1
|
Bhoyrul B, Asfour L, Lutz G, Mitchell L, Jerjen R, Sinclair RD, Holmes S, Chaudhry IH, Harries MJ. Clinicopathologic Characteristics and Response to Treatment of Persistent Chemotherapy-Induced Alopecia in Breast Cancer Survivors. JAMA Dermatol 2021; 157:1335-1342. [PMID: 34586345 DOI: 10.1001/jamadermatol.2021.3676] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Importance Alopecia induced by classic chemotherapy affects up to 65% of patients and is usually reversible. However, there are increasing reports of persistent chemotherapy-induced alopecia (pCIA), especially for patients treated with taxane-containing chemotherapy regimens. Objective To analyze the clinicopathologic characteristics and response to treatment of patients with pCIA after chemotherapy for breast cancer. Design, Setting, and Participants In this case series, a retrospective evaluation was performed of patients with a diagnosis of pCIA after chemotherapy for breast cancer in 4 specialist hair clinics from November 1, 2011, to February 29, 2020. Main Outcomes and Measures Clinical, trichoscopic, and histopathologic characteristics and treatment outcomes were analyzed. For patients who presented with diffuse alopecia or diffuse rarefaction of hair over the midfrontal scalp with widening of the central part line and preservation of the frontal hairline, the Sinclair scale (grades 1-5, where 1 indicates normal hair density and 5 indicates the most severe stage of hair loss, with little or no hair in the centroparietal region) was used to assess severity. Results One hundred patients (99 women [99%]; mean age at presentation, 54.0 years [range, 29.0-74.1 years]) were included. Most patients had diffuse nonscarring alopecia (n = 39), female pattern hair loss (n = 55), or male pattern hair loss (n = 6). Six patients developed cicatricial alopecia. Taxane-containing regimens were used for most patients (92 [92%]) and were associated with more severe alopecia than regimens that did not contain taxanes (median Sinclair grade, 4 [IQR, 3-5] vs 2 [IQR, 2-2.5]; P < .001). A total of 76 of 86 patients (88%) had trichoscopic signs indistinguishable from those of androgenetic alopecia. Of 18 patients who had biopsies, 14 had androgenetic alopecia-like features, 2 had cicatricial alopecia, and 2 had features of both. Both topical and oral minoxidil, sometimes combined with antiandrogen therapy, were associated with an improvement in hair density (median Sinclair grade, 4 [IQR, 3-5] before treatment vs 3 [IQR, 2-4] after treatment; P < .001). Conclusions and Relevance This case series outlines previously unreported features of pCIA in patients with breast cancer, including a trichoscopic description. Cosmetically significant regrowth was achieved for a significant proportion of patients with topical or systemic treatments, suggesting that pCIA may be at least partly reversible.
Collapse
Affiliation(s)
| | - Leila Asfour
- The Dermatology Centre, Salford Royal National Health Service Foundation Trust, Salford, Greater Manchester, United Kingdom
| | - Gerhard Lutz
- Hair and Nail Medicine, Bonn, Germany.,Department of Dermatology and Allergy, University Hospital of Bonn, Bonn, Germany
| | - Lorne Mitchell
- Alan Lyell Centre for Dermatology, Queen Elizabeth University Hospital, Glasgow, United Kingdom
| | | | - Rodney D Sinclair
- Sinclair Dermatology, Melbourne, Australia.,University of Melbourne, Melbourne, Australia
| | - Susan Holmes
- Alan Lyell Centre for Dermatology, Queen Elizabeth University Hospital, Glasgow, United Kingdom
| | - Iskander H Chaudhry
- Department of Histopathology, Royal Liverpool and Broadgreen University Hospitals National Health Service Trust, Liverpool, United Kingdom
| | - Matthew J Harries
- The Dermatology Centre, Salford Royal National Health Service Foundation Trust, Salford, Greater Manchester, United Kingdom.,Centre for Dermatology Research, University of Manchester, Manchester Academic Health Science Centre and National Institute for Health Research Manchester Biomedical Research Centre, Manchester, United Kingdom
| |
Collapse
|
2
|
Arunmanee W, Duangkaew M, Taweecheep P, Aphicho K, Lerdvorasap P, Pitchayakorn J, Intasuk C, Jiraratmetacon R, Syamsidi A, Chanvorachote P, Chaotham C, Pornputtapong N. Resurfacing receptor binding domain of Colicin N to enhance its cytotoxic effect on human lung cancer cells. Comput Struct Biotechnol J 2021; 19:5225-5234. [PMID: 34630940 PMCID: PMC8479544 DOI: 10.1016/j.csbj.2021.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 09/05/2021] [Accepted: 09/08/2021] [Indexed: 11/24/2022] Open
Abstract
Colicin N (ColN) is a bacteriocin secreted by Escherichia coli (E. coli) to kill other Gram-negative bacteria by forcefully generating ion channels in the inner membrane. In addition to its bactericidal activity, ColN have been reported to selectively induce apoptosis in human lung cancer cells via the suppression of integrin modulated survival pathway. However, ColN showed mild toxicity against human lung cancer cells which could be improved for further applications. The protein resurfacing strategy was chosen to engineer ColN by extensive mutagenesis at solvent-exposed residues on ColN. The highly accessible Asp and Glu on wildtype ColN (ColNWT) were replaced by Lys to create polycationic ColN (ColN+12). Previous studies have shown that increase of positive charges on proteins leads to the enhancement of mammalian cell penetration as well as increased interaction with negatively charged surface of cancer cells. Those solvent-exposed residues of ColN were identified by Rosetta and AvNAPSA (Average number of Neighboring Atoms Per Sidechain Atom) approaches. The findings revealed that the structural features and stability of ColN+12 determined by circular dichroism were similar to ColNWT. Furthermore, the toxicity of ColN+12 was cancer selective. Human lung cancer cells, H460 and H23, were sensitive to ColN but human dermal papilla cells were not. ColN+12 also showed more potent toxicity than ColNWT in cancer cells. This confirmed that polycationic resurfacing method has enabled us to improve the anticancer activity of ColN towards human lung cancer cells.
Collapse
Affiliation(s)
- Wanatchaporn Arunmanee
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Methawee Duangkaew
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Pornchanok Taweecheep
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Kanokpol Aphicho
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Panuwat Lerdvorasap
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Jesada Pitchayakorn
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Chayada Intasuk
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Runglada Jiraratmetacon
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Armini Syamsidi
- Department of Pharmacy, Faculty of Science, Tadulako University, Central Sulawesi 94118, Indonesia
| | - Pithi Chanvorachote
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
- Cell-based Drug and Health Products Development Research Unit, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Chatchai Chaotham
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
- Cell-based Drug and Health Products Development Research Unit, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Natapol Pornputtapong
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
- Center of Excellence in Systems Biology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Corresponding author.
| |
Collapse
|
3
|
Madaan A, Verma R, Singh AT, Jaggi M. Review of Hair Follicle Dermal Papilla cells as in vitro screening model for hair growth. Int J Cosmet Sci 2018; 40:429-450. [PMID: 30144361 DOI: 10.1111/ics.12489] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 08/20/2018] [Indexed: 12/15/2022]
Abstract
Hair disorders such as hair loss (alopecia) and androgen dependent, excessive hair growth (hirsutism, hypertrichosis) may impact the social and psychological well-being of an individual. Recent advances in understanding the biology of hair have accelerated the research and development of novel therapeutic and cosmetic hair growth agents. Preclinical models aid in dermocosmetic efficacy testing and claim substantiation of hair growth modulators. The in vitro models to investigate hair growth utilize the hair follicle Dermal Papilla cells (DPCs), specialized mesenchymal cells located at the base of hair follicle that play essential roles in hair follicular morphogenesis and postnatal hair growth cycles. In this review, we have compiled and discussed the extensively reported literature citing DPCs as in vitro model to study hair growth promoting and inhibitory effects. A variety of agents such as herbal and natural extracts, growth factors and cytokines, platelet-rich plasma, placental extract, stem cells and conditioned medium, peptides, hormones, lipid-nanocarrier, light, electrical and electromagnetic field stimulation, androgens and their analogs, stress-serum and chemotherapeutic agents etc. have been examined for their hair growth modulating effects in DPCs. Effects on DPCs' activity were determined from untreated (basal) or stress induced levels. Cell proliferation, apoptosis and secretion of growth factors were included as primary end-point markers. Effects on a wide range of biomolecules and mechanistic pathways that play key role in the biology of hair growth were also investigated. This consolidated and comprehensive review summarizes the up-to-date information and understanding regarding DPCs based screening models for hair growth and may be helpful for researchers to select the appropriate assay system and biomarkers. This review highlights the pivotal role of DPCs in the forefront of hair research as screening platforms by providing insights into mechanistic action at cellular level, which may further direct the development of novel hair growth modulators.
Collapse
Affiliation(s)
- Alka Madaan
- Cell Biology Lab, Dabur Research Foundation, 22, Site IV, Sahibabad, Ghaziabad, Uttar Pradesh, 201010, India
| | - Ritu Verma
- Cell Biology Lab, Dabur Research Foundation, 22, Site IV, Sahibabad, Ghaziabad, Uttar Pradesh, 201010, India
| | - Anu T Singh
- Cell Biology Lab, Dabur Research Foundation, 22, Site IV, Sahibabad, Ghaziabad, Uttar Pradesh, 201010, India
| | - Manu Jaggi
- Cell Biology Lab, Dabur Research Foundation, 22, Site IV, Sahibabad, Ghaziabad, Uttar Pradesh, 201010, India
| |
Collapse
|
4
|
Shin SH, Cha HJ, Kim K, An IS, Kim KY, Ku JE, Jeong SH, An S. Epigallocatechin-3-gallate inhibits paclitaxel-induced apoptosis through the alteration of microRNA expression in human dermal papilla cells. BIOMEDICAL DERMATOLOGY 2018. [DOI: 10.1186/s41702-017-0016-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
5
|
Differential Expression of Proteins Associated with the Hair Follicle Cycle - Proteomics and Bioinformatics Analyses. PLoS One 2016; 11:e0146791. [PMID: 26752403 PMCID: PMC4709225 DOI: 10.1371/journal.pone.0146791] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2015] [Accepted: 12/20/2015] [Indexed: 01/08/2023] Open
Abstract
Hair follicle cycling can be divided into the following three stages: anagen, catagen, and telogen. The molecular signals that orchestrate the follicular transition between phases are still unknown. To better understand the detailed protein networks controlling this process, proteomics and bioinformatics analyses were performed to construct comparative protein profiles of mouse skin at specific time points (0, 8, and 20 days). Ninety-five differentially expressed protein spots were identified by MALDI-TOF/TOF as 44 proteins, which were found to change during hair follicle cycle transition. Proteomics analysis revealed that these changes in protein expression are involved in Ca2+-regulated biological processes, migration, and regulation of signal transduction, among other processes. Subsequently, three proteins were selected to validate the reliability of expression patterns using western blotting. Cluster analysis revealed three expression patterns, and each pattern correlated with specific cell processes that occur during the hair cycle. Furthermore, bioinformatics analysis indicated that the differentially expressed proteins impacted multiple biological networks, after which detailed functional analyses were performed. Taken together, the above data may provide insight into the three stages of mouse hair follicle morphogenesis and provide a solid basis for potential therapeutic molecular targets for this hair disease.
Collapse
|
6
|
Proteomic Analysis of Anticancer TCMs Targeted at Mitochondria. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:539260. [PMID: 26568766 PMCID: PMC4629060 DOI: 10.1155/2015/539260] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 07/30/2015] [Indexed: 12/16/2022]
Abstract
Traditional Chinese medicine (TCM) is a rich resource of anticancer drugs. Increasing bioactive natural compounds extracted from TCMs are known to exert significant antitumor effects, but the action mechanisms of TCMs are far from clear. Proteomics, a powerful platform to comprehensively profile drug-regulated proteins, has been widely applied to the mechanistic investigation of TCMs and the identification of drug targets. In this paper, we discuss several bioactive TCM products including terpenoids, flavonoids, and glycosides that were extensively investigated by proteomics to illustrate their antitumor mechanisms in various cancers. Interestingly, many of these natural compounds isolated from TCMs mostly exert their tumor-suppressing functions by specifically targeting mitochondria in cancer cells. These TCM components induce the loss of mitochondrial membrane potential, the release of cytochrome c, and the accumulation of ROS, initiating apoptosis cascade signaling. Proteomics provides systematic views that help to understand the molecular mechanisms of the TCM in tumor cells; it bears the inherent limitations in uncovering the drug-protein interactions, however. Subcellular fractionation may be coupled with proteomics to capture and identify target proteins in mitochondria-enriched lysates. Furthermore, translating mRNA analysis, a new technology profiling the drug-regulated genes in translatome level, may be integrated into the systematic investigation, revealing global information valuable for understanding the action mechanism of TCMs.
Collapse
|
7
|
Hsia CW, Ho MY, Shui HA, Tsai CB, Tseng MJ. Analysis of dermal papilla cell interactome using STRING database to profile the ex vivo hair growth inhibition effect of a vinca alkaloid drug, colchicine. Int J Mol Sci 2015; 16:3579-98. [PMID: 25664862 PMCID: PMC4346914 DOI: 10.3390/ijms16023579] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 01/03/2015] [Indexed: 12/28/2022] Open
Abstract
Dermal papillae (DPs) control the formation of hair shafts. In clinical settings, colchicine (CLC) induces patients' hair shedding. Compared to the control, the ex vivo hair fiber elongation of organ cultured vibrissa hair follicles (HFs) declined significantly after seven days of CLC treatment. The cultured DP cells (DPCs) were used as the experimental model to study the influence of CLC on the protein dynamics of DPs. CLC could alter the morphology and down-regulate the expression of alkaline phosphatase (ALP), the marker of DPC activity, and induce IκBα phosphorylation of DPCs. The proteomic results showed that CLC modulated the expression patterns (fold>2) of 24 identified proteins, seven down-regulated and 17 up-regulated. Most of these proteins were presumably associated with protein turnover, metabolism, structure and signal transduction. Protein-protein interactions (PPI) among these proteins, established by Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) database, revealed that they participate in protein metabolic process, translation, and energy production. Furthermore, ubiquitin C (UbC) was predicted to be the controlling hub, suggesting the involvement of ubiquitin-proteasome system in modulating the pathogenic effect of CLC on DPC.
Collapse
Affiliation(s)
- Ching-Wu Hsia
- Institute of Molecular Biology and Department of Life Science, National Chung Cheng University, Chia-yi 621, Taiwan.
| | - Ming-Yi Ho
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan.
| | - Hao-Ai Shui
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei 114, Taiwan.
| | - Chong-Bin Tsai
- Institute of Molecular Biology and Department of Life Science, National Chung Cheng University, Chia-yi 621, Taiwan.
- Department of Ophthalmology, Chia-yi Christian Hospital, Chia-yi 600, Taiwan.
| | - Min-Jen Tseng
- Institute of Molecular Biology and Department of Life Science, National Chung Cheng University, Chia-yi 621, Taiwan.
| |
Collapse
|
8
|
Arctiin blocks hydrogen peroxide-induced senescence and cell death though microRNA expression changes in human dermal papilla cells. Biol Res 2014; 47:50. [PMID: 25299961 PMCID: PMC4196076 DOI: 10.1186/0717-6287-47-50] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2014] [Accepted: 09/24/2014] [Indexed: 12/21/2022] Open
Abstract
Background Accumulating evidence indicates that reactive oxygen species (ROS) are an important etiological factor for the induction of dermal papilla cell senescence and hair loss, which is also known alopecia. Arctiin is an active lignin isolated from Arctium lappa and has anti-inflammation, anti-microbial, and anti-carcinogenic effects. In the present study, we found that arctiin exerts anti-oxidative effects on human hair dermal papilla cells (HHDPCs). Results To better understand the mechanism, we analyzed the level of hydrogen peroxide (H2O2)-induced cytotoxicity, cell death, ROS production and senescence after arctiin pretreatment of HHDPCs. The results showed that arctiin pretreatment significantly inhibited the H2O2-induced reduction in cell viability. Moreover, H2O2-induced sub-G1 phase accumulation and G2 cell cycle arrest were also downregulated by arctiin pretreatment. Interestingly, the increase in intracellular ROS mediated by H2O2 was drastically decreased in HHDPCs cultured in the presence of arctiin. This effect was confirmed by senescence associated-beta galactosidase (SA-β-gal) assay results; we found that arctiin pretreatment impaired H2O2-induced senescence in HHDPCs. Using microRNA (miRNA) microarray and bioinformatic analysis, we showed that this anti-oxidative effect of arctiin in HHDPCs was related with mitogen-activated protein kinase (MAPK) and Wnt signaling pathways. Conclusions Taken together, our data suggest that arctiin has a protective effect on ROS-induced cell dysfunction in HHDPCs and may therefore be useful for alopecia prevention and treatment strategies.
Collapse
|
9
|
Phosphoproteomics and bioinformatics analyses of spinal cord proteins in rats with morphine tolerance. PLoS One 2014; 9:e83817. [PMID: 24392096 PMCID: PMC3879267 DOI: 10.1371/journal.pone.0083817] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Accepted: 11/08/2013] [Indexed: 12/19/2022] Open
Abstract
Introduction Morphine is the most effective pain-relieving drug, but it can cause unwanted side effects. Direct neuraxial administration of morphine to spinal cord not only can provide effective, reliable pain relief but also can prevent the development of supraspinal side effects. However, repeated neuraxial administration of morphine may still lead to morphine tolerance. Methods To better understand the mechanism that causes morphine tolerance, we induced tolerance in rats at the spinal cord level by giving them twice-daily injections of morphine (20 µg/10 µL) for 4 days. We confirmed tolerance by measuring paw withdrawal latencies and maximal possible analgesic effect of morphine on day 5. We then carried out phosphoproteomic analysis to investigate the global phosphorylation of spinal proteins associated with morphine tolerance. Finally, pull-down assays were used to identify phosphorylated types and sites of 14-3-3 proteins, and bioinformatics was applied to predict biological networks impacted by the morphine-regulated proteins. Results Our proteomics data showed that repeated morphine treatment altered phosphorylation of 10 proteins in the spinal cord. Pull-down assays identified 2 serine/threonine phosphorylated sites in 14-3-3 proteins. Bioinformatics further revealed that morphine impacted on cytoskeletal reorganization, neuroplasticity, protein folding and modulation, signal transduction and biomolecular metabolism. Conclusions Repeated morphine administration may affect multiple biological networks by altering protein phosphorylation. These data may provide insight into the mechanism that underlies the development of morphine tolerance.
Collapse
|