsA-treated cells compared with Tac-treated cells as well. Similar to CsA treatment, knockdown of cyclophilin A or B by siRNA caused proapoptotic UPR, whereas application of the chemical chaperones tauroursodeoxycholic acid or 4-phenylbutyric acid alleviated CsA-induced UPR. Deletion of protein kinase RNA-like ER kinase or ATF6 blunted CsA-induced UPR as well. In summary, inhibition of cyclophilin chaperone function with ensuing ER stress and proapoptotic UPR aggravates CsA toxicity, whereas pharmacological modulation of UPR bears potential to alleviate renal side effects of CsA.
Collapse
|
5
|
Proteomic Characterization of Urinary Extracellular Vesicles from Kidney-Transplanted Patients Treated with Calcineurin Inhibitors. Int J Mol Sci 2020; 21:ijms21207569. [PMID: 33066346 PMCID: PMC7589460 DOI: 10.3390/ijms21207569] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/12/2020] [Accepted: 10/12/2020] [Indexed: 11/17/2022] Open
Abstract
Use of immunosuppressive drugs is still unavoidable in kidney-transplanted patients. Since their discovery, calcineurin inhibitors (CNI) have been considered the first-line immunosuppressive agents, in spite of their known nephrotoxicity. Chronic CNI toxicity (CNIT) may lead to kidney fibrosis, a threatening scenario for graft survival. However, there is still controversy regarding CNIT diagnosis, monitoring and therapeutic management, and their specific effects at the molecular level are not fully known. Aiming to better characterize CNIT patients, in the present study, we collected urine from kidney-transplanted patients treated with CNI who (i) had a normal kidney function, (ii) suffered CNIT, or (iii) presented interstitial fibrosis and tubular atrophy (IFTA). Urinary extracellular vesicles (uEV) were enriched and the proteome was analyzed to get insight into changes happening during CNI. Members of the uroplakin and plakin families were significantly upregulated in the CNIT group, suggesting an important role in CNIT processes. Although biomarkers cannot be asserted from this single pilot study, our results evidence the potential of uEV as a source of non-invasive protein biomarkers for a better detection and monitoring of this renal alteration in kidney-transplanted patients.
Collapse
|
6
|
Owczarczyk-Saczonek A, Purzycka-Bohdan D, Nedoszytko B, Reich A, Szczerkowska-Dobosz A, Bartosiñska J, Batycka-Baran A, Czajkowski R, Dobrucki IT, Dobrucki LW, Górecka-Sokołowska M, Janaszak-Jasiecka A, Kalinowski L, Krasowska D, Radulska A, Reszka E, Samotij D, Słominski A, Słominski R, Sobalska-Kwapis M, Stawczyk-Macieja M, Strapagiel D, Szczêch J, Żmijewski M, Nowicki RJ. Pathogenesis of psoriasis in the "omic" era. Part III. Metabolic disorders, metabolomics, nutrigenomics in psoriasis. Postepy Dermatol Alergol 2020; 37:452-467. [PMID: 32994764 PMCID: PMC7507147 DOI: 10.5114/ada.2020.98284] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 05/28/2020] [Indexed: 12/15/2022] Open
Abstract
Psoriasis is a systemic disease that is strictly connected with metabolic disorders (insulin resistance, atherogenic dyslipidemia, arterial hypertension, and cardiovascular diseases). It occurs more often in patients with a more severe course of the disease. Obesity is specially an independent risk factor and it is associated with a worse treatment outcome because of the high inflammatory activity of visceral fatty tissue and the production of inflammatory mediators involved in the development of both psoriasis and metabolic disorders. However, in psoriasis the activation of the Th17/IL-17 and the abnormalities in the Th17/Treg balance axis are observed, but this pathomechanism does not fully explain the frequent occurrence of metabolic disorders. Therefore, there is a need to look for better biomarkers in the diagnosis, prognosis and monitoring of concomitant disorders and therapeutic effects in psoriasis. In addition, the education on the use of a proper diet as a prophylaxis for the development of the above disorders is an important element of holistic care for a patient with psoriasis. Diet may affect gene expression due to epigenetic modification which encompasses interactions of environment, nutrition and diseases. Patients with psoriasis should be advised to adopt proper diet and dietician support.
Collapse
Affiliation(s)
- Agnieszka Owczarczyk-Saczonek
- Chair and Department of Dermatology, Sexually Transmitted Diseases and Clinical Immunology, Collegium Medicum, University of Warmia and Mazury, Olsztyn, Poland
| | - Dorota Purzycka-Bohdan
- Chair and Department of Dermatology, Venereology and Allergology, Medical University of Gdansk, Gdansk, Poland
| | - Bogusław Nedoszytko
- Chair and Department of Dermatology, Venereology and Allergology, Medical University of Gdansk, Gdansk, Poland
| | - Adam Reich
- Department of Dermatology, University of Rzeszow, Rzeszow, Poland
| | - Aneta Szczerkowska-Dobosz
- Chair and Department of Dermatology, Venereology and Allergology, Medical University of Gdansk, Gdansk, Poland
| | - Joanna Bartosiñska
- Chair and Department of Dermatology, Venereology and Pediatric Dermatology, Medical University of Lublin, Lublin, Poland
| | - Aleksandra Batycka-Baran
- Chair and Department of Dermatology, Venereology and Allergology, Wroclaw Medical University, Wroclaw, Poland
| | - Rafał Czajkowski
- Chair and Department of Dermatology, Sexually Transmitted Diseases and Immunodermatology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Poland
| | - Iwona T. Dobrucki
- Beckman Institute for Advanced Science and Technology, Urbana, IL, USA
| | - Lawrence W. Dobrucki
- Beckman Institute for Advanced Science and Technology, Urbana, IL, USA
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Medical Laboratory Diagnostics, Medical University of Gdansk, Gdansk, Poland
- Biobanking and Biomolecular Resources Research Infrastructure Poland (BBMRI.PL), Gdansk, Poland
| | | | - Anna Janaszak-Jasiecka
- Department of Medical Laboratory Diagnostics, Medical University of Gdansk, Gdansk, Poland
| | - Leszek Kalinowski
- Department of Medical Laboratory Diagnostics, Medical University of Gdansk, Gdansk, Poland
- Department of Molecular Genetics and Epigenetics, Nofer Institute of Occupational Medicine, Lodz, Poland
- Gdansk University of Technology, Gdansk, Poland
| | - Dorota Krasowska
- Chair and Department of Dermatology, Venereology and Pediatric Dermatology, Medical University of Lublin, Lublin, Poland
| | - Adrianna Radulska
- Department of Pharmaceutical Biochemistry, Medical University of Gdansk, Gdansk, Poland
| | - Edyta Reszka
- Department of Molecular Genetics and Epigenetics, Nofer Institute of Occupational Medicine, Lodz, Poland
| | - Dominik Samotij
- Department of Dermatology, University of Rzeszow, Rzeszow, Poland
| | - Andrzej Słominski
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, USA
| | - Radomir Słominski
- Department of Medicine and Microbiology, Division of Clinical Immunology and Rheumatology, University of Alabama at Birmingham, Birmingham, USA
| | | | - Marta Stawczyk-Macieja
- Chair and Department of Dermatology, Venereology and Allergology, Medical University of Gdansk, Gdansk, Poland
| | | | - Justyna Szczêch
- Department of Dermatology, University of Rzeszow, Rzeszow, Poland
| | - Michał Żmijewski
- Department of Histology, Medical University of Gdansk, Gdansk, Poland
| | - Roman J. Nowicki
- Chair and Department of Dermatology, Venereology and Allergology, Medical University of Gdansk, Gdansk, Poland
| |
Collapse
|
7
|
Thölking G, Schütte-Nütgen K, Schmitz J, Rovas A, Dahmen M, Bautz J, Jehn U, Pavenstädt H, Heitplatz B, Van Marck V, Suwelack B, Reuter S. A Low Tacrolimus Concentration/Dose Ratio Increases the Risk for the Development of Acute Calcineurin Inhibitor-Induced Nephrotoxicity. J Clin Med 2019; 8:jcm8101586. [PMID: 31581670 PMCID: PMC6832469 DOI: 10.3390/jcm8101586] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 09/18/2019] [Accepted: 09/27/2019] [Indexed: 11/16/2022] Open
Abstract
Fast tacrolimus metabolism is linked to inferior outcomes such as rejection and lower renal function after kidney transplantation. Renal calcineurin-inhibitor toxicity is a common adverse effect of tacrolimus therapy. The present contribution hypothesized that tacrolimus-induced nephrotoxicity is related to a low concentration/dose (C/D) ratio. We analyzed renal tubular epithelial cell cultures and 55 consecutive kidney transplant biopsy samples with tacrolimus-induced toxicity, the C/D ratio, C0, C2, and C4 Tac levels, pulse wave velocity analyses, and sublingual endothelial glycocalyx dimensions in the selected kidney transplant patients. A low C/D ratio (C/D ratio < 1.05 ng/mL×1/mg) was linked with higher C2 tacrolimus blood concentrations (19.2 ± 8.7 µg/L vs. 12.2 ± 5.2 µg/L respectively; p = 0.001) and higher degrees of nephrotoxicity despite comparable trough levels (6.3 ± 2.4 µg/L vs. 6.6 ± 2.2 µg/L respectively; p = 0.669). However, the tacrolimus metabolism rate did not affect the pulse wave velocity or glycocalyx in patients. In renal tubular epithelial cells exposed to tacrolimus according to a fast metabolism pharmacokinetic profile it led to reduced viability and increased Fn14 expression. We conclude from our data that the C/D ratio may be an appropriate tool for identifying patients at risk of developing calcineurin-inhibitor toxicity.
Collapse
Affiliation(s)
- Gerold Thölking
- Department of Medicine D, Division of General Internal Medicine, Nephrology and Rheumatology, University Hospital of Münster, 48149 Münster, Germany.
- Department of Internal Medicine and Nephrology, University Hospital of Münster, Marienhospital Steinfurt, 48565 Steinfurt, Germany.
| | - Katharina Schütte-Nütgen
- Department of Medicine D, Division of General Internal Medicine, Nephrology and Rheumatology, University Hospital of Münster, 48149 Münster, Germany.
| | - Julia Schmitz
- Department of Medicine D, Division of General Internal Medicine, Nephrology and Rheumatology, University Hospital of Münster, 48149 Münster, Germany.
| | - Alexandros Rovas
- Department of Medicine D, Division of General Internal Medicine, Nephrology and Rheumatology, University Hospital of Münster, 48149 Münster, Germany.
| | - Maximilian Dahmen
- Department of Medicine D, Division of General Internal Medicine, Nephrology and Rheumatology, University Hospital of Münster, 48149 Münster, Germany.
| | - Joachim Bautz
- Department of Medicine D, Division of General Internal Medicine, Nephrology and Rheumatology, University Hospital of Münster, 48149 Münster, Germany.
| | - Ulrich Jehn
- Department of Medicine D, Division of General Internal Medicine, Nephrology and Rheumatology, University Hospital of Münster, 48149 Münster, Germany.
| | - Hermann Pavenstädt
- Department of Medicine D, Division of General Internal Medicine, Nephrology and Rheumatology, University Hospital of Münster, 48149 Münster, Germany.
| | - Barbara Heitplatz
- Gerhard-Domagk-Institute of Pathology, University Hospital of Münster, 48149 Münster, Germany.
| | - Veerle Van Marck
- Gerhard-Domagk-Institute of Pathology, University Hospital of Münster, 48149 Münster, Germany.
| | - Barbara Suwelack
- Department of Medicine D, Division of General Internal Medicine, Nephrology and Rheumatology, University Hospital of Münster, 48149 Münster, Germany.
| | - Stefan Reuter
- Department of Medicine D, Division of General Internal Medicine, Nephrology and Rheumatology, University Hospital of Münster, 48149 Münster, Germany.
| |
Collapse
|
8
|
Burat B, Faucher Q, Čechová P, Arnion H, Di Meo F, Sauvage F, Marquet P, Essig M. Cyclosporine A inhibits MRTF-SRF signaling through Na +/K + ATPase inhibition and actin remodeling. FASEB Bioadv 2019; 1:561-578. [PMID: 32123851 PMCID: PMC6996406 DOI: 10.1096/fba.2019-00027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 03/22/2019] [Accepted: 07/25/2019] [Indexed: 01/07/2023] Open
Abstract
Calcineurin inhibitors (CNI) are the pillars of immunosuppression in transplantation. However, they display a potent nephrotoxicity whose mechanisms remained widely unsolved. We used an untargeted quantitative proteomic approach (iTRAQ technology) to highlight new targets of CNI in renal proximal tubular cells (RPTCs). CNI-treated RPTCs proteome displayed an over-representation of actin-binding proteins with a CNI-specific expression profile. Cyclosporine A (CsA) induced F-actin remodeling and depolymerization, decreased F-actin-stabilizing, polymerization-promoting cofilin (CFL) oligomers, and inhibited the G-actin-regulated serum response factor (SRF) pathway. Inhibition of CFL canonical phosphorylation pathway reproduced CsA effects; however, S3-R, an analogue of the phosphorylation site of CFL prevented the effects of CsA which suggests that CsA acted independently from the canonical CFL regulation. CFL is known to be regulated by the Na+/K+-ATPase. Molecular docking calculations identified two inhibiting sites of CsA on Na+/K+-ATPase and a 23% decrease in Na+/K+-ATPase activity of RPTCs was observed with CsA. Ouabain, a specific inhibitor of Na+/K+-ATPase also reproduced CsA effects on actin organization and SRF activity. Altogether, these results described a new original pathway explaining CsA nephrotoxicity.
Collapse
Affiliation(s)
- Bastien Burat
- Centre for Biology & Health Research, UMR INSERM 1248 IPPRIT (Individual Profiling and Prevention of RIsks in Transplantation)Limoges UniversityLimogesFrance
| | - Quentin Faucher
- Centre for Biology & Health Research, UMR INSERM 1248 IPPRIT (Individual Profiling and Prevention of RIsks in Transplantation)Limoges UniversityLimogesFrance
| | - Petra Čechová
- Department of Biophysics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of SciencePalacký University OlomoucOlomoucCzech Republic
- Department of Physical Chemistry, Regional Centre of Advanced Technologies and Materials, Faculty of SciencePalacký University OlomoucOlomoucCzech Republic
| | - Hélène Arnion
- Centre for Biology & Health Research, UMR INSERM 1248 IPPRIT (Individual Profiling and Prevention of RIsks in Transplantation)Limoges UniversityLimogesFrance
| | - Florent Di Meo
- Centre for Biology & Health Research, UMR INSERM 1248 IPPRIT (Individual Profiling and Prevention of RIsks in Transplantation)Limoges UniversityLimogesFrance
| | - François‐Ludovic Sauvage
- Centre for Biology & Health Research, UMR INSERM 1248 IPPRIT (Individual Profiling and Prevention of RIsks in Transplantation)Limoges UniversityLimogesFrance
| | - Pierre Marquet
- Centre for Biology & Health Research, UMR INSERM 1248 IPPRIT (Individual Profiling and Prevention of RIsks in Transplantation)Limoges UniversityLimogesFrance
- Department of Pharmacology and ToxicologyLimoges University HospitalLimogesFrance
| | - Marie Essig
- Centre for Biology & Health Research, UMR INSERM 1248 IPPRIT (Individual Profiling and Prevention of RIsks in Transplantation)Limoges UniversityLimogesFrance
| |
Collapse
|
9
|
Sum of peak intensities outperforms peak area integration in iTRAQ protein expression measurement by LC-MS/MS using a TripleTOF 5600+ platform. Biosci Rep 2019; 39:BSR20190904. [PMID: 31110078 PMCID: PMC6554230 DOI: 10.1042/bsr20190904] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 05/08/2019] [Accepted: 05/16/2019] [Indexed: 11/17/2022] Open
Abstract
In the field of quantitative proteomics, the Isobaric Tags for Relative and Absolute Quantitation (iTRAQ) technology has demonstrated efficacy for proteome monitoring despite its lack of a consensus for data handling. In the present study, after peptide and protein identification, we compared the widespread quantitation method based on the calculation of MS/MS reporter ion peaks areas ratios (ProteinPilot) to the alternative method based on the calculation of ratios of the sum of peak intensities (jTRAQx [Quant]) and we processed output data with the in-house Customizable iTRAQ Ratios Calculator (CiR-C) algorithm. Quantitation based on peak area ratios displayed no significant linear correlation with Western blot quantitation. In contrast, quantitation based on the sum of peak intensities displayed a significant linear association with Western blot quantitation (non-zero slope; Pearson correlation coefficient test, r = 0.296, P=0.010**) with an average bias of 0.087 ± 0.500 and 95% Limits of Agreement from −0.893 to 1.068. We proposed the Mascot-jTRAQx-CiR-C strategy as a simple yet powerful data processing adjunct to the iTRAQ technology.
Collapse
|
10
|
Proteomics in Psoriasis. Int J Mol Sci 2019; 20:ijms20051141. [PMID: 30845706 PMCID: PMC6429319 DOI: 10.3390/ijms20051141] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 02/21/2019] [Accepted: 03/02/2019] [Indexed: 12/14/2022] Open
Abstract
Psoriasis has been thought to be driven primarily by innate and adaptive immune systems that can be modified by genetic and environmental factors. Complex interplay between inflammatory cytokines and T-cells, especially Th1 and Th17 cells, leads to abnormal cell proliferation and psoriatic skin lesions. Nevertheless, such mechanisms do not entirely represent the pathogenesis of psoriasis. Moreover, earlier and better biomarkers in diagnostics, prognostics, and monitoring therapeutic outcomes of psoriasis are still needed. During the last two decades, proteomics (a systematic analysis of proteins for their identities, quantities, and functions) has been widely employed to psoriatic research. This review summarizes and discusses all of the previous studies that applied various modalities of proteomics technologies to psoriatic skin disease. The data obtained from such studies have led to (i) novel mechanisms and new hypotheses of the disease pathogenesis; (ii) biomarker discovery for diagnostics and prognostics; and (iii) proteome profiling for monitoring treatment efficacy and drug-induced toxicities.
Collapse
|
11
|
Francis CE, Bai Y. Differential expression of cyclosporine A-Induced calcineurin isoform-specific matrix metalloproteinase 9 (MMP-9) in renal fibroblasts. Biochem Biophys Res Commun 2018; 503:2549-2554. [PMID: 30007437 DOI: 10.1016/j.bbrc.2018.07.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 07/04/2018] [Indexed: 01/19/2023]
Abstract
Long-term treatment with the potent immunosuppressive drug cyclosporine A (CsA) results in chronic nephrotoxicity. Its immunosuppressive properties are due to the inhibition of the calcium- and calmodulin-dependent phosphatase protein calcineurin A (CnA) which has three catalytic isoforms. Of those, the CnAα and β isoforms are ubiquitously expressed, particularly in the kidney. Additionally, chronic nephrotoxicity has been associated with an imbalance of extracellular matrix (ECM) synthesis and degradation resulting in an accumulation of ECM molecules. This study evaluates whether the expressions of matrix metalloproteinases (MMP-2 and MMP-9) induced by CsA are calcineurin isoform specific. Wild-type (WT), CnAα knockout (CnAα-/-) and CnAβ knockout (CnAβ-/-) kidney fibroblast cell lines (an in vitro innovative tool that was previously created in our lab) were treated with CsA at 10 ng/ml for 48 h. ELISA analysis demonstrated that the CsA-induced secretion profile of MMP-9 was highest in CnAα-/- cells and lowest in CnAβ-/- cells vs. WT cells. In contrast, CsA did not induce an increase in MMP-2 protein levels in WT, CnAα-/- nor CnAβ-/- renal fibroblasts. These results indicate that MMP-9 secretion is CnA-isoform specific, i.e. the CnAβ isoform contributes to the CsA-induced upregulation of MMP-9 while the CnAα does not. As such, understanding the role of calcineurin A isoforms in the regulation of the homeostasis of ECM degradation in the kidney after long-term CsA treatment needs to be further investigated.
Collapse
Affiliation(s)
- Cynthia E Francis
- Department of Pharmaceutical Science, School of Pharmacy, Philadelphia College of Osteopathic Medicine, Suwanee, GA, USA.
| | - Yun Bai
- Department of Pharmaceutical Science, School of Pharmacy, Philadelphia College of Osteopathic Medicine, Suwanee, GA, USA.
| |
Collapse
|
12
|
A potential role of the unfolded protein response in post-transplant cancer. Clin Sci (Lond) 2017. [PMID: 28645931 DOI: 10.1042/cs20170152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Cancer is one of the major causes of mortality in organ transplant patients receiving immunosuppressive regimen based on Cyclosporin A (CsA). Organ transplantation and chronic immunosuppression are typically associated with skin cancers (both squamous cell carcinoma and melanoma) and renal cell carcinoma (RCC). Recent studies have shown that in addition to its immunosuppressive effects, accounted for by the inhibition of calcineurin and the modulation of the transcriptional programme of lymphocytes, CsA also directly stimulates the growth and aggressive behaviour of various cancer cells. Using renal carcinogenesis as an example, we discuss the current evidence for a role of cellular proteostasis, i.e. the regulation of the production, maturation and turnover of proteins in eukaryotic cells, in tumorigenesis arising under conditions of chronic immunosuppression. We present the recent studies showing that CsA induces the unfolded protein response (UPR) in normal and transformed kidney cells. We examine how the UPR might be important, considering in particular the genomic analyses showing the existence of a correlation between the levels of expression of the actors of the UPR, the chaperones of the endoplasmic reticulum (ER) and the aggressiveness of renal carcinoma. The UPR may offer a possible explanation for how immunosuppressive regimens based on CsA promote renal carcinogenesis. We discuss the opportunities offered by this biological knowledge in terms of screening, diagnosis and treatment of post-transplant cancers, and propose possible future translational studies examining the role of tumour proteostasis and the UPR in this context.
Collapse
|
13
|
Ferjani H, El Abassi H, Ben Salem I, Guedri Y, Abid S, Achour A, Bacha H. The evaluate and compare the effects of the Tacrolimus and Sirolimus on the intestinal system using an intestinal cell culture model. Toxicol Mech Methods 2015; 26:54-60. [DOI: 10.3109/15376516.2015.1090514] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
14
|
The long-term administration of calcineurin inhibitors decreases antioxidant enzyme activity in the rat parotid and submandibular salivary glands. Life Sci 2015; 134:1-8. [DOI: 10.1016/j.lfs.2015.04.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 03/29/2015] [Accepted: 04/23/2015] [Indexed: 11/21/2022]
|
15
|
Xiao J, Deng J, Lv L, Kang Q, Ma P, Yan F, Song X, Gao B, Zhang Y, Xu J. Hydrogen Peroxide Induce Human Cytomegalovirus Replication through the Activation of p38-MAPK Signaling Pathway. Viruses 2015; 7:2816-33. [PMID: 26053925 PMCID: PMC4488715 DOI: 10.3390/v7062748] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 05/26/2015] [Indexed: 01/19/2023] Open
Abstract
Human cytomegalovirus (HCMV) is a major risk factor in transplantation and AIDS patients, which induces high morbidity and mortality. These patients infected with HCMV experience an imbalance of redox homeostasis that cause accumulation of reactive oxygen species (ROS) at the cellular level. H2O2, the most common reactive oxygen species, is the main byproduct of oxidative metabolism. However, the function of H2O2 on HCMV infection is not yet fully understood and the effect and mechanism of N-acetylcysteine (NAC) on H2O2-stimulated HCMV replication is unclear. We, therefore, examined the effect of NAC on H2O2-induced HCMV production in human foreskin fibroblast cells. In the present study, we found that H2O2 enhanced HCMV lytic replication through promoting major immediate early (MIE) promoter activity and immediate early (IE) gene transcription. Conversely, NAC inhibited H2O2-upregulated viral IE gene expression and viral replication. The suppressive effect of NAC on CMV in an acute CMV-infected mouse model also showed a relationship between antioxidants and viral lytic replication. Intriguingly, the enhancement of HCMV replication via supplementation with H2O2 was accompanied with the activation of the p38 mitogen-activated protein kinase pathway. Similar to NAC, the p38 inhibitor SB203580 inhibited H2O2-induced p38 phosphorylation and HCMV upregulation, while upregulation of inducible ROS was unaffected. These results directly relate HCMV replication to H2O2, suggesting that treatment with antioxidants may be an attractive preventive and therapeutic strategy for HCMV.
Collapse
Affiliation(s)
- Jun Xiao
- Beijing Key Laboratory of Blood Safety and Supply Technologies, Beijing 100850, China.
- Beijing Institute of Transfusion Medicine, 27 (9) Taiping Road, Beijing 100850, China.
| | - Jiang Deng
- Beijing Key Laboratory of Blood Safety and Supply Technologies, Beijing 100850, China.
- Beijing Institute of Transfusion Medicine, 27 (9) Taiping Road, Beijing 100850, China.
| | - Liping Lv
- Beijing Key Laboratory of Blood Safety and Supply Technologies, Beijing 100850, China.
- Beijing Institute of Transfusion Medicine, 27 (9) Taiping Road, Beijing 100850, China.
| | - Qiong Kang
- Beijing Key Laboratory of Blood Safety and Supply Technologies, Beijing 100850, China.
- Beijing Institute of Transfusion Medicine, 27 (9) Taiping Road, Beijing 100850, China.
| | - Ping Ma
- Beijing Key Laboratory of Blood Safety and Supply Technologies, Beijing 100850, China.
- Beijing Institute of Transfusion Medicine, 27 (9) Taiping Road, Beijing 100850, China.
| | - Fan Yan
- Beijing Key Laboratory of Blood Safety and Supply Technologies, Beijing 100850, China.
- Beijing Institute of Transfusion Medicine, 27 (9) Taiping Road, Beijing 100850, China.
| | - Xin Song
- Beijing Key Laboratory of Blood Safety and Supply Technologies, Beijing 100850, China.
- Beijing Institute of Transfusion Medicine, 27 (9) Taiping Road, Beijing 100850, China.
| | - Bo Gao
- Beijing Key Laboratory of Blood Safety and Supply Technologies, Beijing 100850, China.
- Beijing Institute of Transfusion Medicine, 27 (9) Taiping Road, Beijing 100850, China.
| | - Yanyu Zhang
- Beijing Key Laboratory of Blood Safety and Supply Technologies, Beijing 100850, China.
- Beijing Institute of Transfusion Medicine, 27 (9) Taiping Road, Beijing 100850, China.
| | - Jinbo Xu
- Beijing Key Laboratory of Blood Safety and Supply Technologies, Beijing 100850, China.
- Beijing Institute of Transfusion Medicine, 27 (9) Taiping Road, Beijing 100850, China.
| |
Collapse
|
16
|
Ferjani H, Achour A, Bacha H, Abid S. Tacrolimus and mycophenolate mofetil associations. Hum Exp Toxicol 2015; 34:1119-32. [DOI: 10.1177/0960327115569812] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Gastrointestinal risk factors after organ transplantation are prevalent, due to the chronic use of immunosuppressant. The immunosuppressive drugs such as tacrolimus/mycophenolate mofetil (TAC/MMF) association are the most commonly used therapy. TAC and MMF have been implicated in gastrotoxicity, but their direct effects, alone and combined, on intestinal cells are not completely elucidated. This study investigated the effect of TAC and MMF alone and combined on human colon carcinoma cells. Our results demonstrated that TAC and MMF individually inhibit clearly cells proliferation, enhanced free radicals, lipid peroxidation production, induced DNA lesions and reduced mitochondrial membrane potential. In this study, we also showed that the two molecules TAC and MMF combined at high concentrations amplified the cell damage. Furthermore, the TAC (5 µM) prevented cell death induced by MMF (half maximal inhibitory concentration (IC50)). Also, MMF (50 µM) induced cytoprotection in HCT116 cells against TAC (IC50) toxicity. Our findings provide additional evidence that oxidative damage is the major contribution of TAC and MMF combined toxicities. In fact, MMF and TAC exert a gastroprotective effect by modulating reactive oxygen species production. These data underscore the pleiotropic effect of TAC and MMF on HCT116 cells that play a preventive and critical role on intestinal function.
Collapse
Affiliation(s)
- H Ferjani
- Laboratory of Research on Biologically Compatible Compounds, Faculty of Dentistry, Monastir, Tunisia
| | - A Achour
- Department of Nephrology, Dialysis and Transplant, University Hospital of Sahloul, Sousse, Tunisia
| | - H Bacha
- Laboratory of Research on Biologically Compatible Compounds, Faculty of Dentistry, Monastir, Tunisia
| | - S Abid
- Laboratory of Research on Biologically Compatible Compounds, Faculty of Dentistry, Monastir, Tunisia
| |
Collapse
|
17
|
Jain S, Kambam S, Thanki K, Jain AK. Cyclosporine A loaded self-nanoemulsifying drug delivery system (SNEDDS): implication of a functional excipient based co-encapsulation strategy on oral bioavailability and nephrotoxicity. RSC Adv 2015. [DOI: 10.1039/c5ra04762e] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The present work focusses on the formulation development and evaluation of a functional excipient, a vitamin E TPGS loaded self-nanoemulsifying drug delivery system, for improving the deliverability and safety profile of cyclosporine A.
Collapse
Affiliation(s)
- Sanyog Jain
- Centre for Pharmaceutical Nanotechnology
- Department of Pharmaceutics
- National Institute of Pharmaceutical Education and Research (NIPER)
- Mohali
- India
| | - Sindhu Kambam
- Centre for Pharmaceutical Nanotechnology
- Department of Pharmaceutics
- National Institute of Pharmaceutical Education and Research (NIPER)
- Mohali
- India
| | - Kaushik Thanki
- Centre for Pharmaceutical Nanotechnology
- Department of Pharmaceutics
- National Institute of Pharmaceutical Education and Research (NIPER)
- Mohali
- India
| | - Amit K. Jain
- Centre for Pharmaceutical Nanotechnology
- Department of Pharmaceutics
- National Institute of Pharmaceutical Education and Research (NIPER)
- Mohali
- India
| |
Collapse
|
18
|
Rabilloud T, Lescuyer P. Proteomics in mechanistic toxicology: History, concepts, achievements, caveats, and potential. Proteomics 2014; 15:1051-74. [DOI: 10.1002/pmic.201400288] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 07/25/2014] [Accepted: 08/25/2014] [Indexed: 12/19/2022]
Affiliation(s)
- Thierry Rabilloud
- Laboratory of Chemistry and Biology of Metals; CNRS UMR; 5249 Grenoble France
- Laboratory of Chemistry and Biology of Metals; Université Grenoble Alpes; Grenoble France
- Laboratory of Chemistry and Biology of Metals; CEA Grenoble; iRTSV/CBM; Grenoble France
| | - Pierre Lescuyer
- Department of Human Protein Sciences; Clinical Proteomics and Chemistry Group; Geneva University; Geneva Switzerland
- Toxicology and Therapeutic Drug Monitoring Laboratory; Department of Genetic and Laboratory Medicine; Geneva University Hospitals; Geneva Switzerland
| |
Collapse
|
19
|
Kędzierska K, Sporniak-Tutak K, Sindrewicz K, Bober J, Domański L, Parafiniuk M, Urasińska E, Ciechanowicz A, Domański M, Smektała T, Masiuk M, Skrzypczak W, Ożgo M, Kabat-Koperska J, Ciechanowski K. Effects of immunosuppressive treatment on protein expression in rat kidney. Drug Des Devel Ther 2014; 8:1695-708. [PMID: 25328384 PMCID: PMC4196885 DOI: 10.2147/dddt.s64814] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The structural proteins of renal tubular epithelial cells may become a target for the toxic metabolites of immunosuppressants. These metabolites can modify the properties of the proteins, thereby affecting cell function, which is a possible explanation for the mechanism of immunosuppressive agents’ toxicity. In our study, we evaluated the effect of two immunosuppressive strategies on protein expression in the kidneys of Wistar rats. Fragments of the rat kidneys were homogenized after cooling in liquid nitrogen and then dissolved in lysis buffer. The protein concentration in the samples was determined using a protein assay kit, and the proteins were separated by two-dimensional electrophoresis. The obtained gels were then stained with Coomassie Brilliant Blue, and their images were analyzed to evaluate differences in protein expression. Identification of selected proteins was then performed using mass spectrometry. We found that the immunosuppressive drugs used in popular regimens induce a series of changes in protein expression in target organs. The expression of proteins involved in drug, glucose, amino acid, and lipid metabolism was pronounced. However, to a lesser extent, we also observed changes in nuclear, structural, and transport proteins’ synthesis. Very slight differences were observed between the group receiving cyclosporine, mycophenolate mofetil, and glucocorticoids (CMG) and the control group. In contrast, compared to the control group, animals receiving tacrolimus, mycophenolate mofetil, and glucocorticoids (TMG) exhibited higher expression of proteins responsible for renal drug metabolism and lower expression levels of cytoplasmic actin and the major urinary protein. In the TMG group, we observed higher expression of proteins responsible for drug metabolism and a decrease in the expression of respiratory chain enzymes (thioredoxin-2) and markers of distal renal tubular damage (heart fatty acid-binding protein) compared to expression in the CMG group. The consequences of the reported changes in protein expression require further study.
Collapse
Affiliation(s)
- Karolina Kędzierska
- Department of Nephrology, Transplantology, and Internal Medicine, Pomeranian Medical University, Szczecin, Poland
| | | | | | - Joanna Bober
- Department of Medical Chemistry, Pomeranian Medical University, Szczecin, Poland
| | - Leszek Domański
- Department of Nephrology, Transplantology, and Internal Medicine, Pomeranian Medical University, Szczecin, Poland
| | - Mirosław Parafiniuk
- Department of Forensic Medicine, Pomeranian Medical University, Szczecin, Poland
| | - Elżbieta Urasińska
- Department of Pathomorphology, Pomeranian Medical University, Szczecin, Poland
| | - Andrzej Ciechanowicz
- Department of Physiology, Cytobiology, and Proteomics, West Pomeranian University of Technology, Szczecin, Poland
| | - Maciej Domański
- Department of Nephrology, Transplantology, and Internal Medicine, Pomeranian Medical University, Szczecin, Poland
| | - Tomasz Smektała
- Department of Dental Surgery, Pomeranian Medical University, Szczecin, Poland
| | - Marek Masiuk
- Department of Pathomorphology, Pomeranian Medical University, Szczecin, Poland
| | - Wiesław Skrzypczak
- Department of Physiology, Cytobiology, and Proteomics, West Pomeranian University of Technology, Szczecin, Poland
| | - Małgorzata Ożgo
- Department of Physiology, Cytobiology, and Proteomics, West Pomeranian University of Technology, Szczecin, Poland
| | - Joanna Kabat-Koperska
- Department of Nephrology, Transplantology, and Internal Medicine, Pomeranian Medical University, Szczecin, Poland
| | - Kazimierz Ciechanowski
- Department of Nephrology, Transplantology, and Internal Medicine, Pomeranian Medical University, Szczecin, Poland
| |
Collapse
|
20
|
Sharanek A, Azzi PBE, Al-Attrache H, Savary CC, Humbert L, Rainteau D, Guguen-Guillouzo C, Guillouzo A. Different dose-dependent mechanisms are involved in early cyclosporine a-induced cholestatic effects in hepaRG cells. Toxicol Sci 2014; 141:244-53. [PMID: 24973091 DOI: 10.1093/toxsci/kfu122] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Mechanisms involved in drug-induced cholestasis in humans remain poorly understood. Although cyclosporine A (CsA) and tacrolimus (FK506) share similar immunosuppressive properties, only CsA is known to cause dose-dependent cholestasis. Here, we have investigated the mechanisms implicated in early cholestatic effects of CsA using the differentiated human HepaRG cell line. Inhibition of efflux and uptake of taurocholate was evidenced as early as 15 min and 1 h respectively after addition of 10μM CsA; it peaked at around 2 h and was reversible. These early effects were associated with generation of oxidative stress and deregulation of cPKC pathway. At higher CsA concentrations (≥50μM) alterations of efflux and uptake activities were enhanced and became irreversible, pericanalicular F-actin microfilaments were disorganized and bile canaliculi were constricted. These changes were associated with induction of endoplasmic reticulum stress that preceded generation of oxidative stress. Concentration-dependent changes were observed on total bile acid disposition, which were characterized by an increase and a decrease in culture medium and cells, respectively, after a 24-h treatment with CsA. Accordingly, genes encoding hepatobiliary transporters and bile acid synthesis enzymes were differently deregulated depending on CsA concentration. By contrast, FK506 induced limited effects only at 25-50μM and did not alter bile canaliculi. Our data demonstrate involvement of different concentration-dependent mechanisms in CsA-induced cholestasis and point out a critical role of endoplasmic reticulum stress in the occurrence of the major cholestatic features.
Collapse
Affiliation(s)
- Ahmad Sharanek
- Inserm UMR991, Foie, Métabolisme et Cancer, Rennes, France Université de Rennes 1, Rennes, France
| | - Pamela Bachour-El Azzi
- Inserm UMR991, Foie, Métabolisme et Cancer, Rennes, France Université de Rennes 1, Rennes, France
| | - Houssein Al-Attrache
- Inserm UMR991, Foie, Métabolisme et Cancer, Rennes, France Université de Rennes 1, Rennes, France
| | - Camille C Savary
- Inserm UMR991, Foie, Métabolisme et Cancer, Rennes, France Université de Rennes 1, Rennes, France
| | - Lydie Humbert
- ERL Inserm U1157/UMR7203, Faculté de Medecine Pierre et Marie Curie, Site Saint Antoine, Paris, France
| | - Dominique Rainteau
- ERL Inserm U1157/UMR7203, Faculté de Medecine Pierre et Marie Curie, Site Saint Antoine, Paris, France
| | | | - André Guillouzo
- Inserm UMR991, Foie, Métabolisme et Cancer, Rennes, France Université de Rennes 1, Rennes, France
| |
Collapse
|
21
|
Khan SR, Baghdasarian A, Fahlman RP, Michail K, Siraki AG. Current status and future prospects of toxicogenomics in drug discovery. Drug Discov Today 2014; 19:562-78. [DOI: 10.1016/j.drudis.2013.11.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Revised: 09/27/2013] [Accepted: 11/01/2013] [Indexed: 01/03/2023]
|
22
|
Application of “Omics” Technologies to In Vitro Toxicology. METHODS IN PHARMACOLOGY AND TOXICOLOGY 2014. [DOI: 10.1007/978-1-4939-0521-8_18] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/06/2022]
|
23
|
Yeast ABC proteins involved in multidrug resistance. Cell Mol Biol Lett 2013; 19:1-22. [PMID: 24297686 PMCID: PMC6275743 DOI: 10.2478/s11658-013-0111-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Accepted: 11/27/2013] [Indexed: 01/03/2023] Open
Abstract
Pleiotropic drug resistance is a complex phenomenon that involves many proteins that together create a network. One of the common mechanisms of multidrug resistance in eukaryotic cells is the active efflux of a broad range of xenobiotics through ATP-binding cassette (ABC) transporters. Saccharomyces cerevisiae is often used as a model to study such activity because of the functional and structural similarities of its ABC transporters to mammalian ones. Numerous ABC transporters are found in humans and some are associated with the resistance of tumors to chemotherapeutics. Efflux pump modulators that change the activity of ABC proteins are the most promising candidate drugs to overcome such resistance. These modulators can be chemically synthesized or isolated from natural sources (e.g., plant alkaloids) and might also be used in the treatment of fungal infections. There are several generations of synthetic modulators that differ in specificity, toxicity and effectiveness, and are often used for other clinical effects.
Collapse
|
24
|
High-Throughput Proteomic Approaches to the Elucidation of Potential Biomarkers of Chronic Allograft Injury (CAI). Proteomes 2013; 1:159-179. [PMID: 28250402 PMCID: PMC5302743 DOI: 10.3390/proteomes1020159] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Revised: 09/06/2013] [Accepted: 09/09/2013] [Indexed: 12/12/2022] Open
Abstract
This review focuses on the role of OMICs technologies, concentrating in particular on proteomics, in biomarker discovery in chronic allograft injury (CAI). CAI is the second most prevalent cause of allograft dysfunction and loss in the first decade post-transplantation, after death with functioning graft (DWFG). The term CAI, sometimes referred to as chronic allograft nephropathy (CAN), describes the deterioration of renal allograft function and structure as a result of immunological processes (chronic antibody-mediated rejection), and other non-immunological factors such as calcineurin inhibitor (CNI) induced nephrotoxicity, hypertension and infection. Current methods for assessing allograft function are costly, insensitive and invasive; traditional kidney function measurements such as serum creatinine and glomerular filtration rate (GFR) display poor predictive abilities, while the current “gold-standard” involving histological diagnosis with a renal biopsy presents its own inherent risks to the overall health of the allograft. As early as two years post-transplantation, protocol biopsies have shown more than 50% of allograft recipients have mild CAN; ten years post-transplantation more than 50% of the allograft recipients have progressed to severe CAN which is associated with diminishing graft function. Thus, there is a growing medical requirement for minimally invasive biomarkers capable of identifying the early stages of the disease which would allow for timely intervention. Proteomics involves the study of the expression, localization, function and interaction of the proteome. Proteomic technologies may be powerful tools used to identify novel biomarkers which would predict CAI in susceptible individuals. In this paper we will review the use of proteomics in the elucidation of novel predictive biomarkers of CAI in clinical, animal and in vitro studies.
Collapse
|
25
|
Gijsen VMGJ, Hesselink DA, Croes K, Koren G, de Wildt SN. Prevalence of renal dysfunction in tacrolimus-treated pediatric transplant recipients: a systematic review. Pediatr Transplant 2013; 17:205-15. [PMID: 23448292 DOI: 10.1111/petr.12056] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/21/2012] [Indexed: 11/28/2022]
Abstract
Renal dysfunction after non-renal transplantation in adult tacrolimus-treated transplant patients is well documented. Little is known about its prevalence in children. Age-related changes in both disposition and effect of tacrolimus as well as renal function may preclude extrapolation of adult data to children. To systematically review the literature on renal dysfunction in non-renal pediatric transplant recipients treated with tacrolimus. PubMed/Medline, Embase, and Google were searched from their inception until April 19, 2012, with the search terms "tacrolimus," "renal function," "transplantation," and "children." Eighteen of 385 retrieved papers were considered relevant. Twelve dealt with liver, four with heart transplant, one with heart and lung transplant, and one with intestinal recipients. Reported prevalences of mild and severe chronic kidney disease ranged from 0% to 39% and 0% to 71.4%, respectively, for liver, and from 22.7% to 40% and 6.8% to 46%, respectively, for heart and/or lung transplant recipients. Ranges remained wide after adjusting for follow-up time and disease severity. Possible explanations are inclusion bias and definitions used for renal dysfunction. A considerable proportion of pediatric non-renal transplant patients who receive tacrolimus-based immunosuppression, appear to suffer from chronic kidney disease. This conclusion warrants further research into the real risk, its risk factors, and individualization of immunosuppressant therapy.
Collapse
Affiliation(s)
- Violette M G J Gijsen
- Intensive Care and Department of Pediatric Surgery, Erasmus MC Sophia Children's Hospital, Rotterdam, the Netherlands
| | | | | | | | | |
Collapse
|
26
|
Biomarker discovery in transplantation—proteomic adventure or mission impossible? Clin Biochem 2013; 46:497-505. [DOI: 10.1016/j.clinbiochem.2012.10.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Revised: 10/09/2012] [Accepted: 10/11/2012] [Indexed: 01/10/2023]
|
27
|
Application of integrated transcriptomic, proteomic and metabolomic profiling for the delineation of mechanisms of drug induced cell stress. J Proteomics 2013; 79:180-94. [DOI: 10.1016/j.jprot.2012.11.022] [Citation(s) in RCA: 138] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Revised: 11/08/2012] [Accepted: 11/24/2012] [Indexed: 01/01/2023]
|
28
|
Van Summeren A, Renes J, Lizarraga D, Bouwman FG, Noben JP, van Delft JHM, Kleinjans JCS, Mariman ECM. Screening for drug-induced hepatotoxicity in primary mouse hepatocytes using acetaminophen, amiodarone, and cyclosporin a as model compounds: an omics-guided approach. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2013; 17:71-83. [PMID: 23308384 DOI: 10.1089/omi.2012.0079] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Drug-induced hepatotoxicity is a leading cause of attrition for candidate pharmaceuticals in development. New preclinical screening methods are crucial to predict drug toxicity prior to human studies. Of all in vitro hepatotoxicity models, primary human hepatocytes are considered as 'the gold standard.' However, their use is hindered by limited availability and inter-individual variation. These barriers may be overcome by using primary mouse hepatocytes. We used differential in gel electrophoresis (DIGE) to study large-scale protein expression of primary mouse hepatocytes. These hepatocytes were exposed to three well-defined hepatotoxicants: acetaminophen, amiodarone, and cyclosporin A. Each hepatotoxicant induces a different hepatotoxic phenotype. Based on the DIGE results, the mRNA expression levels of deregulated proteins from cyclosporin A-treated cells were also analyzed. We were able to distinguish cyclosporin A from controls, as well as acetaminophen and amiodarone-treated samples. Cyclosporin A induced endoplasmic reticulum (ER) stress and altered the ER-Golgi transport. Moreover, liver carboxylesterase and bile salt sulfotransferase were differentially expressed. These proteins were associated with a protective adaptive response against cyclosporin A-induced cholestasis. The results of this study are comparable with effects in HepG2 cells. Therefore, we suggest both models can be used to analyze the cholestatic properties of cyclosporin A. Furthermore, this study showed a conserved response between primary mouse hepatocytes and HepG2 cells. These findings collectively lend support for use of omics strategies in preclinical toxicology, and might inform future efforts to better link preclinical and clinical research in rational drug development.
Collapse
Affiliation(s)
- Anke Van Summeren
- Department of Human Biology, Maastricht University, Maastricht, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Sheehan D, Rainville LC, Tyther R, McDonagh B. Redox proteomics in study of kidney-associated hypertension: new insights to old diseases. Antioxid Redox Signal 2012; 17:1560-70. [PMID: 22607037 DOI: 10.1089/ars.2012.4705] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
SIGNIFICANCE The kidney helps to maintain low blood pressure in the human body, and impaired kidney function is a common attribute of aging that is often associated with high blood pressure (hypertension). Kidney-related pathologies are important contributors (either directly or indirectly) to overall human mortality. In comparison with other organs, kidney has an unusually wide range of oxidative status, ranging from the well-perfused cortex to near-anoxic medulla. RECENT ADVANCES Oxidative stress has been implicated in many kidney pathologies, especially chronic kidney disease, and there is considerable research interest in oxidative stress biomarkers for earlier prediction of disease onset. Proteomics approaches have been taken to study of human kidney tissue, serum/plasma, urine, and animal models of hypertension. CRITICAL ISSUES Redox proteomics, in which oxidative post-translational modifications can be identified in protein targets of oxidative or nitrosative stress, has not been very extensively pursued in this set of pathologies. FUTURE DIRECTIONS Proteomics studies of kidney and related tissues have relevance to chronic kidney disease, and redox proteomics, in particular, represents an under-exploited toolkit for identification of novel biomarkers in this commonly occurring pathology.
Collapse
Affiliation(s)
- David Sheehan
- Proteomics Research Group, Department of Biochemistry, University College Cork, Cork, Ireland.
| | | | | | | |
Collapse
|
30
|
Proteome alterations in response to aristolochic acids in experimental animal model. J Proteomics 2012; 76 Spec No.:79-90. [PMID: 22796065 DOI: 10.1016/j.jprot.2012.06.026] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2012] [Revised: 06/26/2012] [Accepted: 06/29/2012] [Indexed: 11/23/2022]
Abstract
Strong indications have been presented that dietary poisoning with aristolochic acids (AA) is responsible for Endemic Nephropathy (EN) and AA associated cancer of the upper urinary tract (UUTC). Our recent investigation showed drastic urinary proteome changes in AA treated mice. This study was designed to identify proteome changes associated with AA nephrotoxicity in experimental animal model. The DBA and C57BL mice, which differ in AA sensitivity, were exposed to AA for 4 days. The strategy for urinary, plasma and kidney tissue proteome study of AA exposed and control mice integrated gel-based and in-solution tryptic digestion combined with LC-ESI-MS/MS. To maximize proteome coverage, plasma fractionation scheme was developed and MS compatible sequential tissue extraction procedure was established. Proteomic analyses of urinary, plasma and kidney tissue tryptic digests resulted in identification of several cytoskeletal proteins, as well as proteins involved in kidney development and inflammatory response, that are differentially expressed in both AA exposed and control mice. These proteins are consistent with renal pathogenesis of endotoxicity and cancer. This proteomic strategy could be effectively translated for unbiased discovery of potential biomarkers for EN and associated UUTC in humans. At the same time, these results highlight the significance of AA exposure with EN. This article is part of a Special Issue entitled: Integrated omics.
Collapse
|
31
|
Mapping cyclosporine-induced changes in protein secretion by renal cells using stable isotope labeling with amino acids in cell culture (SILAC). J Proteomics 2012; 75:3674-87. [DOI: 10.1016/j.jprot.2012.04.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2011] [Revised: 04/09/2012] [Accepted: 04/18/2012] [Indexed: 01/14/2023]
|