1
|
Chen F, Tan K, Lv Z, Chen F, Xu W, Gong X, Lu L, Sun H, Fu Q, Zhuang W. Data-independent acquisition-based blood proteomics unveils predictive biomarkers for neonatal necrotizing enterocolitis. Anal Bioanal Chem 2025; 417:199-218. [PMID: 39562369 PMCID: PMC11695561 DOI: 10.1007/s00216-024-05637-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 10/14/2024] [Accepted: 10/29/2024] [Indexed: 11/21/2024]
Abstract
Necrotizing enterocolitis (NEC) is a life-threatening condition affecting preterm infants, sometimes necessitating surgical treatment. This study aimed to analyze differentially expressed proteins (DEPs) and access their biological and clinical significance in the plasma of neonates with NEC. Peripheral blood samples were collected from NEC infants at various time points, and plasma was separated. Data-independent acquisition (DIA) technology was utilized to identify DEPs among NEC patients at different stages. Bioinformatic analyses, including Gene Ontology and Kyoto Encyclopedia of Genes and Genomes, and protein-to-protein interaction analyses were performed on the DEPs. External datasets, along with receiver operating characteristic curves and gene set enrichment analysis, were used to clinically and biologically validate the findings. DEPs between the NEC and pre-NEC groups indicated reduced protein, heme, nitrogen, and purine nucleotide biosynthesis during NEC formation. In addition, enriched DEPs among the NEC groups at different time points suggested reconstructed extracellular matrix, aberrant B-lymphocyte immune responses, and decreased glycosaminoglycan levels during NEC progression. These findings were both clinically and biologically validated using external datasets. Our study highlights the clinical and biological relevance of proteomics in NEC patients. This study demonstrates key pathways involved in NEC pathogenesis and establishes DIA mass spectrometry as a powerful and noninvasive tool for evaluating and predicting NEC formation and progression.
Collapse
Affiliation(s)
- Feng Chen
- Department of General Surgery, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Kezhe Tan
- Department of General Surgery, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zhibao Lv
- Department of General Surgery, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Faling Chen
- Department of General Surgery, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Weijue Xu
- Department of General Surgery, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaohui Gong
- Department of Neonatology, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Li Lu
- Department of General Surgery, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Hailiang Sun
- Department of General Surgery, Affiliated Changzhou Children's Hospital of Nantong University, Jiangsu, China
| | - Qinqin Fu
- Department of Neonatology, Huzhou Maternity & Child Health Care Hospital, Zhejiang, China.
| | - Wenjun Zhuang
- Department of General Surgery, Affiliated Changzhou Children's Hospital of Nantong University, Jiangsu, China.
| |
Collapse
|
2
|
Advances in Crosstalk between Porcine Circoviruses and Host. Viruses 2022; 14:v14071419. [PMID: 35891399 PMCID: PMC9315664 DOI: 10.3390/v14071419] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 06/20/2022] [Accepted: 06/27/2022] [Indexed: 02/06/2023] Open
Abstract
Porcine circoviruses (PCVs), including PCV1 to PCV4, are non-enveloped DNA viruses with a diameter of about 20 nm, belonging to the genus Circovirus in the family Circoviridae. PCV2 is an important causative agent of porcine circovirus disease or porcine circovirus-associated disease (PCVD/PCVAD), which is highly prevalent in pigs and seriously affects the swine industry globally. Furthermore, PCV2 mainly causes subclinical symptoms and immunosuppression, and PCV3 and PCV4 were detected in healthy pigs, sick pigs, and other animals. Although the pathogenicity of PCV3 and PCV4 in the field is still controversial, the infection rates of PCV3 and PCV4 in pigs are increasing. Moreover, PCV3 and PCV4 rescued from infected clones were pathogenic in vivo. It is worth noting that the interaction between virus and host is crucial to the infection and pathogenicity of the virus. This review discusses the latest research progress on the molecular mechanism of PCVs–host interaction, which may provide a scientific basis for disease prevention and control.
Collapse
|
3
|
He J, Leng C, Pan J, Li A, Zhang H, Cong F, Wang H. Identification of lncRNAs Involved in PCV2 Infection of PK-15 Cells. Pathogens 2020; 9:pathogens9060479. [PMID: 32560439 PMCID: PMC7350310 DOI: 10.3390/pathogens9060479] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/12/2020] [Accepted: 06/16/2020] [Indexed: 12/15/2022] Open
Abstract
Porcine circovirus type 2 (PCV2) can cause severe disease in infected pigs, resulting in massive economic loss for the swine industry. Transcriptomic and proteomic approaches have been widely employed to identify the underlying molecular mechanisms of the PCV2 infection. Numerous differentially expressed mRNAs, miRNAs, and proteins, together with their associated signaling pathways, have been identified during PCV2 infection, paving the way for analysis of their biological functions. Long noncoding RNAs (lncRNAs) are important regulators of multiple biological processes. However, little is known regarding their role in the PCV2 infection. Hence, in our study, RNA-seq was performed by infecting PK-15 cells with PCV2. Analysis of the differentially expressed genes (DEGs) suggested that the cytoskeleton, apoptosis, cell division, and protein phosphorylation were significantly disturbed. Then, using stringent parameters, six lncRNAs were identified. Additionally, potential targets of the lncRNAs were predicted using both cis- and trans-prediction methods. Interestingly, we found that the HOXB (Homeobox B) gene cluster was probably the target of the lncRNA LOC106505099. Enrichment analysis of the target genes showed that numerous developmental processes were altered during PCV2 infection. Therefore, our study revealed that lncRNAs might affect porcine embryonic development through the regulation of the HOXB genes.
Collapse
Affiliation(s)
- Jin He
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; (J.H.); (J.P.); (A.L.); (H.Z.)
| | - Chaoliang Leng
- Henan Provincial Engineering and Technology Center of Animal Disease Diagnosis and Integrated Control, Henan Key Laboratory of Insect Biology in Funiu Mountain, Nanyang Normal University, 1638 Wolong Road, Wolong District, Nanyang 473061, China;
| | - Jiazhen Pan
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; (J.H.); (J.P.); (A.L.); (H.Z.)
| | - Aoqi Li
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; (J.H.); (J.P.); (A.L.); (H.Z.)
| | - Hua Zhang
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; (J.H.); (J.P.); (A.L.); (H.Z.)
| | - Feng Cong
- Guangdong Provincial Key Laboratory of Laboratory Animals, Guangdong Laboratory Animals Monitoring Institute, Guangzhou 510640, China;
| | - Huanan Wang
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; (J.H.); (J.P.); (A.L.); (H.Z.)
- Correspondence:
| |
Collapse
|
4
|
PCV2 Regulates Cellular Inflammatory Responses through Dysregulating Cellular miRNA-mRNA Networks. Viruses 2019; 11:v11111055. [PMID: 31766254 PMCID: PMC6893612 DOI: 10.3390/v11111055] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 10/31/2019] [Accepted: 11/01/2019] [Indexed: 12/13/2022] Open
Abstract
Porcine circovirus type 2 (PCV2) is closely linked to postweaning multisystemic wasting syndrome (PMWS) and other PCV-associated diseases (PCVADs), which influence the global pig industry. MicroRNAs (miRNAs) are evolutionarily conserved classes of endogenous small non-coding RNA that regulate almost every cellular process. According to our previous transcription study, PCV2 infection causes up-regulation of genes related to inflammation. To reveal the function of miRNAs in PCV2 infection and PCV2-encoded miRNAs, next generation sequencing and data analysis was performed to explore miRNA expression in PCV2-infected cells and non-infected cells. Data analysis found some small RNAs matched the PCV2 genome but PCV2 does not express miRNAs in an in vitro infection (PK-15 cells). More than 297 known and 427 novel miRNAs were identified, of which 44 miRNAs were differently expressed (DE). The pathways of inflammation mediated by chemokine and cytokine signaling pathway (P00031), were more perturbed in PCV2-infected cells than in mock controls. DE miRNAs and DE mRNA interaction network clearly revealed that PCV2 regulates the cellular inflammatory response through dysregulating the cellular miRNA-mRNA network. MiRNA overexpression and down-expression results demonstrated that miRNA dysregulation could affect PCV2 infection-induced cellular inflammatory responses. Our study revealed that host miRNA can be dysregulated by PCV2 infection and play an important role in PCV2-modulated inflammation.
Collapse
|
5
|
Mutthi P, Theerawatanasirikul S, Roytrakul S, Paemanee A, Lekcharoensuk C, Hansoongnern P, Petcharat N, Thangthamniyom N, Lekcharoensuk P. Interferon gamma induces cellular protein alteration and increases replication of porcine circovirus type 2 in PK-15 cells. Arch Virol 2018; 163:2947-2957. [DOI: 10.1007/s00705-018-3944-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 06/28/2018] [Indexed: 01/01/2023]
|
6
|
Proteomic analysis of macrophage in response to Edwardsiella tarda-infection. Microb Pathog 2017; 111:86-93. [DOI: 10.1016/j.micpath.2017.08.028] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 08/15/2017] [Accepted: 08/16/2017] [Indexed: 12/21/2022]
|
7
|
Vidotto A, Morais ATS, Ribeiro MR, Pacca CC, Terzian ACB, Gil LHVG, Mohana-Borges R, Gallay P, Nogueira ML. Systems Biology Reveals NS4B-Cyclophilin A Interaction: A New Target to Inhibit YFV Replication. J Proteome Res 2017; 16:1542-1555. [PMID: 28317380 DOI: 10.1021/acs.jproteome.6b00933] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Yellow fever virus (YFV) replication is highly dependent on host cell factors. YFV NS4B is reported to be involved in viral replication and immune evasion. Here interactions between NS4B and human proteins were determined using a GST pull-down assay and analyzed using 1-DE and LC-MS/MS. We present a total of 207 proteins confirmed using Scaffold 3 Software. Cyclophilin A (CypA), a protein that has been shown to be necessary for the positive regulation of flavivirus replication, was identified as a possible NS4B partner. 59 proteins were found to be significantly increased when compared with a negative control, and CypA exhibited the greatest difference, with a 22-fold change. Fisher's exact test was significant for 58 proteins, and the p value of CypA was the most significant (0.000000019). The Ingenuity Systems software identified 16 pathways, and this analysis indicated sirolimus, an mTOR pathway inhibitor, as a potential inhibitor of CypA. Immunofluorescence and viral plaque assays showed a significant reduction in YFV replication using sirolimus and cyclosporine A (CsA) as inhibitors. Furthermore, YFV replication was strongly inhibited in cells treated with both inhibitors using reporter BHK-21-rep-YFV17D-LucNeoIres cells. Taken together, these data suggest that CypA-NS4B interaction regulates YFV replication. Finally, we present the first evidence that YFV inhibition may depend on NS4B-CypA interaction.
Collapse
Affiliation(s)
- Alessandra Vidotto
- Laboratório de Virologia, Faculdade de Medicina de José do Rio Preto , São José do Rio Preto, São Paulo 15090-000, Brazil
| | - Ana T S Morais
- Laboratório de Virologia, Faculdade de Medicina de José do Rio Preto , São José do Rio Preto, São Paulo 15090-000, Brazil
| | - Milene R Ribeiro
- Laboratório de Virologia, Faculdade de Medicina de José do Rio Preto , São José do Rio Preto, São Paulo 15090-000, Brazil
| | - Carolina C Pacca
- Laboratório de Virologia, Faculdade de Medicina de José do Rio Preto , São José do Rio Preto, São Paulo 15090-000, Brazil
| | - Ana C B Terzian
- Laboratório de Virologia, Faculdade de Medicina de José do Rio Preto , São José do Rio Preto, São Paulo 15090-000, Brazil
| | - Laura H V G Gil
- Departamento de Virologia, Centro de Pesquisa Aggeu Magalhães , Fundação Oswaldo Cruz (FIOCRUZ) - Recife, Pernambuco 50740-465, Brazil
| | - Ronaldo Mohana-Borges
- Laboratório de Genômica Estrutural, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro - UFRJ , Rio de Janeiro RJ 21941-902, Brazil
| | - Philippe Gallay
- Department of Immunology & Microbial Science, The Scripps Research Institute - La Jolla , San Diego, California 92037, United States
| | - Mauricio L Nogueira
- Laboratório de Virologia, Faculdade de Medicina de José do Rio Preto , São José do Rio Preto, São Paulo 15090-000, Brazil
| |
Collapse
|
8
|
Zhou N, Fan C, Liu S, Zhou J, Jin Y, Zheng X, Wang Q, Liu J, Yang H, Gu J, Zhou J. Cellular proteomic analysis of porcine circovirus type 2 and classical swine fever virus coinfection in porcine kidney-15 cells using isobaric tags for relative and absolute quantitation-coupled LC-MS/MS. Electrophoresis 2017; 38:1276-1291. [PMID: 28247913 DOI: 10.1002/elps.201600541] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 02/21/2017] [Accepted: 02/21/2017] [Indexed: 12/22/2022]
Abstract
Viral coinfection or superinfection in host has caused public health concern and huge economic losses of farming industry. The influence of viral coinfection on cellular protein abundance is essential for viral pathogenesis. Based on a coinfection model for porcine circovirus type 2 (PCV2) and classical swine fever virus (CSFV) developed previously by our laboratory, isobaric tags for relative and absolute quantitation (iTRAQ)-coupled LC-MS/MS proteomic profiling was performed to explore the host cell responses to PCV2-CSFV coinfection. Totally, 3932 proteins were identified in three independent mass spectrometry analyses. Compared with uninfected cells, 304 proteins increased (fold change >1.2) and 198 decreased (fold change <0.833) their abundance in PCV2-infected cells (p < 0.05), 60 and 61 were more and less abundant in CSFV-infected cells, and 196 and 158 were more and less abundant, respectively in cells coinfected with PCV2 and CSFV. Representative differentially abundant proteins were validated by quantitative real-time PCR, Western blotting and confocal laser scanning microscopy. Bioinformatic analyses confirmed the dominant role of PCV2, and indicated that mitochondrial dysfunction, nuclear factor erythroid 2-related factor 2 (Nrf2)-mediated oxidative stress response and apoptosis signaling pathways might be the specifical targets during PCV2-CSFV coinfection.
Collapse
Affiliation(s)
- Niu Zhou
- Key Laboratory of Animal Virology of Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou, PR China
| | - Chunmei Fan
- Key Laboratory of Animal Virology of Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou, PR China
| | - Song Liu
- Key Laboratory of Animal Virology of Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou, PR China
| | - Jianwei Zhou
- Key Laboratory of Animal Virology of Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou, PR China
| | - Yulan Jin
- Key Laboratory of Animal Virology of Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou, PR China
| | - Xiaojuan Zheng
- Key Laboratory of Animal Virology of Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou, PR China
| | - Qin Wang
- China Institute of Veterinary Drug and Control, Beijing, PR China
| | - Jue Liu
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, PR China
| | - Hanchun Yang
- College of Veterinary Medicine, China Agricultural University, Beijing, PR China
| | - Jinyan Gu
- Key Laboratory of Animal Virology of Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou, PR China.,Institute of Immunology and College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, PR China
| | - Jiyong Zhou
- Key Laboratory of Animal Virology of Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou, PR China.,State Key Laboratory and Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, Zhejiang University, Hangzhou, PR China
| |
Collapse
|
9
|
Dynein light chain DYNLL1 subunit facilitates porcine circovirus type 2 intracellular transports along microtubules. Arch Virol 2016; 162:677-686. [PMID: 27858289 DOI: 10.1007/s00705-016-3140-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2016] [Accepted: 10/28/2016] [Indexed: 10/25/2022]
Abstract
Microtubule (MT) and dynein motor proteins facilitate intracytoplasmic transport of cellular proteins. Various viruses utilize microtubules and dynein for their movement from the cell periphery to the nucleus. The aim of this study was to investigate the intracellular transport of porcine circovirus type 2 (PCV2) via 8 kDa dynein light chain (DYNLL1, LC8) subunit along the MTs. At 20 μM, vinblastine sulfate inhibited tubulin polymerization resulting in disorganized morphology. In PCV2-infected PK-15 cells, double immunofluorescent labeling showed that the viral particles appeared at the cell periphery and gradually moved to the microtubule organization center (MTOC) at 0-12 hour post inoculation (hpi) while at 20-24 hpi they accumulated in the nucleus. Co-localization between DYNLL1 and PCV2 particles was observed clearly at 8-12 hpi. At 20-24 hpi, most aggregated tubulin had a paracrystalline appearance at the MTOC around the nucleus in vinblastine-treated, PCV2-infected PK-15 cells. Between 12 and 24 hpi, PCV2 particles were still bound to DYNLL1 before they were translocated to the nucleus in both treatments, indicating that vinblastine sulfate had no effect on the protein-protein co-localization. The DYNLL1 binding motif, LRLQT, was found near the C-terminus of PCV2 capsid protein (Cap). Molecular docking analysis confirmed the specific interaction between these residues and the cargo binding site on DYNLL1. Our study clearly demonstrated that dynein, in particular DYNLL1, mediated PCV2 intracellular trafficking. The results could explain, at least in part, the viral transport mechanism by DYNLL1 via MT during PCV2 infection.
Collapse
|
10
|
Ren L, Chen X, Ouyang H. Interactions of porcine circovirus 2 with its hosts. Virus Genes 2016; 52:437-44. [DOI: 10.1007/s11262-016-1326-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 03/19/2016] [Indexed: 12/11/2022]
|
11
|
Xu D, Song L, Wang H, Xu X, Wang T, Lu L. Proteomic analysis of cellular protein expression profiles in response to grass carp reovirus infection. FISH & SHELLFISH IMMUNOLOGY 2015; 44:515-524. [PMID: 25783000 DOI: 10.1016/j.fsi.2015.03.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Revised: 03/04/2015] [Accepted: 03/06/2015] [Indexed: 06/04/2023]
Abstract
Grass carp (Ctenopharyngodon idella) hemorrhagic disease, caused by grass carp reovirus (GCRV), is emerging as a serious problem in grass carp aquaculture. To better understand the molecular responses to GCRV infection, two-dimensional electrophoresis (2-DE) and matrix-assisted laser desorption/ionization tandem mass spectroscopy were performed to investigate altered proteins in C. idella kidney (CIK) cells. Differentially expressed proteins in mock infected CIK cells and GCRV-infected CIK cells were compared. Twenty-three differentially expressed spots were identified (22 upregulated spots and 1 downregulated spot), which included cytoskeleton proteins, macromolecular biosynthesis-associated proteins, stress response proteins, signal transduction proteins, energy metabolism-associated proteins and ubiquitin proteasome pathway-associated proteins. Moreover, 10 of the corresponding genes of the differentially expressed proteins were quantified by real-time reverse transcription polymerase chain reaction to examine their transcriptional profiles. The T cell internal antigen 1 (TIA1) and Ras-GTPase-activating SH3-domain-binding protein1 (G3BP1) of the cellular stress granule pathway from grass carp C. idella (designated as CiTIA1 and CiG3BP1) were upregulated and downregulated during GCRV infection, respectively. The full-length cDNA of CiTIA1 was 2753 bp, with an open reading frame (ORF) of 1155bp, which encodes a putative 385-amino acid protein. The 2271 bp full-length cDNA of CiG3BP1 comprised an ORF of 1455 bp that encodes a putative 485-amino acid protein. Phylogenetic analysis revealed that the complete ORFs of CiTIA1 and CiG3BP1 were very similar to zebrafish and well-characterized mammalian homologs. The expressions of the cellular proteins CiTIA1 and CiG3BP1 in response to GCRV were validated by western blotting, which indicated that the GCRV should unlink TIA1 aggregation and stress granule formation. This study provides useful information on the proteomic and cellular stress granule pathway's responses to GCRV infection, which adds to our understanding of viral pathogenesis.
Collapse
Affiliation(s)
- Dan Xu
- Key Laboratory of Aquatic Genetic Resources of the Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306, PR China
| | - Lang Song
- Key Laboratory of Aquatic Genetic Resources of the Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306, PR China
| | - Hao Wang
- Key Laboratory of Aquatic Genetic Resources of the Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306, PR China
| | - Xiaoyan Xu
- Key Laboratory of Aquatic Genetic Resources of the Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306, PR China
| | - Tu Wang
- Key Laboratory of Aquatic Genetic Resources of the Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306, PR China
| | - Liqun Lu
- Key Laboratory of Aquatic Genetic Resources of the Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306, PR China.
| |
Collapse
|
12
|
Li Y, Zhang Y, Wang T, Podok P, Xu D, Lu L. Proteomic identification and characterization of Ctenopharyngodon idella tumor necrosis factor receptor-associated protein 1 (CiTrap1): an anti-apoptosis factor upregulated by grass carp reovirus infection. FISH & SHELLFISH IMMUNOLOGY 2015; 43:449-459. [PMID: 25655331 DOI: 10.1016/j.fsi.2015.01.031] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 01/20/2015] [Accepted: 01/26/2015] [Indexed: 06/04/2023]
Abstract
Human tumor necrosis factor receptor-associated protein 1 (Trap1) is a mitochondrial protein identical to heat shock protein 75 (HSP75) that plays an important role in protecting cells from oxidative stress and apoptosis. In this study, grass carp (Ctenopharyngodon idella) tumor necrosis factor receptor-associated protein 1 (designated as CiTrap1) was identified through two-dimensional electrophoresis (2-DE) analysis and its pattern of expression was investigated in grass carp kidney (CIK) cells infected with grass carp reovirus (GCRV). The full length cDNA of CiTrap1 contained an opening reading frame of 2157 bp that encoded a peptide of 718 amino acids. Phylogenetic analyses indicated that the CiTrap1 shared 87% identity with its homologue from zebrafish (Danio rerio). The transcriptional level of CiTrap1 in CIK cells was upregulated post virus infection as well as poly (I: C) stimulation. Following virus infection, grass carp PTEN-induced putative kinase 1 (PINK1) and Sorcin, whose coding proteins interact with Trap1 in human, were simultaneously upregulated with CiTrap1. Typical characteristics of apoptosis were observed in CIK cells infected with GCRV by DAPI staining, DNA ladder electrophoresis, TUNEL assay and Annexin Ⅴ labeling. RNAi-mediated silencing of CiTrap1 in CIK cells resulted in the increased rate of virus-induced apoptotic cells. The results of this study suggest that CiTrap1 is involved in the host's innate immune response to viral infection possibly through protecting infected cells from apoptosis.
Collapse
Affiliation(s)
- Yan Li
- Key Laboratory of Freshwater Fishery Germplasm Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306, PR China
| | - Yanan Zhang
- Key Laboratory of Freshwater Fishery Germplasm Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306, PR China
| | - Tu Wang
- Key Laboratory of Freshwater Fishery Germplasm Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306, PR China
| | - Patarida Podok
- Key Laboratory of Freshwater Fishery Germplasm Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306, PR China
| | - Dan Xu
- Key Laboratory of Freshwater Fishery Germplasm Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306, PR China
| | - Liqun Lu
- Key Laboratory of Freshwater Fishery Germplasm Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306, PR China.
| |
Collapse
|
13
|
Circovirus transport proceeds via direct interaction of the cytoplasmic dynein IC1 subunit with the viral capsid protein. J Virol 2014; 89:2777-91. [PMID: 25540360 DOI: 10.1128/jvi.03117-14] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
UNLABELLED Microtubule transport of circovirus from the periphery of the cell to the nucleus is essential for viral replication in early infection. How the microtubule is recruited to the viral cargo remains unclear. In this study, we observed that circovirus trafficking is dependent on microtubule polymerization and that incoming circovirus particles colocalize with cytoplasmic dynein and endosomes. However, circovirus binding to dynein was independent of the presence of microtubular α-tubulin and translocation of cytoplasmic dynein into the nucleus. The circovirus capsid (Cap) subunit enhanced microtubular acetylation and directly interacted with intermediate chain 1 (IC1) of dynein. N-terminal residues 42 to 100 of the Cap viral protein were required for efficient binding to the dynein IC1 subunit and for retrograde transport. Knockdown of IC1 decreased virus transport and replication. These results demonstrate that Cap is a direct ligand of the cytoplasmic dynein IC1 subunit and an inducer of microtubule α-tubulin acetylation. Furthermore, Cap recruits the host dynein/microtubule machinery to facilitate transport toward the nucleus by an endosomal mechanism distinct from that used for physiological dynein cargo. IMPORTANCE Incoming viral particles hijack the intracellular trafficking machinery of the host in order to migrate from the cell surface to the replication sites. Better knowledge of the interaction between viruses and virus proteins and the intracellular trafficking machinery may provide new targets for antiviral therapies. Currently, little is known about the molecular mechanisms of circovirus transport. Here, we report that circovirus particles enter early endosomes and utilize the microtubule-associated molecular motor dynein to travel along microtubules. The circovirus capsid subunit enhances microtubular acetylation, and N-terminal residues 42 to 100 directly interact with the dynein IC1 subunit during retrograde transport. These findings highlight a mechanism whereby circoviruses recruit dynein for transport to the nucleus via the dynein/microtubule machinery.
Collapse
|
14
|
Bassols A, Costa C, Eckersall PD, Osada J, Sabrià J, Tibau J. The pig as an animal model for human pathologies: A proteomics perspective. Proteomics Clin Appl 2014; 8:715-31. [DOI: 10.1002/prca.201300099] [Citation(s) in RCA: 158] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 04/28/2014] [Accepted: 07/30/2014] [Indexed: 12/15/2022]
Affiliation(s)
- Anna Bassols
- Departament de Bioquímica i Biologia Molecular; Facultat de Veterinària; Universitat Autònoma de Barcelona; Cerdanyola del Vallès Spain
| | - Cristina Costa
- New Therapies of Genes and Transplants Group; Institut d'Investigació Biomèdica de Bellvitge (IDIBELL); L'Hospitalet de Llobregat; Barcelona Spain
| | - P. David Eckersall
- Institute of Biodiversity, Animal Health and Comparative Medicine; University of Glasgow; Glasgow UK
| | - Jesús Osada
- Departamento de Bioquímica y Biología Molecular; Facultad de Ciencias; Universidad de Zaragoza; CIBEROBN; Zaragoza Spain
| | - Josefa Sabrià
- Departament de Bioquímica i Biologia Molecular; Facultat de Medicina; Institut de Neurociències (INc); Universitat Autònoma de Barcelona; Cerdanyola del Vallès Spain
| | - Joan Tibau
- IRTA - Food Technology; Animal Genetics Program; Finca Camps i Armet; Monells Spain
| |
Collapse
|
15
|
Liu J, Bai J, Zhang L, Hou C, Li Y, Jiang P. Proteomic alteration of PK-15 cells after infection by porcine circovirus type 2. Virus Genes 2014; 49:400-16. [PMID: 25103791 PMCID: PMC7089180 DOI: 10.1007/s11262-014-1106-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Accepted: 07/28/2014] [Indexed: 12/11/2022]
Abstract
Porcine circovirus type 2 (PCV2) has been identified as the essential causal agent of post-weaning multisystemic wasting syndrome, which has spread worldwide. To discover cellular protein responses of PK-15 cells to PCV2 infection, two-dimensional liquid chromatography-tandem mass spectrometry (MS) coupled with isobaric tags for relative and absolute quantification (iTRAQ) labeling was employed to quantitatively identify the proteins that were differentially expressed in PK-15 from the PCV2-infected group compared to the uninfected control group. A total of 196 cellular proteins in PK-15 that were significantly altered at different time periods post-infection were identified. These differentially expressed proteins were related to the biological processes of binding, cell structure, signal transduction, cell adhesion, etc. and their interactions. Moreover, some of these proteins were further confirmed by Western blot. The high number of differentially expressed proteins identified should be very useful in elucidating the mechanism of replication and pathogenesis of PCV2 in the future.
Collapse
Affiliation(s)
- Jie Liu
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | | | | | | | | | | |
Collapse
|
16
|
Liu J, Zhang L, Zhu X, Bai J, Wang L, Wang X, Jiang P. Heat shock protein 27 is involved in PCV2 infection in PK-15 cells. Virus Res 2014; 189:235-42. [PMID: 24907481 DOI: 10.1016/j.virusres.2014.05.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 05/25/2014] [Accepted: 05/27/2014] [Indexed: 12/21/2022]
Abstract
Porcine circovirus type 2 (PCV2) has been identified as the etiologic agent which causing postweaning multisystemic wasting syndrome in swine farms in the world. Some quantitative proteomic studies showed that many proteins significantly changed in PCV2-infected cells. To explore the role of cellular chaperones during PCV2 infection, cytoprotective chaperone Hsp27 was analyzed in PCV2-infected PK-15 cells in this study. The results showed that Hsp27 could up-regulate and accumulate in phosphorylated forms in the nuclear zone during PCV2 replication. Suppression of Hsp27 phosphorylation with specific chemical inhibitors or downregulation of all forms of Hsp27 via RNA interference significantly reduced the virus replication. Meanwhile, over-expression of Hsp27 enhanced PCV2 genome replication and virion production. It indicated that Hsp27 was required for PCV2 production in PK-15 cells culture. It should be helpful for understanding the mechanism of replication and pathogenesis of PCV2 and development of novel antiviral therapies in the future.
Collapse
Affiliation(s)
- Jie Liu
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Lili Zhang
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Xuejiao Zhu
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Juan Bai
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Liming Wang
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Xianwei Wang
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Ping Jiang
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
17
|
Shao F, Lu Z, Liu C, Han H, Chen K, Li W, He Q, Peng H, Chen J. Hierarchical nanogaps within bioscaffold arrays as a high-performance SERS substrate for animal virus biosensing. ACS APPLIED MATERIALS & INTERFACES 2014; 6:6281-9. [PMID: 24359537 DOI: 10.1021/am4045212] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
A three-dimensional (3D) biomimetic SERS substrate with hierarchical nanogaps was formed on the bioscaffold arrays of cicada wings by one-step and reagents-free ion-sputtering techniques. This approach requires a minimal fabrication effort and cost and offers Ag nanoislands and Ag nanoflowers with four types of nanogaps (<10 nm) on the chitin nanopillars to generate a high density of hotspots (∼2000/μm2). The 3D biomimetic substrate shows a low detection limit to Rhodamine 6G (10(-13) M), high average enhancement factor (EF, 5.8×10(7)), excellent signal uniformity (5.4%), good stability, and suitability in biosensing. Furthermore, the finite-difference time-domain (FDTD) electric-field-distribution simulations illustrate that the 3D biomimetic SERS substrate provides the high-density hotspot area within a detection volumem, resulting in enormous SERS enhancement. In addition, the conspicuous far-field plasmon resonance peaks were not found to be a strong requirement for a high EF in 3D biomimetic substrates. Additionally, the novel substrate was applied in label-free animal viruses detection and differentiation with small amounts (1.0 μL) and low concentrations of analyte (1×10(3) PFU/mL), and it exhibited potential as an effective SERS platform for virus detection and sensing.
Collapse
Affiliation(s)
- Feng Shao
- State Key Laboratory of Agricultural Microbiology, College of Science, Huazhong Agricultural University , Wuhan 430070, China
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Cheng S, Yan W, Gu W, He Q. The ubiquitin-proteasome system is required for the early stages of porcine circovirus type 2 replication. Virology 2014; 456-457:198-204. [PMID: 24889239 PMCID: PMC7127601 DOI: 10.1016/j.virol.2014.03.028] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Revised: 02/12/2014] [Accepted: 03/24/2014] [Indexed: 01/21/2023]
Abstract
Porcine circovirus type 2 (PCV2) is the primary causative agent of porcine circovirus-associated diseases (PCVAD). It has been shown that the ubiquitin-proteasome system (UPS) is correlated with viral infection, but its role in PCV2 replication remains unknown. In the present study, we explored the interplay between PCV2 replication and the UPS in PK15 cells and found that treatment with a proteasome inhibitor (MG132 and lactacystin) significantly decreased the PCV2 titer at the early infection stage. We further revealed that inhibition of the UPS did not affect virus entry but decreased viral protein expression and RNA transcription potentially in a cell cycle-dependent manner. PCV2 infection has little effect on the chymotrypsin-like activity, and the gene-silencing of ubiquitin reduced the PCV2 titer, which indicates that the effective replication of PCV2 may be related to protein ubiquitination. Taken together, our data suggested that PCV2 replication requires the UPS machinery, which may represent a potential antiviral target against PCV2. UPS inhibition reduced PCV2 titer via depression viral translation and transcription. Proteasome inhibitors impair cell cycle progression by prolonging G2/M phase. siRNA of ubiquitin decreased the PCV2 titer. The effective replication of PCV2 may be related to protein ubiquitination. Proteasome inhibition may represent a potential antiviral target against PCV2.
Collapse
Affiliation(s)
- Shuang Cheng
- Division of Animal Infectious Disease, State Key Laboratory of Agricultural Microbiology, HuaZhong Agricultural University, Wuhan, Hubei 430070, PR China.
| | - Weidong Yan
- Division of Animal Infectious Disease, State Key Laboratory of Agricultural Microbiology, HuaZhong Agricultural University, Wuhan, Hubei 430070, PR China.
| | - Wei Gu
- Division of Animal Infectious Disease, State Key Laboratory of Agricultural Microbiology, HuaZhong Agricultural University, Wuhan, Hubei 430070, PR China.
| | - Qigai He
- Division of Animal Infectious Disease, State Key Laboratory of Agricultural Microbiology, HuaZhong Agricultural University, Wuhan, Hubei 430070, PR China.
| |
Collapse
|
19
|
Mavrommatis B, Offord V, Patterson R, Watson M, Kanellos T, Steinbach F, Grierson S, Werling D. Global gene expression profiling of myeloid immune cell subsets in response to in vitro challenge with porcine circovirus 2b. PLoS One 2014; 9:e91081. [PMID: 24618842 PMCID: PMC3949749 DOI: 10.1371/journal.pone.0091081] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Accepted: 02/07/2014] [Indexed: 12/14/2022] Open
Abstract
Compelling evidence suggests that the early interaction between porcine circovirus 2 (PCV-2) and the innate immune system is the key event in the pathogenesis of Post-Weaning Multisystemic Wasting Syndrome (PMWS). Furthermore, PCV2 has been detected in bone-marrow samples, potentially enabling an easy spread and reservoir for the virus. To assess the gene-expression differences induced by an in-vitro PCV2b infection in different three different myeloid innate immune cell subsets generated from the same animal, we used the Agilent Porcine Gene Expression Microarray (V2). Alveolar macrophages (AMØs), monocyte-derived dendritic cells (MoDCs) and bone-marrow cells (BMCs) were generated from each animal, and challenged with a UK-isolate of a PCV2 genotype b-strain at a MOI of 0.5. Remarkably, analysis showed a highly distinct and cell-type dependent response to PCV2b challenge. Overall, MoDCs showed the most marked response to PCV2b challenge in vitro and revealed a key role for TNF in the interaction with PCV2b, whereas only few genes were affected in BMCs and AMØs. These observations were further supported by an enrichment of genes in the downstream NF-κB Signalling pathway as well as an up regulation of genes with pro-apoptotic functions post-challenge. PCV2b challenge increases the expression of a large number of immune-related and pro-apoptotic genes mainly in MoDC, which possibly explain the increased inflammation, granulomatous inflammation and lymphocyte depletion seen in PMWS-affected pigs.
Collapse
Affiliation(s)
| | | | | | - Mick Watson
- ARK-Genomics, The Roslin Institute & R(D)SVS, University of Edinburgh, Midlothian, Edinburgh, United Kingdom
| | | | - Falko Steinbach
- Department of Virology, Animal Health and Veterinary Laboratories Agency, Addlestone, United Kingdom
| | - Sylvia Grierson
- Department of Virology, Animal Health and Veterinary Laboratories Agency, Addlestone, United Kingdom
| | - Dirk Werling
- The Royal Veterinary College, Hatfield, United Kingdom
- * E-mail:
| |
Collapse
|
20
|
Shen X, Wang T, Xu D, Lu L. Proteomic identification, characterization and expression analysis of Ctenopharyngodon idella VDAC1 upregulated by grass carp reovirus infection. FISH & SHELLFISH IMMUNOLOGY 2014; 37:96-107. [PMID: 24434647 DOI: 10.1016/j.fsi.2014.01.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Revised: 01/05/2014] [Accepted: 01/05/2014] [Indexed: 06/03/2023]
Abstract
Voltage-dependent anion channels (VDACs) located in the mitochondrial outer membrane are mitochondrial porins that play central roles in regulating cell life and death. In this present report, the VDAC protein 1 from grass carp Ctenopharyngodon idella (designated as CiVDAC1) was found to be upregulated by grass carp reovirus (GCRV) infection through two-dimensional gel electrophoresis and protein analysis of infected C. idella kidney (CIK) cells. The full-length cDNA of CiVDAC1 was 995 bp with an open reading frame (ORF) of 852 bp that encodes a putative 283-amino acid protein. Phylogenic analysis revealed that the complete ORF of CiVDAC1 demonstrated high identity with well characterized mammalian homologs. The deduced CiVDAC1 protein contains an α-helix at the amino terminal, 19 membrane-spanning β-strands, and one eukaryotic mitochondrial porin signature motif. Tissue tropism analysis indicated that CiVDAC1 is abundant in muscle, heart, skin, swim bladder, trunk kidney and spleen. Transcriptional expression profiles indicated that the CiVDAC1 gene was upregulated upon viral challenge in a manner similar to the Mx2 gene, which is a marker gene used to indicate activation of innate antiviral immunity. Similar expression patterns of the CiVDAC1 gene were observed in CIK cells stimulated with poly (I:C), as well as grass carp kidney tissue challenged with GCRV in vivo. CiVDAC1 silencing in CIK cells had no impact on progeny virus production, but over-expression of CiVDAC1 in vivo showed strongly protect against challenge with live virus. To interpret the role of other VDAC proteins in viral pathogenesis, CiVDAC2 was characterized and showed to respond positively to GCRV challenge, which suggested that CiVDAC2 might functionally complement CiVDAC1 in C. idella. The present data did demonstrate that CiVDAC1 might be mediated grass carp antiviral immune response.
Collapse
Affiliation(s)
- Xiaobao Shen
- Key Laboratory of Freshwater Fishery Germplasm Resources, Ministry of Agriculture of P. R. China, Shanghai Ocean University, Shanghai 201306, China
| | - Tu Wang
- Key Laboratory of Freshwater Fishery Germplasm Resources, Ministry of Agriculture of P. R. China, Shanghai Ocean University, Shanghai 201306, China
| | - Dan Xu
- Key Laboratory of Freshwater Fishery Germplasm Resources, Ministry of Agriculture of P. R. China, Shanghai Ocean University, Shanghai 201306, China
| | - Liqun Lu
- Key Laboratory of Freshwater Fishery Germplasm Resources, Ministry of Agriculture of P. R. China, Shanghai Ocean University, Shanghai 201306, China.
| |
Collapse
|
21
|
Liu J, Bai J, Zhang L, Jiang Z, Wang X, Li Y, Jiang P. Hsp70 positively regulates porcine circovirus type 2 replication in vitro. Virology 2013; 447:52-62. [PMID: 24210099 DOI: 10.1016/j.virol.2013.08.025] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Revised: 07/26/2013] [Accepted: 08/22/2013] [Indexed: 12/20/2022]
Abstract
The Hsp70 chaperone plays a central role in multiple processes within cells. Porcine circovirus type 2 (PCV2) is the essential causal agent of post-weaning multisystemic wasting syndrome (PMWS), which has spread worldwide. But the mechanism of PCV2 replication remains poorly understood. In this study, we firstly found the positive effect of heat stress on the replication of PCV2 in the continuous porcine monocytic cell line 3D4/31. Downregulation of Hsp70 by the specific chaperone inhibitor Quercetin or RNA interference and upregulation of Hsp70 by expression from a recombinant adenovirus showed that Hsp70 enhanced PCV2 genome replication and virion production. A specific interaction between Hsp70 and PCV2 Cap was confirmed by colocalization by confocal microscopy and co-immunoprecipitation. Furthermore, the NF-κB pathway was activated and caspase-3 activity was reduced when Hsp70 was overexpressed in PCV2-infected 3D4/31 cells. These data suggested that Hsp70 positively regulated PCV2 replication, which being helpful for understanding the molecular mechanism of PCV2 infection.
Collapse
Affiliation(s)
- Jie Liu
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | | | | | | | | | | | | |
Collapse
|
22
|
Abstract
Advancement in electrophoresis and mass spectrometry techniques along with the recent progresses in genomics, culminating in bovine and pig genome sequencing, widened the potential application of proteomics in the field of veterinary medicine. The aim of the present review is to provide an in-depth perspective about the application of proteomics to animal disease pathogenesis, as well as its utilization in veterinary diagnostics. After an overview on the various proteomic techniques that are currently applied to veterinary sciences, the article focuses on proteomic approaches to animal disease pathogenesis. Included as well are recent achievements in immunoproteomics (ie, the identifications through proteomic techniques of antigen involved in immune response) and histoproteomics (ie, the application of proteomics in tissue processed for immunohistochemistry). Finally, the article focuses on clinical proteomics (ie, the application of proteomics to the identification of new biomarkers of animal diseases).
Collapse
|
23
|
Liu L, Li Q, Lin L, Wang M, Lu Y, Wang W, Yuan J, Li L, Liu X. Proteomic analysis of epithelioma papulosum cyprini cells infected with spring viremia of carp virus. FISH & SHELLFISH IMMUNOLOGY 2013; 35:26-35. [PMID: 23583725 DOI: 10.1016/j.fsi.2013.03.367] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2012] [Revised: 03/20/2013] [Accepted: 03/20/2013] [Indexed: 06/02/2023]
Abstract
Spring viremia of carp (SVC), caused by spring viremia of carp virus (SVCV) is an important disease due to its drastic effects on carp fisheries in many countries. To better understand molecular responses to SVCV infection, two dimensional electrophoresis (2-DE) and MALDI-TOF/TOF were performed to investigate altered proteins in epithelioma papulosum cyprini cells (EPCs). Differentially expressed proteins in mock-infected EPCs and SVCV-infected EPCs were compared. A total of 54 differentially expressed spots were successfully identified (33 up-regulated spots and 21 down-regulated spots) which include cytoskeleton proteins, macromolecular biosynthesis-associated proteins, stress response proteins, signal transduction proteins, energy metabolism, and ubiquitin proteasome pathway-associated proteins. Moreover, 7 corresponding genes of the differentially expressed proteins were quantified using real time RT-PCR to examine their transcriptional profiles. The presence of four selected cellular proteins (beta-actin, gamma1-actin, heat shock cognate 71 kDa protein and annexin A2) associated with the spring viremia of carp virus (SVCV) particles was validated by Western blot assay. This study provides dynamic and useful protein-related information to further understand the underlying pathogenesis of SVCV infection.
Collapse
Affiliation(s)
- Liyue Liu
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Porcine CD74 is involved in the inflammatory response activated by nuclear factor kappa B during porcine circovirus type 2 (PCV-2) infection. Arch Virol 2013; 158:2285-95. [PMID: 23736979 DOI: 10.1007/s00705-013-1750-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2012] [Accepted: 04/26/2013] [Indexed: 12/22/2022]
Abstract
Human CD74 induces a signalling cascade that results in the activation of nuclear factor kappa B (NF-κB); however, porcine CD74 has not been widely studied. In this study, we show that porcine CD74 is mainly expressed in cells of the macrophage lineage and can be induced by lipopolysaccharide (LPS), polyinosinic acid-polycytidylic acid [Poly(I:C)], and infection with porcine circovirus type 2 (PCV2) in vitro. In addition, we confirmed that porcine CD74 can activate NF-κB by promoting IκBα degradation and nuclear translocation of p65. Furthermore, the transcription of NF-κB-regulated genes [Interleukin-6 (IL-6), Interleukin-8 (IL-8), and COX-2] was upregulated in response to the overexpression of porcine CD74. In general, porcine CD74 significantly enhanced the inflammatory response by regulating the NF-κB signalling pathway during PCV2 infection, which suggests that porcine CD74 may be implicated in the pathogenesis of PCV2 infection.
Collapse
|
25
|
Li W, Liu S, Wang Y, Deng F, Yan W, Yang K, Chen H, He Q, Charreyre C, Audoneet JC. Transcription analysis of the porcine alveolar macrophage response to porcine circovirus type 2. BMC Genomics 2013; 14:353. [PMID: 23711280 PMCID: PMC3680065 DOI: 10.1186/1471-2164-14-353] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Accepted: 05/11/2013] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Porcine circovirus type 2 (PCV2) is the causal agent of postweaning multisystemic wasting syndrome (PMWS), which has severely impacted the swine industry worldwide. PCV2 triggers a weak and atypical innate immune response, but the key genes and mechanisms by which the virus interferes with host innate immunity have not yet been elucidated. In this study, genes that control the response of primary porcine alveolar macrophages (PAMs), the main target of PCV2, were profiled in vitro. RESULTS PAMs were successfully infected by PCV2-WH strain, as evidenced quantitative real-time polymerase chain reaction (qPCR) and immunofluorescence assay (IFA) results. Infection-related differential gene expression was investigated using pig microarrays from the US Pig Genome Coordination Program and validated by real-time PCR and enzyme-linked immunosorbent assay (ELISA). Microarray analysis at 24 and 48 hours post-infection (HPI) revealed 266 and 175 unique genes, respectively, that were differentially expressed (false discovery rate <0.05; fold-change >2). Only six genes were differentially expressed between 24 and 48 HPI. The up-regulated genes were principally related to immune response, cytokine activity, locomotion, regulation of cell proliferation, apoptosis, cell growth arrest, and antigen procession and presentation. The down-regulated genes were mainly involved in terpenoid biosynthesis, carbohydrate metabolism, translation, proteasome degradation, signal transducer activity, and ribosomal proteins, which were representative of the reduced vital activity of PCV2-infected cells. CONCLUSIONS PCV2 infection of PAMs causes up-regulation of genes related to inflammation, indicating that PCV2 may induce systematic inflammation. PCV2 persistently induced cytokines, mainly through the Toll-like receptor (TLR) 1 and TLR9 pathways, which may promote high levels of cytokine secretion. PCV2 may prevent apoptosis in PAMs by up-regulating SERPINB9 expression, possibly to lengthen the duration of PCV2 replication-permissive conditions. The observed gene expression profile may provide insights into the underlying immunological response and pathological changes that occur in pigs following PCV2 infection.
Collapse
Affiliation(s)
- Wentao Li
- Division of Animal Infectious Disease, State Key Laboratory of Agricultural Microbiology College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Liu J, Bai J, Lu Q, Zhang L, Jiang Z, Michal JJ, He Q, Jiang P. Two-dimensional liquid chromatography–tandem mass spectrometry coupled with isobaric tags for relative and absolute quantification (iTRAQ) labeling approach revealed first proteome profiles of pulmonary alveolar macrophages infected with porcine circovirus type 2. J Proteomics 2013; 79:72-86. [DOI: 10.1016/j.jprot.2012.11.024] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Revised: 11/14/2012] [Accepted: 11/28/2012] [Indexed: 01/02/2023]
|