1
|
Axin2/Conductin Is Required for Normal Haematopoiesis and T Lymphopoiesis. Cells 2022; 11:cells11172679. [PMID: 36078085 PMCID: PMC9454631 DOI: 10.3390/cells11172679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 11/17/2022] Open
Abstract
The development of T lymphocytes in the thymus and their stem cell precursors in the bone marrow is controlled by Wnt signaling in strictly regulated, cell-type specific dosages. In this study, we investigated levels of canonical Wnt signaling during hematopoiesis and T cell development within the Axin2-mTurquoise2 reporter. We demonstrate active Wnt signaling in hematopoietic stem cells (HSCs) and early thymocytes, but also in more mature thymic subsets and peripheral T lymphocytes. Thymic epithelial cells displayed particularly high Wnt signaling, suggesting an interesting crosstalk between thymocytes and thymic epithelial cells (TECs). Additionally, reporter mice allowed us to investigate the loss of Axin2 function, demonstrating decreased HSC repopulation upon transplantation and the partial arrest of early thymocyte development in Axin2Tg/Tg full mutant mice. Mechanistically, loss of Axin2 leads to supraphysiological Wnt levels that disrupt HSC differentiation and thymocyte development.
Collapse
|
2
|
Disoma C, Zhou Y, Li S, Peng J, Xia Z. Wnt/β-catenin signaling in colorectal cancer: Is therapeutic targeting even possible? Biochimie 2022; 195:39-53. [DOI: 10.1016/j.biochi.2022.01.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 11/03/2021] [Accepted: 01/17/2022] [Indexed: 02/07/2023]
|
3
|
Sin TK, Zhang G, Zhang Z, Zhu JZ, Zuo Y, Frost JA, Li M, Li YP. Cancer-Induced Muscle Wasting Requires p38β MAPK Activation of p300. Cancer Res 2020; 81:885-897. [PMID: 33355181 DOI: 10.1158/0008-5472.can-19-3219] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 11/10/2020] [Accepted: 12/16/2020] [Indexed: 11/16/2022]
Abstract
Cancer-associated cachexia, characterized by muscle wasting, is a lethal metabolic syndrome without defined etiology or established treatment. We previously found that p300 mediates cancer-induced muscle wasting by activating C/EBPβ, which then upregulates key catabolic genes. However, the signaling mechanism that activates p300 in response to cancer is unknown. Here, we show that upon cancer-induced activation of Toll-like receptor 4 in skeletal muscle, p38β MAPK phosphorylates Ser-12 on p300 to stimulate C/EBPβ acetylation, which is necessary and sufficient to cause muscle wasting. Thus, p38β MAPK is a central mediator and therapeutic target of cancer-induced muscle wasting. In addition, nilotinib, an FDA-approved kinase inhibitor that preferentially binds p38β MAPK, inhibited p300 activation 20-fold more potently than the p38α/β MAPK inhibitor, SB202190, and abrogated cancer cell-induced muscle protein loss in C2C12 myotubes without suppressing p38α MAPK-dependent myogenesis. Systemic administration of nilotinib at a low dose (0.5 mg/kg/day, i.p.) in tumor-bearing mice not only alleviated muscle wasting, but also prolonged survival. Therefore, nilotinib appears to be a promising treatment for human cancer cachexia due to its selective inhibition of p38β MAPK. SIGNIFICANCE: These findings demonstrate that prevention of p38β MAPK-mediated activation of p300 by the FDA-approved kinase inhibitor, nilotinib, ameliorates cancer cachexia, representing a potential therapeutic strategy against this syndrome.
Collapse
Affiliation(s)
- Thomas K Sin
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, Houston, Texas
| | - Guohua Zhang
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, Houston, Texas
| | - Zicheng Zhang
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, Houston, Texas
| | - James Z Zhu
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, Houston, Texas
| | - Yan Zuo
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, Houston, Texas
| | - Jeffrey A Frost
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, Houston, Texas
| | - Min Li
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, Houston, Texas.,The Vivian L. Smith Department of Neurosurgery, The University of Texas Health Science Center at Houston, Houston, Texas.,Department of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma.,Department of Surgery, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Yi-Ping Li
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, Houston, Texas.
| |
Collapse
|
4
|
Hernández-Acevedo GN, López-Portales OH, Gutiérrez-Reyna DY, Cuevas-Fernández E, Kempis-Calanis LA, Labastida-Conde RG, Aguilar-Luviano OB, Ramírez-Pliego O, Spicuglia S, Lino-Alfaro B, Chagolla-López A, González-de la Vara LE, Santana MA. Protein complexes associated with β-catenin differentially influence the differentiation profile of neonatal and adult CD8 + T cells. J Cell Physiol 2019; 234:18639-18652. [PMID: 30924167 DOI: 10.1002/jcp.28502] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Revised: 02/13/2019] [Accepted: 02/19/2019] [Indexed: 02/04/2023]
Abstract
The canonical Wnt signaling pathway is a master cell regulator involved in CD8+ T cell proliferation and differentiation. In human CD8+ T cells, this pathway induces differentiation into memory cells or a "stem cell memory like" population, which is preferentially present in cord blood. To better understand the role of canonical Wnt signals in neonatal or adult blood, we compared the proteins associated with β-catenin, in nonstimulated and Wnt3a-stimulated human neonatal and adult naive CD8+ T cells. Differentially recruited proteins established different complexes in adult and neonatal cells. In the former, β-catenin-associated proteins were linked to cell signaling and immunological functions, whereas those of neonates were linked to proliferation and metabolism. Wnt3a stimulation led to the recruitment and overexpression of Wnt11 in adult cells and Wnt5a in neonatal cells, suggesting a differential connexion with planar polarity and Wnt/Ca2+ noncanonical pathways, respectively. The chromatin immunoprecipitation polymerase chain reaction β-catenin was recruited to a higher level on the promoters of cell renewal genes in neonatal cells and of differentiation genes in those of adults. We found a preferential association of β-catenin with CBP in neonatal cells and with p300 in the adult samples, which could be involved in a higher self-renewal capacity of the neonatal cells and memory commitment in those of adults. Altogether, our results show that different proteins associated with β-catenin during Wnt3a activation mediate a differential response of neonatal and adult human CD8+ T cells.
Collapse
Affiliation(s)
- Gerson N Hernández-Acevedo
- Centro de Investigación en Dinámica Celular, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
| | - Oscar H López-Portales
- Centro de Investigación en Dinámica Celular, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
| | - Darely Y Gutiérrez-Reyna
- Centro de Investigación en Dinámica Celular, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
| | - Erick Cuevas-Fernández
- Centro de Investigación en Dinámica Celular, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
| | - Linda A Kempis-Calanis
- Centro de Investigación en Dinámica Celular, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
| | - Rosario G Labastida-Conde
- Centro de Investigación en Dinámica Celular, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
| | - Oscar B Aguilar-Luviano
- Centro de Investigación en Dinámica Celular, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
| | - Oscar Ramírez-Pliego
- Centro de Investigación en Dinámica Celular, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
| | - Salvatore Spicuglia
- Aix-Marseille University, Inserm, TAGC, UMR1090, Marseille, France.,Equipe Labélisée Ligue Contre le Cancer, Marseille, France
| | - Bárbara Lino-Alfaro
- Centro de Investigación y de Estudios Avanzados, Instituto Politécnico Nacional, Irapuato, Mexico
| | - Alicia Chagolla-López
- Centro de Investigación y de Estudios Avanzados, Instituto Politécnico Nacional, Irapuato, Mexico
| | | | - María Angélica Santana
- Centro de Investigación en Dinámica Celular, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
| |
Collapse
|
5
|
Pifer PM, Farris JC, Thomas AL, Stoilov P, Denvir J, Smith DM, Frisch SM. Grainyhead-like 2 inhibits the coactivator p300, suppressing tubulogenesis and the epithelial-mesenchymal transition. Mol Biol Cell 2016; 27:2479-92. [PMID: 27251061 PMCID: PMC4966987 DOI: 10.1091/mbc.e16-04-0249] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 05/27/2016] [Indexed: 11/17/2022] Open
Abstract
GRHL2 suppresses EMT to give a default epithelial phenotype. GRHL2 inhibits this process through the histone acetyltransferase coactivator p300, repressing the partial EMT and preventing induction of MMPs. The results demonstrate novel roles for p300 and GRHL2 in promoting or suppressing EMT in morphogenesis and tumor progression. Developmental morphogenesis and tumor progression require a transient or stable breakdown of epithelial junctional complexes to permit programmed migration, invasion, and anoikis resistance, characteristics endowed by the epithelial–mesenchymal transition (EMT). The epithelial master-regulatory transcription factor Grainyhead-like 2 (GRHL2) suppresses and reverses EMT, causing a mesenchymal–epithelial transition to the default epithelial phenotype. Here we investigated the role of GRHL2 in tubulogenesis of Madin–Darby canine kidney cells, a process requiring transient, partial EMT. GRHL2 was required for cystogenesis, but it suppressed tubulogenesis in response to hepatocyte growth factor. Surprisingly, GRHL2 suppressed this process by inhibiting the histone acetyltransferase coactivator p300, preventing the induction of matrix metalloproteases and other p300-dependent genes required for tubulogenesis. A 13–amino acid region of GRHL2 was necessary for inhibition of p300, suppression of tubulogenesis, and interference with EMT. The results demonstrate that p300 is required for partial or complete EMT occurring in tubulogenesis or tumor progression and that GRHL2 suppresses EMT in both contexts through inhibition of p300.
Collapse
Affiliation(s)
- Phillip M Pifer
- Mary Babb Randolph Cancer Center, West Virginia University, Morgantown, WV 26506
| | - Joshua C Farris
- Mary Babb Randolph Cancer Center, West Virginia University, Morgantown, WV 26506
| | - Alyssa L Thomas
- Mary Babb Randolph Cancer Center, West Virginia University, Morgantown, WV 26506
| | - Peter Stoilov
- Department of Biochemistry, West Virginia University, Morgantown, WV 26506
| | - James Denvir
- Department of Biochemistry and Microbiology, Marshall University, Huntington, WV 25755
| | - David M Smith
- Department of Biochemistry, West Virginia University, Morgantown, WV 26506
| | - Steven M Frisch
- Mary Babb Randolph Cancer Center, West Virginia University, Morgantown, WV 26506 Department of Biochemistry, West Virginia University, Morgantown, WV 26506
| |
Collapse
|
6
|
Liu Y, Guo M. Chemical proteomic strategies for the discovery and development of anticancer drugs. Proteomics 2014; 14:399-411. [DOI: 10.1002/pmic.201300261] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2013] [Revised: 09/26/2013] [Accepted: 10/11/2013] [Indexed: 11/07/2022]
Affiliation(s)
- Yuanzhen Liu
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture; Wuhan Botanical Garden; Chinese Academy of Sciences; Wuhan P. R. China
| | - Mingquan Guo
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture; Wuhan Botanical Garden; Chinese Academy of Sciences; Wuhan P. R. China
- The Keck School of Medicine; University of Southern California; Los Angeles CA USA
| |
Collapse
|
7
|
Effective identification of Akt interacting proteins by two-step chemical crosslinking, co-immunoprecipitation and mass spectrometry. PLoS One 2013; 8:e61430. [PMID: 23613850 PMCID: PMC3629208 DOI: 10.1371/journal.pone.0061430] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Accepted: 03/12/2013] [Indexed: 11/19/2022] Open
Abstract
Akt is a critical protein for cell survival and known to interact with various proteins. However, Akt binding partners that modulate or regulate Akt activation have not been fully elucidated. Identification of Akt-interacting proteins has been customarily achieved by co-immunoprecipitation combined with western blot and/or MS analysis. An intrinsic problem of the method is loss of interacting proteins during procedures to remove non-specific proteins. Moreover, antibody contamination often interferes with the detection of less abundant proteins. Here, we developed a novel two-step chemical crosslinking strategy to overcome these problems which resulted in a dramatic improvement in identifying Akt interacting partners. Akt antibody was first immobilized on protein A/G beads using disuccinimidyl suberate and allowed to bind to cellular Akt along with its interacting proteins. Subsequently, dithiobis[succinimidylpropionate], a cleavable crosslinker, was introduced to produce stable complexes between Akt and binding partners prior to the SDS-PAGE and nanoLC-MS/MS analysis. This approach enabled identification of ten Akt partners from cell lysates containing as low as 1.5 mg proteins, including two new potential Akt interacting partners. None of these but one protein was detectable without crosslinking procedures. The present method provides a sensitive and effective tool to probe Akt-interacting proteins. This strategy should also prove useful for other protein interactions, particularly those involving less abundant or weakly associating partners.
Collapse
|
8
|
Guo M, Huang BX. Integration of phosphoproteomic, chemical, and biological strategies for the functional analysis of targeted protein phosphorylation. Proteomics 2013; 13:424-37. [PMID: 23125184 DOI: 10.1002/pmic.201200274] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2012] [Revised: 09/04/2012] [Accepted: 09/20/2012] [Indexed: 12/20/2022]
Abstract
Reversible phosphorylation, tightly controlled by protein kinases and phosphatases, plays a central role in mediating biological processes, such as protein-protein interactions, subcellular translocation, and activation of cellular enzymes. MS-based phosphoproteomics has now allowed the detection and quantification of tens of thousands of phosphorylation sites from a typical biological sample in a single experiment, which has posed new challenges in functional analysis of each and every phosphorylation site on specific signaling phosphoproteins of interest. In this article, we review recent advances in the functional analysis of targeted phosphorylation carried out by various chemical and biological approaches in combination with the MS-based phosphoproteomics. This review focuses on three types of strategies, including forward functional analysis, defined for the result-driven phosphoproteomics efforts in determining the substrates of a specific protein kinase; reverse functional analysis, defined for tracking the kinase(s) for specific phosphosite(s) derived from the discovery-driven phosphoproteomics efforts; and MS-based analysis on the structure-function relationship of phosphoproteins. It is expected that this review will provide a state-of-the-art overview of functional analysis of site-specific phosphorylation and explore new perspectives and outline future challenges.
Collapse
Affiliation(s)
- Mingquan Guo
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China.
| | | |
Collapse
|