1
|
Damm M, Vilcinskas A, Lüddecke T. Mapping the architecture of animal toxin systems by mass spectrometry imaging. Biotechnol Adv 2025; 81:108548. [PMID: 40049423 DOI: 10.1016/j.biotechadv.2025.108548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/24/2025] [Accepted: 03/03/2025] [Indexed: 03/09/2025]
Abstract
Animal toxins are proteins, peptides or metabolites that cause negative effects against predators, prey or competitors following contact or injection. They work by interacting with enzymes, receptors and other targets causing pain, debilitation or leading even to death. Their biological significance and pharmacological effects in humans make them interesting to researchers, but much remains to be learned about their mechanisms of action, storage, tissue-specific distribution and maturation. Mass spectrometry imaging (MSI), a technique that determines the spatial distribution of molecules based on their molecular mass, is uniquely positioned to answer these key questions and pioneering studies have already confirmed its potential impact on the field of zootoxinology. We provide the first comprehensive review of MSI as a means to study animal toxins, the lessons learned thus far, and potential future applications. This fills an important gap in the literature and will facilitate future work on the structure, function, evolutionary history and medical uses of animal toxins.
Collapse
Affiliation(s)
- Maik Damm
- Animal Venomics Lab, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Ohlebergsweg 12, 35392 Giessen, Germany; Institute of Insect Biotechnology, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany; LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberganlage 25, 60325 Frankfurt am Main, Germany.
| | - Andreas Vilcinskas
- Institute of Insect Biotechnology, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany; LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberganlage 25, 60325 Frankfurt am Main, Germany; Branch Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Ohlebergsweg 12, 35392 Giessen, Germany.
| | - Tim Lüddecke
- Animal Venomics Lab, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Ohlebergsweg 12, 35392 Giessen, Germany; LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberganlage 25, 60325 Frankfurt am Main, Germany; Branch Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Ohlebergsweg 12, 35392 Giessen, Germany.
| |
Collapse
|
2
|
Tanaka Y, Yokoi H, Kaji H, Urasaki Y, Nishidate M, Nitta SI, Watanabe K, Ishida T, Tanaka K, Komatsu R, Yoshida K, Saito K, Saito Y, Yamazaki H. Current status of Imaging Mass Spectrometry in drug discovery and development: A survey highlighting technical challenges and future directions. Drug Metab Pharmacokinet 2025; 62:101485. [PMID: 40359683 DOI: 10.1016/j.dmpk.2025.101485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 03/24/2025] [Accepted: 04/14/2025] [Indexed: 05/15/2025]
Abstract
Imaging mass spectrometry (IMS) is used in various fields of pharmaceutical research and development, including the targeted delivery of administered drugs, drug distribution in tissues, drug toxicity analysis, and disease mechanisms. However, IMS is a relatively new technology that requires further validation before being accepted by authorities for regulatory compliance of new drugs. In 2020, an international survey was conducted in collaboration with the Imaging Mass Spectrometry Society (IMSS) and the Japan Association for Imaging Mass Spectrometry (JAIMS) to understand the status of IMS and to identify problems with its application. The survey revealed technical challenges in sample preparation, quantitative analysis of drugs in tissues, and data acquisition. Based on the 2020 survey results, we recently conducted a further detailed survey and had discussions within the JAIMS aimed at translating the results into specific experimental procedures and proposing feasible standard methods. This survey involved detailed questions on five themes: sample collection and storage, tissue section preparation, sample preparation, data analysis (including quantitative analysis and data correction methods), and data reproducibility. The questions were answered by JAIMS members working for ten companies. To resolve technical issues identified by the survey, we propose some realistic approaches toward standardization.
Collapse
Affiliation(s)
- Yukari Tanaka
- Leader of Japan Association for Imaging Mass Spectrometry, Drug Metabolism and Pharmacokinetics and Analytical Sciences, Laboratory for Drug Discovery and Development, Shionogi & Co., Ltd, 3-1-1 Futaba, Toyonaka, Osaka, 561-0825, Japan.
| | - Hiroyuki Yokoi
- Drug Metabolism and Pharmacokinetics Preclinical Research Tokushima Research Center for Drug Discovery, Otsuka Pharmaceutical Co., Ltd, 463-10 Kagasuno, Kawauchi-cho, Tokushima-shi, Tokushima, 771-0192, Japan.
| | - Hidefumi Kaji
- DMPK Research Laboratories, Sohyaku. Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, 1000 Kamoshida-cho, Aoba-ku, Yokohama, Kanagawa, 227-0033, Japan.
| | - Yoko Urasaki
- Drug Metabolism and Pharmacokinetics Research Laboratories, Daiichi Sankyo Co., Ltd, 1-2-58, Hiromachi, Shinagawa-ku, Tokyo, 140-8710, Japan.
| | - Masanobu Nishidate
- Pharmaceutical Science Dept., Chugai Pharmaceutical Co., Ltd, 216 Totsukacho, Totsuka-ku, Yokohama, Kanagawa, 244-8602, Japan.
| | - Shin-Ichiro Nitta
- Corporate Planning Department, Corporate Strategy Division, Mediford Corporation, 1-15-10 Shimura, Itabashi-ku, Tokyo, 174-0056, Japan.
| | - Kenichi Watanabe
- Preclinical Research Unit, Sumitomo Pharma Co., Ltd, 3-1-98 Kasugade-naka, Konohana-ku, Osaka, 554-0022, Japan.
| | - Tomomi Ishida
- Global Drug Metabolism and Pharmacokinetics, Biopharmaceutical Assessments Unit, DHBL, Eisai Co., Ltd, 5-1-3 Tokodai, Tsukuba, Ibaraki, 300-2635, Japan.
| | - Kouji Tanaka
- DMPK Research Laboratories, Sohyaku. Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, 1000 Kamoshida-cho, Aoba-ku, Yokohama, Kanagawa, 227-0033, Japan.
| | - Rika Komatsu
- Laboratory for Drug Discovery Pharmaceuticals Research Center, Asahi Kasei Pharma Corporation, 632-1 Mifuku, Izunokuni, Shizuoka, 410-2321, Japan.
| | - Kenji Yoshida
- Drug Development Solutions Planning Department, Pharmaceutical Sciences Division, Sekisui Medical Co., Ltd, 2117 Muramatsu, Tokai, Ibaraki, 319-1182, Japan.
| | - Kosuke Saito
- Division of Medicinal Safety Science, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki, 210-9501, Japan.
| | - Yoshiro Saito
- National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki, 210-9501, Japan.
| | - Hiroshi Yamazaki
- Showa Pharmaceutical University, 3-2-1 Higashi-tamagawa Gakuen, Machida, Tokyo, 194-8543, Japan.
| |
Collapse
|
3
|
Petrova B, Guler AT. Recent Developments in Single-Cell Metabolomics by Mass Spectrometry─A Perspective. J Proteome Res 2025; 24:1493-1518. [PMID: 39437423 PMCID: PMC11976873 DOI: 10.1021/acs.jproteome.4c00646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 10/07/2024] [Accepted: 10/15/2024] [Indexed: 10/25/2024]
Abstract
Recent advancements in single-cell (sc) resolution analyses, particularly in sc transcriptomics and sc proteomics, have revolutionized our ability to probe and understand cellular heterogeneity. The study of metabolism through small molecules, metabolomics, provides an additional level of information otherwise unattainable by transcriptomics or proteomics by shedding light on the metabolic pathways that translate gene expression into functional outcomes. Metabolic heterogeneity, critical in health and disease, impacts developmental outcomes, disease progression, and treatment responses. However, dedicated approaches probing the sc metabolome have not reached the maturity of other sc omics technologies. Over the past decade, innovations in sc metabolomics have addressed some of the practical limitations, including cell isolation, signal sensitivity, and throughput. To fully exploit their potential in biological research, however, remaining challenges must be thoroughly addressed. Additionally, integrating sc metabolomics with orthogonal sc techniques will be required to validate relevant results and gain systems-level understanding. This perspective offers a broad-stroke overview of recent mass spectrometry (MS)-based sc metabolomics advancements, focusing on ongoing challenges from a biologist's viewpoint, aimed at addressing pertinent and innovative biological questions. Additionally, we emphasize the use of orthogonal approaches and showcase biological systems that these sophisticated methodologies are apt to explore.
Collapse
Affiliation(s)
- Boryana Petrova
- Medical
University of Vienna, Vienna 1090, Austria
- Department
of Pathology, Boston Children’s Hospital, Boston, Massachusetts 02115, United States
| | - Arzu Tugce Guler
- Department
of Pathology, Boston Children’s Hospital, Boston, Massachusetts 02115, United States
- Institute
for Experiential AI, Northeastern University, Boston, Massachusetts 02115, United States
| |
Collapse
|
4
|
Vermeulen I, Vandenbosch M, Viot D, Mercier J, Cabañas DAW, Martinez-Martinez P, Barton P, Heeren RM, Cillero-Pastor B. Spatial Distribution of Brain PET Tracers by MALDI Imaging. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2025; 36:688-698. [PMID: 40073292 PMCID: PMC11969657 DOI: 10.1021/jasms.4c00307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 02/16/2025] [Accepted: 02/21/2025] [Indexed: 03/14/2025]
Abstract
Evaluating tissue distribution of Positron Emission Tomography (PET) tracers during their development conventionally involves autoradiography techniques, where radioactive compounds are used for ex vivo visualization and quantification in tissues during preclinical development stages. Mass Spectrometry Imaging (MSI) offers a potential alternative, providing spatial information without the need for radioactivity with a similar spatial resolution. This study aimed to optimize a MSI sample preparation protocol for assessing PET tracer candidates ex vivo with a focus on two compounds: UCB-J and UCB2400. We tested different matrices and introduced washing steps to improve PET tracer detection. Tissue homogenates were prepared to construct calibration curves for quantification. The incorporation of a washing step into the MSI sample preparation protocol enhanced the signal of both PET tracers. Our findings highlight MSI's potential as a cost-effective and efficient method for the evaluation of PET tracer distribution. The optimized approach offered here can provide a protocol that enhances the signal and minimizes ion suppression effect, which can be valuable for future evaluation of PET tracers in MSI studies.
Collapse
Affiliation(s)
- Isabeau Vermeulen
- The Maastricht
MultiModal Molecular Imaging Institute (M4i), Division of Imaging
Mass Spectrometry, Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
| | - Michiel Vandenbosch
- The Maastricht
MultiModal Molecular Imaging Institute (M4i), Division of Imaging
Mass Spectrometry, Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
| | - Delphine Viot
- Translational
Science, DMPK, UCB Biopharma SRL, Chemin du Foriest, B1420 Braine-l’Alleud, Belgium
| | - Joel Mercier
- Discovery
Chemistry BE, UCB Biopharma SRL, Chemin du Foriest, B1420 Braine-l’Alleud, Belgium
| | - Diego Asensio-Wandosell Cabañas
- Department
of Psychiatry and Neuropsychology, Maastricht
University, Universiteitssingel 40, 6229 ER Maastricht, The Netherlands
| | - Pilar Martinez-Martinez
- Department
of Psychiatry and Neuropsychology, Maastricht
University, Universiteitssingel 40, 6229 ER Maastricht, The Netherlands
| | - Patrick Barton
- Translational
Science, DMPK, UCB Celltech, Branch of UCB Pharma S.A., 208 Bath
Road, Slough, Berkshire SL1 3WE, United
Kingdom
| | - Ron M.A. Heeren
- The Maastricht
MultiModal Molecular Imaging Institute (M4i), Division of Imaging
Mass Spectrometry, Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
| | - Berta Cillero-Pastor
- The Maastricht
MultiModal Molecular Imaging Institute (M4i), Division of Imaging
Mass Spectrometry, Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
- Cell Biology-Inspired
Tissue Engineering (cBITE), MERLN, Maastricht
University, Universiteitssingel 40, 6229 ER Maastricht, The Netherlands
| |
Collapse
|
5
|
Lusk HJ, Haughan MA, Bergsten TM, Burdette JE, Sanchez LM. Branched-Chain Amino Acid Catabolism Promotes Ovarian Cancer Cell Proliferation via Phosphorylation of mTOR. CANCER RESEARCH COMMUNICATIONS 2025; 5:569-579. [PMID: 40066850 PMCID: PMC11973964 DOI: 10.1158/2767-9764.crc-24-0532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 01/24/2025] [Accepted: 03/06/2025] [Indexed: 03/19/2025]
Abstract
SIGNIFICANCE This study uncovers altered amino acid metabolism, specifically increased BCAA catabolism, at the interface of ovarian cancer cells and omental tissue in a coculture model of HGSOC secondary metastasis. Enhanced BCAA catabolism promotes cancer cell proliferation through mTOR signaling, presenting potential therapeutic value. These findings deepen our understanding of HGSOC pathogenesis and the metastatic tumor microenvironment, offering insights for developing new treatment strategies.
Collapse
Affiliation(s)
- Hannah J. Lusk
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, California
| | - Monica A. Haughan
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Chicago, Chicago, Illinois
| | - Tova M. Bergsten
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Chicago, Chicago, Illinois
| | - Joanna E. Burdette
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Chicago, Chicago, Illinois
| | - Laura M. Sanchez
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, California
| |
Collapse
|
6
|
Javorek M, Hendrych M, Ondráková K, Preisler J, Bednařík A. Staining Tissues with Basic Blue 7: A New Dual-Polarity Matrix for MALDI Mass Spectrometry Imaging. Anal Chem 2025; 97:2828-2836. [PMID: 39883587 PMCID: PMC11822741 DOI: 10.1021/acs.analchem.4c05244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 01/17/2025] [Accepted: 01/20/2025] [Indexed: 02/01/2025]
Abstract
Obtaining high-quality matrix-assisted laser desorption/ionization mass spectrometry (MALDI MS) images and the reproducibility of the technique depend strongly on the sample preparation protocol. The most crucial part is the application of the MALDI matrix, which often relies on expensive spraying or sublimation coaters. In this work, we present a new dual-polarity matrix for MALDI mass spectrometry imaging (MSI): Basic Blue 7 (BB7), which belongs to the group of triarylmethane dyes. Thanks to its good solubility in water, this matrix allows a quick and simple sample preparation protocol without the need for sophisticated spraying or sublimation instrumentation: dipping the glass with tissue into the dye solution. This technique closely resembles the staining methods employed in classical histopathology. The technique is demonstrated on MSI of lipids in mouse brain sections in positive and negative ion modes using a subatmospheric pressure MALDI source coupled with an orbital trap mass spectrometer. The results are compared with traditional matrices, such as 2,5-dihydroxybenzoic acid (DHB) and 1,5-diaminonaphthalene (DAN). BB7 excels, especially in negative ion mode, offering low background signals and high signal intensities of many lipid classes. Furthermore, the stained tissue can simply be inspected visually and allows basic histopathology annotation prior to MSI. Here, we demonstrate that staining offers excellent image quality, reproducible sample preparation, and the potential for automation and utilization for high spatial resolution MSI.
Collapse
Affiliation(s)
- Michal Javorek
- Department
of Chemistry, Faculty of Science, Masaryk
University, Brno 625 00, Czech Republic
| | - Michal Hendrych
- First
Department of Pathology, St. Anne’s
University Hospital, Brno 602 00, Czech Republic
- First
Department of Pathology, Faculty of Medicine, Masaryk University, Brno 625 00, Czech Republic
| | - Kateřina Ondráková
- Department
of Chemistry, Faculty of Science, Masaryk
University, Brno 625 00, Czech Republic
| | - Jan Preisler
- Department
of Chemistry, Faculty of Science, Masaryk
University, Brno 625 00, Czech Republic
| | - Antonín Bednařík
- Department
of Chemistry, Faculty of Science, Masaryk
University, Brno 625 00, Czech Republic
| |
Collapse
|
7
|
Phulara NR, Seneviratne HK. Visualization of Efavirenz-Induced Lipid Alterations in the Mouse Brain Using MALDI Mass Spectrometry Imaging. Curr Protoc 2025; 5:e70108. [PMID: 40007509 DOI: 10.1002/cpz1.70108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2025]
Abstract
This article highlights experimental procedures and troubleshooting tips for the utilization of matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI MSI) methods for detecting and visualizing lipid alterations in the mouse brain tissue in response to efavirenz (EFV) treatment. To investigate drug-induced adverse effects, it is becoming increasingly important to understand the spatial alterations of lipid molecules in the target organs. EFV is a non-nucleoside reverse transcriptase inhibitor commonly used for HIV treatment in combination with other antiretrovirals. Importantly, EFV is a drug that is included in the World Health Organization's list of essential medications. However, EFV is known to be associated with neurotoxicity. To date, the mechanisms underlying EFV-induced neurotoxicity have not been fully elucidated. Therefore, it is important to gain understanding of the effect of EFV on the brain. It is known that the brain is composed of different neuroanatomical regions that are abundant in lipids. Described here is the use of a chemical imaging strategy, MALDI MSI, to detect, identify, and visualize the spatial localization of several lipid species across the brain tissue sections along with their alterations in response to EFV treatment. The set of protocols consists of three major parts: lipid detection, identification, and tissue imaging. Lipid detection includes testing different chemical matrices and how they facilitate the detection of analytes, which is then followed by identification. Collision-induced dissociation is employed to verify the identity of the lipid molecules. Lastly, tissue imaging experiments are performed to generate the spatial localization profiles of the lipids. The protocols described in this article can be employed to spatially visualize alterations in the lipid molecules in response to drug treatment. © 2025 Wiley Periodicals LLC. Basic Protocol 1: MALDI mass spectrometry (MALDI MS) profiling experiments for detection of lipids Basic Protocol 2: MALDI MS imaging of lipid molecules in mouse brain tissues Basic Protocol 3: MALDI MS data processing and analysis.
Collapse
Affiliation(s)
- Nav Raj Phulara
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, Maryland
| | - Herana Kamal Seneviratne
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, Maryland
| |
Collapse
|
8
|
Zhang G, Zheng H, Wang X, Han S, Liu W, Sun C, Hu Q, Ma C. Flexible substrate-based mass spectrometry platform for in situ non-destructive molecular imaging of living plants. PLANT BIOTECHNOLOGY JOURNAL 2025; 23:97-111. [PMID: 39364753 DOI: 10.1111/pbi.14482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 08/23/2024] [Accepted: 09/02/2024] [Indexed: 10/05/2024]
Abstract
Monitoring and localizing molecules on living plants is critical for understanding their growth, development and disease. However, current techniques for molecular imaging of living plants often lack spatial information or require tedious pre-labelling. Here, we proposed a novel molecular imaging platform that combines sliver nanowire-doped Ti3C2 MXene (Ag NWs@MXene) flexible film substrate with laser desorption/ionization mass spectrometry imaging (AMF-LDI-MSI) to study the spatial distribution of biomolecules on the surface of living plants. This platform overcomes the MSI challenges posed by difficult-to-slice plant tissues (e.g., tough or water-rich roots and fragile flowers) and enables precisely transfer and visualize the molecule. Comparisons of the measurement results to those from matrix-assisted LDI-MSI (MALDI-MSI) technology demonstrate the accuracy and reliability of the platform. Biocompatibility evaluations indicated that the platform without observable adverse effects on the health of living plants. The distribution of growth and disease-associated signalling molecules, such as choline, organic acids and carbohydrates, can be in situ non-destructively detected on the surfaces of living plants, which is important for tracking the health of plants and their diseased areas. AMF-LDI-MSI platform can serve as a promising tool for label-free, in situ and non-destructive monitoring of functional biomolecules and plant growth from a spatial perspective.
Collapse
Affiliation(s)
- Guanhua Zhang
- Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Han Zheng
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiao Wang
- Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Shuxin Han
- Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Wei Liu
- Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Chenglong Sun
- Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Qiongzheng Hu
- Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Chunxia Ma
- Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
9
|
Ajith A, Jones E, Prince E, Trivedi DK, Johnson GN, Milnes PJ, Lockyer NP. Visualizing active fungicide formulation mobility in tomato leaves with desorption electrospray ionisation mass spectrometry imaging. Analyst 2024. [PMID: 39575682 PMCID: PMC11583139 DOI: 10.1039/d4an01309c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 11/15/2024] [Indexed: 11/25/2024]
Abstract
Newer and safer agrochemicals are always in demand to meet the increasing needs of a growing population for affordable food. Spatial chemical monitoring of the active mobility of an agrochemical is essential to this agrochemical development process and mass spectrometry imaging (MSI) is proposed as a safer, easier alternative to the existing standard of autoradiography for the same. With desorption electrospray ionisation mass spectrometry imaging (DESI MSI) using leaf imprints, we were able to visualize the active agrochemical mobility of a commercial fungicide formulation with the active ingredient Azoxystrobin in whole tomato leaves. The leaf-imprinting method was optimized with precise control over the pressure conditions and time of imprinting to yield highly consistent samples for imaging. The reproducibility of this method was tested with the Azoxystrobin formulation applied to tomato leaves and was compared to the mobility of the unformulated Azoxystrobin standard in similar application conditions. The xylem mobility and the lateral-leaf lamina spreading of the fungicide were visualized with mass spectrometry imaging and validated using complementary LC-MS studies. The necessity and importance of the agrochemical application as a formulation were re-iterated by the limited mobility observed in Azoxystrobin standard studies compared to the Azoxystrobin formulation. This mass spectrometry imprint-imaging method could be translated for the visualization of any xenobiotic in further foliar systems particularly with soft leaves.
Collapse
Affiliation(s)
- Akhila Ajith
- Photon Science Institute, Department of Chemistry, University of Manchester, Manchester, UK.
| | - Emrys Jones
- Waters Corporation, Altrincham Road, Wilmslow, UK
| | - Emily Prince
- Syngenta, Jealott's Hill International Research Centre, Bracknell, UK
| | - Drupad K Trivedi
- Manchester Institute of Biotechnology, Department of Chemistry, University of Manchester, Manchester, UK
| | - Giles N Johnson
- Department of Earth and Environmental Sciences, University of Manchester, Manchester, UK
| | - Phillip J Milnes
- Syngenta, Jealott's Hill International Research Centre, Bracknell, UK
| | - Nicholas P Lockyer
- Photon Science Institute, Department of Chemistry, University of Manchester, Manchester, UK.
| |
Collapse
|
10
|
Egbejiogu BC, Donnarumma F, Murray KK. Infrared Laser Ablation and Capture of Formalin-Fixed Paraffin-Embedded Tissue. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024. [PMID: 39494617 DOI: 10.1021/jasms.4c00299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2024]
Abstract
Formalin-fixed paraffin-embedded (FFPE) tissue is a ubiquitous and invaluable resource for biomedical research and clinical applications. However, FFPE tissue proteomics is challenging due to protein cross-linking and chemical modification. Laser ablation sampling allows precise removal of material from tissue sections with high spatial control and reproducibility for offline proteomics by liquid chromatography coupled with tandem mass spectrometry. In this work, we used a pulsed mid-infrared laser for microsampling of rat liver tissue for subsequent identification and quantification of proteins. It was found that more proteins were identified by FFPE tissue laser ablation sampling compared to fresh frozen (FF) tissue laser ablation sampling and that more proteins were identified by laser ablation than by manual dissection of FFPE tissue. In contrast to previous studies, no loss of hydrophilic proteins due to residual cross-linking was observed. The efficient capture of proteins by laser ablation microsampling is attributed to efficient laser breakup of the tissue which facilitates downstream processing of the proteins.
Collapse
Affiliation(s)
- Blessing C Egbejiogu
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Fabrizio Donnarumma
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Kermit K Murray
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| |
Collapse
|
11
|
Lusk HJ, Haughan MA, Bergsten TM, Burdette JE, Sanchez LM. Branched-chain amino acid catabolism promotes ovarian cancer cell proliferation via phosphorylation of mTOR. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.15.618560. [PMID: 39464074 PMCID: PMC11507863 DOI: 10.1101/2024.10.15.618560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Ovarian cancer is the sixth leading cause of cancer-related mortality among individuals with ovaries, and high-grade serous ovarian cancer (HGSOC) is the most common and lethal subtype. Characterized by a distinct and aggressive metastatic pattern, HGSOC can originate in the fallopian tube with the transformation of fallopian tube epithelial (FTE) cells, which metastasize to the ovary and subsequently to the omentum and peritoneal cavity. The omentum is a privileged metastatic site, and the metabolic exchange underlying omental metastasis could provide enzyme or receptor targets to block spread. In this study, we adapted a mass spectrometry imaging (MSI) protocol to investigate spatial location of 3D cocultures of tumorigenic FTE cells when grown in proximity to murine omental explants as a model of early metastatic colonization. Our analysis revealed several altered metabolites in tumorigenic FTE/omentum cocultures, namely changes in branched-chain amino acids (BCAA), including valine. We quantified the heightened consumption of valine, other BCAAs, and other amino acid-derived metabolites in omental cocultures using LC-MS assays. Our analysis revealed that metabolite concentrations when monitored with MSI from cell culture media in living culture systems have notable considerations for how MSI data may produce signatures that induce ionization suppression. Supplementation with valine enhanced proliferation and mTOR signaling in tumorigenic FTE cells, suggesting the potential of BCAA's as a nutrient utilized by tumor cells during omental colonization and a possible target for metastasis.
Collapse
Affiliation(s)
- Hannah J. Lusk
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, CA, 95064
| | - Monica A. Haughan
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Chicago, Chicago, IL, 60607
| | - Tova M. Bergsten
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Chicago, Chicago, IL, 60607
| | - Joanna E. Burdette
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Chicago, Chicago, IL, 60607
| | - Laura M. Sanchez
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, CA, 95064
| |
Collapse
|
12
|
Xiao Y, Li Y, Zhao H. Spatiotemporal metabolomic approaches to the cancer-immunity panorama: a methodological perspective. Mol Cancer 2024; 23:202. [PMID: 39294747 PMCID: PMC11409752 DOI: 10.1186/s12943-024-02113-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 09/05/2024] [Indexed: 09/21/2024] Open
Abstract
Metabolic reprogramming drives the development of an immunosuppressive tumor microenvironment (TME) through various pathways, contributing to cancer progression and reducing the effectiveness of anticancer immunotherapy. However, our understanding of the metabolic landscape within the tumor-immune context has been limited by conventional metabolic measurements, which have not provided comprehensive insights into the spatiotemporal heterogeneity of metabolism within TME. The emergence of single-cell, spatial, and in vivo metabolomic technologies has now enabled detailed and unbiased analysis, revealing unprecedented spatiotemporal heterogeneity that is particularly valuable in the field of cancer immunology. This review summarizes the methodologies of metabolomics and metabolic regulomics that can be applied to the study of cancer-immunity across single-cell, spatial, and in vivo dimensions, and systematically assesses their benefits and limitations.
Collapse
Affiliation(s)
- Yang Xiao
- Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing, 400044, China
| | - Yongsheng Li
- Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing, 400044, China.
- Department of Medical Oncology, Chongqing University Cancer Hospital, Chongqing, 400030, China.
| | - Huakan Zhao
- Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing, 400044, China.
- Department of Medical Oncology, Chongqing University Cancer Hospital, Chongqing, 400030, China.
| |
Collapse
|
13
|
Vandenbosch M, van Hove ERA, Mohren R, Vermeulen I, Dijkman H, Heeren RMA, Leonards PEG, Hughes S. Combined matrix-assisted laser desorption/ionisation-mass spectrometry imaging with liquid chromatography-tandem mass spectrometry for observing spatial distribution of lipids in whole Caenorhabditis elegans. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2024; 38:e9850. [PMID: 39034751 DOI: 10.1002/rcm.9850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/23/2024] [Accepted: 05/24/2024] [Indexed: 07/23/2024]
Abstract
RATIONALE Matrix-assisted laser desorption/ionisation-mass spectrometry imaging (MALDI-MSI) is a powerful label-free technique for biomolecule detection (e.g., lipids), within tissue sections across various biological species. However, despite its utility in many applications, the nematode Caenorhabditis elegans is not routinely used in combination with MALDI-MSI. The lack of studies exploring spatial distribution of biomolecules in nematodes is likely due to challenges with sample preparation. METHODS This study developed a sample preparation method for whole intact nematodes, evaluated using cryosectioning of nematodes embedded in a 10% gelatine solution to obtain longitudinal cross sections. The slices were then subjected to MALDI-MSI, using a RapifleX Tissuetyper in positive and negative polarities. Samples were also prepared for liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis using an Exploris 480 coupled to a HPLC Vanquish system to confirm the MALDI-MSI results. RESULTS An optimised embedding method was developed for longitudinal cross-sectioning of individual worms. To obtain longitudinal cross sections, nematodes were frozen at -80°C so that all worms were rod shaped. Then, the samples were defrosted and transferred to a 10% gelatine matrix in a cryomold; the worms aligned, and the whole cryomold submerged in liquid nitrogen. Using MALDI-MSI, we were able to observe the distribution of lipids within C. elegans, with clear differences in their spatial distribution at a resolution of 5 μm. To confirm the lipids from MALDI-MSI, age-matched nematodes were subjected to LC-MS/MS. Here, 520 lipids were identified using LC-MS/MS, indicating overlap with MALDI-MSI data. CONCLUSIONS This optimised sample preparation technique enabled (un)targeted analysis of spatially distributed lipids within individual nematodes. The possibility to detect other biomolecules using this method thus laid the basis for prospective preclinical and toxicological studies on C. elegans.
Collapse
Affiliation(s)
- Michiel Vandenbosch
- The Maastricht MultiModal Molecular Imaging (M4I) Institute, Division of Imaging Mass Spectrometry (IMS), Maastricht University, Maastricht, The Netherlands
| | - Erika R Amstalden van Hove
- Amsterdam Institute for Life and Environment, Chemistry for Environment and Health, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Ronny Mohren
- The Maastricht MultiModal Molecular Imaging (M4I) Institute, Division of Imaging Mass Spectrometry (IMS), Maastricht University, Maastricht, The Netherlands
| | - Isabeau Vermeulen
- The Maastricht MultiModal Molecular Imaging (M4I) Institute, Division of Imaging Mass Spectrometry (IMS), Maastricht University, Maastricht, The Netherlands
| | - Henry Dijkman
- HAN University of Applied Sciences, Nijmegen, The Netherlands
| | - Ron M A Heeren
- The Maastricht MultiModal Molecular Imaging (M4I) Institute, Division of Imaging Mass Spectrometry (IMS), Maastricht University, Maastricht, The Netherlands
| | - Pim E G Leonards
- Amsterdam Institute for Life and Environment, Chemistry for Environment and Health, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Samantha Hughes
- Amsterdam Institute for Life and Environment, Environmental Health and Toxicology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
14
|
Dannhorn A, Kazanc E, Flint L, Guo F, Carter A, Hall AR, Jones SA, Poulogiannis G, Barry ST, Sansom OJ, Bunch J, Takats Z, Goodwin RJA. Morphological and molecular preservation through universal preparation of fresh-frozen tissue samples for multimodal imaging workflows. Nat Protoc 2024; 19:2685-2711. [PMID: 38806741 DOI: 10.1038/s41596-024-00987-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 02/14/2024] [Indexed: 05/30/2024]
Abstract
The landscape of tissue-based imaging modalities is constantly and rapidly evolving. While formalin-fixed, paraffin-embedded material is still useful for histological imaging, the fixation process irreversibly changes the molecular composition of the sample. Therefore, many imaging approaches require fresh-frozen material to get meaningful results. This is particularly true for molecular imaging techniques such as mass spectrometry imaging, which are widely used to probe the spatial arrangement of the tissue metabolome. As high-quality fresh-frozen tissues are limited in their availability, any sample preparation workflow they are subjected to needs to ensure morphological and molecular preservation of the tissues and be compatible with as many of the established and emerging imaging techniques as possible to obtain the maximum possible insights from the tissues. Here we describe a universal sample preparation workflow, from the initial step of freezing the tissues to the cold embedding in a new hydroxypropyl methylcellulose/polyvinylpyrrolidone-enriched hydrogel and the generation of thin tissue sections for analysis. Moreover, we highlight the optimized storage conditions that limit molecular and morphological degradation of the sections. The protocol is compatible with human and plant tissues and can be easily adapted for the preparation of alternative sample formats (e.g., three-dimensional cell cultures). The integrated workflow is universally compatible with histological tissue analysis, mass spectrometry imaging and imaging mass cytometry, as well as spatial proteomic, genomic and transcriptomic tissue analysis. The protocol can be completed within 4 h and requires minimal prior experience in the preparation of tissue samples for multimodal imaging experiments.
Collapse
Affiliation(s)
- Andreas Dannhorn
- Imaging and Data analytics, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge, UK
- Department of Digestion, Metabolism and Reproduction, Sir Alexander Fleming Building, Imperial College London, London, UK
| | - Emine Kazanc
- Department of Digestion, Metabolism and Reproduction, Sir Alexander Fleming Building, Imperial College London, London, UK
| | - Lucy Flint
- Imaging and Data analytics, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge, UK
| | - Fei Guo
- Imaging and Data analytics, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge, UK
- Safety Innovations, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge, UK
| | - Alfie Carter
- Imaging and Data analytics, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge, UK
- Safety Innovations, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge, UK
| | - Andrew R Hall
- Safety Innovations, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge, UK
| | - Stewart A Jones
- Imaging and Data analytics, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge, UK
| | | | - Simon T Barry
- Bioscience, Discovery, Oncology R&D, AstraZeneca, Cambridge, UK
| | | | - Josephine Bunch
- National Centre of Excellence in Mass Spectrometry Imaging (NiCE-MSI), National Physical Laboratory, Teddington, UK
| | - Zoltan Takats
- Department of Digestion, Metabolism and Reproduction, Sir Alexander Fleming Building, Imperial College London, London, UK
| | - Richard J A Goodwin
- Imaging and Data analytics, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge, UK.
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK.
| |
Collapse
|
15
|
Sushentsev N, Hamm G, Flint L, Birtles D, Zakirov A, Richings J, Ling S, Tan JY, McLean MA, Ayyappan V, Horvat Menih I, Brodie C, Miller JL, Mills IG, Gnanapragasam VJ, Warren AY, Barry ST, Goodwin RJA, Barrett T, Gallagher FA. Metabolic imaging across scales reveals distinct prostate cancer phenotypes. Nat Commun 2024; 15:5980. [PMID: 39013948 PMCID: PMC11252279 DOI: 10.1038/s41467-024-50362-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 07/07/2024] [Indexed: 07/18/2024] Open
Abstract
Hyperpolarised magnetic resonance imaging (HP-13C-MRI) has shown promise as a clinical tool for detecting and characterising prostate cancer. Here we use a range of spatially resolved histological techniques to identify the biological mechanisms underpinning differential [1-13C]lactate labelling between benign and malignant prostate, as well as in tumours containing cribriform and non-cribriform Gleason pattern 4 disease. Here we show that elevated hyperpolarised [1-13C]lactate signal in prostate cancer compared to the benign prostate is primarily driven by increased tumour epithelial cell density and vascularity, rather than differences in epithelial lactate concentration between tumour and normal. We also demonstrate that some tumours of the cribriform subtype may lack [1-13C]lactate labelling, which is explained by lower epithelial lactate dehydrogenase expression, higher mitochondrial pyruvate carrier density, and increased lipid abundance compared to lactate-rich non-cribriform lesions. These findings highlight the potential of combining spatial metabolic imaging tools across scales to identify clinically significant metabolic phenotypes in prostate cancer.
Collapse
Affiliation(s)
- Nikita Sushentsev
- Department of Radiology, University of Cambridge and Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK.
| | - Gregory Hamm
- Integrated BioAnalysis, Clinical Pharmacology & Safety Sciences, R&D, AstraZeneca, Cambridge, UK
| | - Lucy Flint
- Integrated BioAnalysis, Clinical Pharmacology & Safety Sciences, R&D, AstraZeneca, Cambridge, UK
| | - Daniel Birtles
- Integrated BioAnalysis, Clinical Pharmacology & Safety Sciences, R&D, AstraZeneca, Cambridge, UK
| | - Aleksandr Zakirov
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Jack Richings
- Predictive AI & Data, Clinical Pharmacology & Safety Sciences, R&D, AstraZeneca, Cambridge, UK
| | - Stephanie Ling
- Integrated BioAnalysis, Clinical Pharmacology & Safety Sciences, R&D, AstraZeneca, Cambridge, UK
| | - Jennifer Y Tan
- Predictive AI & Data, Clinical Pharmacology & Safety Sciences, R&D, AstraZeneca, Cambridge, UK
| | - Mary A McLean
- Department of Radiology, University of Cambridge and Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Vinay Ayyappan
- Department of Radiology, University of Cambridge and Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Ines Horvat Menih
- Department of Radiology, University of Cambridge and Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Cara Brodie
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Jodi L Miller
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Ian G Mills
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK
- Nuffield Department of Surgical Sciences, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Vincent J Gnanapragasam
- Department of Urology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
- Division of Urology, Department of Surgery, University of Cambridge, Cambridge, UK
- Cambridge Urology Translational Research and Clinical Trials Office, Cambridge Biomedical Campus, Addenbrooke's Hospital, Cambridge, UK
| | - Anne Y Warren
- Department of Pathology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Simon T Barry
- Bioscience, Early Oncology, AstraZeneca, Cambridge, UK
| | - Richard J A Goodwin
- Integrated BioAnalysis, Clinical Pharmacology & Safety Sciences, R&D, AstraZeneca, Cambridge, UK
| | - Tristan Barrett
- Department of Radiology, University of Cambridge and Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Ferdia A Gallagher
- Department of Radiology, University of Cambridge and Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| |
Collapse
|
16
|
Guan C, Kong L. Mass spectrometry imaging in pulmonary disorders. Clin Chim Acta 2024; 561:119835. [PMID: 38936534 DOI: 10.1016/j.cca.2024.119835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/24/2024] [Accepted: 06/24/2024] [Indexed: 06/29/2024]
Abstract
Mass Spectrometry Imaging (MSI) represents a novel and advancing technology that offers unparalleled in situ characterization of tissues. It provides comprehensive insights into the chemical structures, relative abundances, and spatial distributions of a vast array of both identified and unidentified endogenous and exogenous compounds, a capability not paralleled by existing analytical methodologies. Recent scholarly endeavors have increasingly explored the utility of MSI in the adjunct diagnosis and biomarker research of pulmonary disorders, including but not limited to lung cancer. Concurrently, MSI has proven instrumental in elucidating the spatiotemporal dynamics of various pharmacological agents. This review concisely delineates the fundamental principles underpinning MSI, its applications in pulmonary disease diagnosis, biomarker discovery, and drug distribution investigations. Additionally, it presents a forward-looking perspective on the prospective trajectories of MSI technological advancements.
Collapse
Affiliation(s)
- Chunliu Guan
- Key Laboratory of Environment Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu 210009, China
| | - Lu Kong
- Key Laboratory of Environment Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu 210009, China.
| |
Collapse
|
17
|
Liang Z, Guo Y, Ellin N, King TI, Berthold EC, Mukhopadhyay S, Sharma A, McCurdy CR, Prentice BM. Formation of multiple ion types during MALDI imaging mass spectrometry analysis of Mitragyna speciosa alkaloids in dosed rat brain tissue. Talanta 2024; 274:125923. [PMID: 38569366 PMCID: PMC11681430 DOI: 10.1016/j.talanta.2024.125923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 03/08/2024] [Accepted: 03/13/2024] [Indexed: 04/05/2024]
Abstract
Mitragyna speciosa, more commonly known as kratom, has emerged as an alternative to treat chronic pain and addiction. However, the alkaloid components of kratom, which are the major contributors to kratom's pharmaceutical properties, have not yet been fully investigated. In this study, matrix-assisted laser desorption/ionization (MALDI) imaging mass spectrometry was used to map the biodistribution of three alkaloids (corynantheidine, mitragynine, and speciogynine) in rat brain tissues. The alkaloids produced three main ion types during MALDI analysis: [M + H]+, [M - H]+, and [M - 3H]+. Contrary to previous reports suggesting that the [M - H]+ and [M - 3H]+ ion types form during laser ablation, these ion types can also be produced during the MALDI matrix application process. Several strategies are proposed to accurately map the biodistribution of the alkaloids. Due to differences in the relative abundances of the ions in different biological regions of the tissue, differences in ionization efficiencies of the ions, and potential overlap of the [M - H]+ and [M - 3H]+ ion types with endogenous metabolites of the same empirical formula, a matrix that mainly produces the [M + H]+ ion type is optimal for accurate mapping of the alkaloids. Alternatively, the most abundant ion type can be mapped or the intensities of all ion types can be summed together to generate a composite image. The accuracy of each of these approaches is explored and validated.
Collapse
Affiliation(s)
- Zhongling Liang
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
| | - Yingchan Guo
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
| | - Nicholas Ellin
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
| | - Tamara I King
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA
| | - Erin C Berthold
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA
| | - Sushobhan Mukhopadhyay
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA; Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA
| | - Abhisheak Sharma
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA
| | - Christopher R McCurdy
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA; Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA
| | - Boone M Prentice
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA.
| |
Collapse
|
18
|
Colley ME, Esselman AB, Scott CF, Spraggins JM. High-Specificity Imaging Mass Spectrometry. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2024; 17:1-24. [PMID: 38594938 DOI: 10.1146/annurev-anchem-083023-024546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Imaging mass spectrometry (IMS) enables highly multiplexed, untargeted tissue mapping for a broad range of molecular classes, facilitating in situ biological discovery. Yet, challenges persist in molecular specificity, which is the ability to discern one molecule from another, and spatial specificity, which is the ability to link untargeted imaging data to specific tissue features. Instrumental developments have dramatically improved IMS spatial resolution, allowing molecular observations to be more readily associated with distinct tissue features across spatial scales, ranging from larger anatomical regions to single cells. High-performance mass analyzers and systems integrating ion mobility technologies are also becoming more prevalent, further improving molecular coverage and the ability to discern chemical identity. This review provides an overview of recent advancements in high-specificity IMS that are providing critical biological context to untargeted molecular imaging, enabling integrated analyses, and addressing advanced biomedical research applications.
Collapse
Affiliation(s)
- Madeline E Colley
- 1Department of Biochemistry, Vanderbilt University, Nashville, Tennessee, USA;
- 2Mass Spectrometry Research Center, Vanderbilt University, Nashville, Tennessee, USA
| | - Allison B Esselman
- 2Mass Spectrometry Research Center, Vanderbilt University, Nashville, Tennessee, USA
- 3Department of Chemistry, Vanderbilt University, Nashville, Tennessee, USA
| | - Claire F Scott
- 2Mass Spectrometry Research Center, Vanderbilt University, Nashville, Tennessee, USA
- 4Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee, USA
| | - Jeffrey M Spraggins
- 1Department of Biochemistry, Vanderbilt University, Nashville, Tennessee, USA;
- 2Mass Spectrometry Research Center, Vanderbilt University, Nashville, Tennessee, USA
- 3Department of Chemistry, Vanderbilt University, Nashville, Tennessee, USA
- 4Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee, USA
- 5Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
19
|
Amin MO, Al-Hetlani E. Matrix- and surface-assisted laser desorption/ionization-mass spectrometry analysis of fingermark components for forensic studies: current trends and future prospects. Anal Bioanal Chem 2024; 416:3751-3764. [PMID: 38647691 DOI: 10.1007/s00216-024-05297-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/09/2024] [Accepted: 04/11/2024] [Indexed: 04/25/2024]
Abstract
The chemical analysis of fingermarks (FMs) has attracted considerable attention in the realm of forensic investigations. Techniques based on direct ionization of a sample by laser irradiation, specifically matrix-assisted laser desorption ionization-mass spectrometry (MALDI-MS), have provided excellent figures of merit for analyzing high molecular-weight compounds. However, it can be challenging to analyze low molecular-weight compounds using MALDI-MS owing to potential interference produced by the organic matrices in the low molecular-weight region, which can impede the detection of small molecules (m/z < 700 Da). Alternately, surface-assisted laser desorption/ionization-mass spectrometry (SALDI-MS) has shown great promise for small molecules analysis owing to the unique properties of the nanostructures used, particularly, minimal chemical background in low m/z region improved the production of ions involved in this method. The advancement of MALDI-MS and SALDI-MS has propelled their application in the analysis of FM components, focused on gaining deep insights into individual traits. This review aims to outline the current role of MALDI-MS and SALDI-MS in the chemical analysis of FMs. It also describes the latest achievements in forensic intelligence derived from fingermark analysis using these powerful methods. The accomplishments include the understanding of certain characteristics and lifestyles of donors. The review offers a comprehensive overview of the challenges and demands in this field. It suggests potential enhancements in this rapidly expanding domain to bridge the gap between research and practical police casework.
Collapse
Affiliation(s)
- Mohamed O Amin
- Department of Chemistry, Faculty of Science, Kuwait University, P.O. Box 5969, 13060, Safat, Kuwait City, Kuwait.
| | - Entesar Al-Hetlani
- Department of Chemistry, Faculty of Science, Kuwait University, P.O. Box 5969, 13060, Safat, Kuwait City, Kuwait.
| |
Collapse
|
20
|
Hu S, Habib A, Xiong W, Chen L, Bi L, Wen L. Mass Spectrometry Imaging Techniques: Non-Ambient and Ambient Ionization Approaches. Crit Rev Anal Chem 2024:1-54. [PMID: 38889072 DOI: 10.1080/10408347.2024.2362703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Molecular information can be acquired from sample surfaces in real time using a revolutionary molecular imaging technique called mass spectrometry imaging (MSI). The technique can concurrently provide high spatial resolution information on the spatial distribution and relative proportion of many different compounds. Thus, many scientists have been drawn to the innovative capabilities of the MSI approach, leading to significant focus in various fields during the past few decades. This review describes the sampling protocol, working principle and applications of a few non-ambient and ambient ionization mass spectrometry imaging techniques. The non-ambient techniques include secondary ionization mass spectrometry and matrix-assisted laser desorption ionization, while the ambient techniques include desorption electrospray ionization, laser ablation electrospray ionization, probe electro-spray ionization, desorption atmospheric pressure photo-ionization and femtosecond laser desorption ionization. The review additionally addresses the advantages and disadvantages of ambient and non-ambient MSI techniques in relation to their suitability, particularly for biological samples used in tissue diagnostics. Last but not least, suggestions and conclusions are made regarding the challenges and future prospects of MSI.
Collapse
Affiliation(s)
- Shundi Hu
- The Research Institute of Advanced Technologies, Ningbo University, Ningbo, Zhejiang, China
- China Innovation Instrument Co., Ltd, Ningbo, Zhejiang, China
| | - Ahsan Habib
- The Research Institute of Advanced Technologies, Ningbo University, Ningbo, Zhejiang, China
- Department of Chemistry, University of Dhaka, Dhaka, Bangladesh
| | - Wei Xiong
- The Research Institute of Advanced Technologies, Ningbo University, Ningbo, Zhejiang, China
- China Innovation Instrument Co., Ltd, Ningbo, Zhejiang, China
| | - La Chen
- The Research Institute of Advanced Technologies, Ningbo University, Ningbo, Zhejiang, China
- China Innovation Instrument Co., Ltd, Ningbo, Zhejiang, China
| | - Lei Bi
- The Research Institute of Advanced Technologies, Ningbo University, Ningbo, Zhejiang, China
- China Innovation Instrument Co., Ltd, Ningbo, Zhejiang, China
| | - Luhong Wen
- The Research Institute of Advanced Technologies, Ningbo University, Ningbo, Zhejiang, China
- China Innovation Instrument Co., Ltd, Ningbo, Zhejiang, China
| |
Collapse
|
21
|
Ghafari N, Sleno L. Challenges and recent advances in quantitative mass spectrometry-based metabolomics. ANALYTICAL SCIENCE ADVANCES 2024; 5:e2400007. [PMID: 38948317 PMCID: PMC11210748 DOI: 10.1002/ansa.202400007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 06/03/2024] [Accepted: 06/08/2024] [Indexed: 07/02/2024]
Abstract
The field of metabolomics has gained tremendous interest in recent years. Whether the goal is to discover biomarkers related to certain pathologies or to better understand the impact of a drug or contaminant, numerous studies have demonstrated how crucial it is to understand variations in metabolism. Detailed knowledge of metabolic variabilities can lead to more effective treatments, as well as faster or less invasive diagnostics. Exploratory approaches are often employed in metabolomics, using relative quantitation to look at perturbations between groups of samples. Most metabolomics studies have been based on metabolite profiling using relative quantitation, with very few studies using an approach for absolute quantitation. Using accurate quantitation facilitates the comparison between different studies, as well as enabling longitudinal studies. In this review, we discuss the most widely used techniques for quantitative metabolomics using mass spectrometry (MS). Various aspects will be addressed, such as the use of external and/or internal standards, derivatization techniques, in vivo isotopic labelling, or quantitative MS imaging. The principles, as well as the associated limitations and challenges, will be described for each approach.
Collapse
Affiliation(s)
- Nathan Ghafari
- Chemistry Department/CERMO‐FCUniversity of Quebec in Montreal (UQAM)MontrealCanada
| | - Lekha Sleno
- Chemistry Department/CERMO‐FCUniversity of Quebec in Montreal (UQAM)MontrealCanada
| |
Collapse
|
22
|
Chadha R, Guerrero JA, Wei L, Sanchez LM. Seeing is Believing: Developing Multimodal Metabolic Insights at the Molecular Level. ACS CENTRAL SCIENCE 2024; 10:758-774. [PMID: 38680555 PMCID: PMC11046475 DOI: 10.1021/acscentsci.3c01438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/16/2024] [Accepted: 02/20/2024] [Indexed: 05/01/2024]
Abstract
This outlook explores how two different molecular imaging approaches might be combined to gain insight into dynamic, subcellular metabolic processes. Specifically, we discuss how matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) and stimulated Raman scattering (SRS) microscopy, which have significantly pushed the boundaries of imaging metabolic and metabolomic analyses in their own right, could be combined to create comprehensive molecular images. We first briefly summarize the recent advances for each technique. We then explore how one might overcome the inherent limitations of each individual method, by envisioning orthogonal and interchangeable workflows. Additionally, we delve into the potential benefits of adopting a complementary approach that combines both MSI and SRS spectro-microscopy for informing on specific chemical structures through functional-group-specific targets. Ultimately, by integrating the strengths of both imaging modalities, researchers can achieve a more comprehensive understanding of biological and chemical systems, enabling precise metabolic investigations. This synergistic approach holds substantial promise to expand our toolkit for studying metabolites in complex environments.
Collapse
Affiliation(s)
- Rahuljeet
S Chadha
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, Pasadena, California 91125 United States
| | - Jason A. Guerrero
- Department
of Chemistry and Biochemistry, University
of California, Santa Cruz, Santa
Cruz, California 95064 United States
| | - Lu Wei
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, Pasadena, California 91125 United States
| | - Laura M. Sanchez
- Department
of Chemistry and Biochemistry, University
of California, Santa Cruz, Santa
Cruz, California 95064 United States
| |
Collapse
|
23
|
Ma X, Fernández FM. Advances in mass spectrometry imaging for spatial cancer metabolomics. MASS SPECTROMETRY REVIEWS 2024; 43:235-268. [PMID: 36065601 PMCID: PMC9986357 DOI: 10.1002/mas.21804] [Citation(s) in RCA: 56] [Impact Index Per Article: 56.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 08/02/2022] [Accepted: 08/02/2022] [Indexed: 05/09/2023]
Abstract
Mass spectrometry (MS) has become a central technique in cancer research. The ability to analyze various types of biomolecules in complex biological matrices makes it well suited for understanding biochemical alterations associated with disease progression. Different biological samples, including serum, urine, saliva, and tissues have been successfully analyzed using mass spectrometry. In particular, spatial metabolomics using MS imaging (MSI) allows the direct visualization of metabolite distributions in tissues, thus enabling in-depth understanding of cancer-associated biochemical changes within specific structures. In recent years, MSI studies have been increasingly used to uncover metabolic reprogramming associated with cancer development, enabling the discovery of key biomarkers with potential for cancer diagnostics. In this review, we aim to cover the basic principles of MSI experiments for the nonspecialists, including fundamentals, the sample preparation process, the evolution of the mass spectrometry techniques used, and data analysis strategies. We also review MSI advances associated with cancer research in the last 5 years, including spatial lipidomics and glycomics, the adoption of three-dimensional and multimodal imaging MSI approaches, and the implementation of artificial intelligence/machine learning in MSI-based cancer studies. The adoption of MSI in clinical research and for single-cell metabolomics is also discussed. Spatially resolved studies on other small molecule metabolites such as amino acids, polyamines, and nucleotides/nucleosides will not be discussed in the context.
Collapse
Affiliation(s)
- Xin Ma
- School of Chemistry and Biochemistry and Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Facundo M Fernández
- School of Chemistry and Biochemistry and Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, USA
| |
Collapse
|
24
|
Kumar BS. Recent Developments and Application of Mass Spectrometry Imaging in N-Glycosylation Studies: An Overview. Mass Spectrom (Tokyo) 2024; 13:A0142. [PMID: 38435075 PMCID: PMC10904931 DOI: 10.5702/massspectrometry.a0142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 01/06/2024] [Indexed: 03/05/2024] Open
Abstract
Among the most typical posttranslational modifications is glycosylation, which often involves the covalent binding of an oligosaccharide (glycan) to either an asparagine (N-linked) or a serine/threonine (O-linked) residue. Studies imply that the N-glycan portion of a glycoprotein could serve as a particular disease biomarker rather than the protein itself because N-linked glycans have been widely recognized to evolve with the advancement of tumors and other diseases. N-glycans found on protein asparagine sites have been especially significant. Since N-glycans play clearly defined functions in the folding of proteins, cellular transport, and transmission of signals, modifications to them have been linked to several illnesses. However, because these N-glycans' production is not template driven, they have a substantial morphological range, rendering it difficult to distinguish the species that are most relevant to biology and medicine using standard techniques. Mass spectrometry (MS) techniques have emerged as effective analytical tools for investigating the role of glycosylation in health and illness. This is due to developments in MS equipment, data collection, and sample handling techniques. By recording the spatial dimension of a glycan's distribution in situ, mass spectrometry imaging (MSI) builds atop existing methods while offering added knowledge concerning the structure and functionality of biomolecules. In this review article, we address the current development of glycan MSI, starting with the most used tissue imaging techniques and ionization sources before proceeding on to a discussion on applications and concluding with implications for clinical research.
Collapse
|
25
|
Bender K, Wang Y, Zhai CY, Saenz Z, Wang A, Neumann EK. Sample Preparation Method for MALDI Mass Spectrometry Imaging of Fresh-Frozen Spines. Anal Chem 2023; 95:17337-17346. [PMID: 37886878 PMCID: PMC10688227 DOI: 10.1021/acs.analchem.3c03672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/10/2023] [Accepted: 10/12/2023] [Indexed: 10/28/2023]
Abstract
Technologies assessing the lipidomics, genomics, epigenomics, transcriptomics, and proteomics of tissue samples at single-cell resolution have deepened our understanding of physiology and pathophysiology at an unprecedented level of detail. However, the study of single-cell spatial metabolomics in undecalcified bones faces several significant challenges, such as the fragility of bone, which often requires decalcification or fixation leading to the degradation or removal of lipids and other molecules. As such, we describe a method for performing mass spectrometry imaging on undecalcified spine that is compatible with other spatial omics measurements. In brief, we use fresh-frozen rat spines and a system of carboxyl methylcellulose embedding, cryofilm, and polytetrafluoroethylene rollers to maintain tissue integrity while avoiding signal loss from variations in laser focus and artifacts from traditional tissue processing. This reveals various tissue types and lipidomic profiles of spinal regions at 10 μm spatial resolutions using matrix-assisted laser desorption/ionization mass spectrometry imaging. We expect this method to be adapted and applied to the analysis of the spinal cord, shedding light on the mechanistic aspects of cellular heterogeneity, development, and disease pathogenesis underlying different bone-related conditions and diseases. This study furthers the methodology for high spatial metabolomics of spines and adds to the collective efforts to achieve a holistic understanding of diseases via single-cell spatial multiomics.
Collapse
Affiliation(s)
- Kayle
J. Bender
- Department
of Chemistry, University of California,
Davis, One Shields Avenue, Davis, California 95616, United States
| | - Yongheng Wang
- Department
of Biomedical Engineering, University of
California, Davis, Davis, California 95616, United States
| | - Chuo Ying Zhai
- Department
of Chemistry, University of California,
Davis, One Shields Avenue, Davis, California 95616, United States
| | - Zoe Saenz
- Department
of Surgery, School of Medicine, University
of California, Davis, Sacramento, California 95817, United States
| | - Aijun Wang
- Center
for Surgical Bioengineering, Department of Surgery, School of Medicine, University of California, Davis, Sacramento, California 95817, United States
- Institute
for Pediatric Regenerative Medicine, Shriners
Hospital for Children Northern California, UC Davis School of Medicine, Sacramento, California 96817, United States
| | - Elizabeth K. Neumann
- Department
of Chemistry, University of California,
Davis, One Shields Avenue, Davis, California 95616, United States
| |
Collapse
|
26
|
Wang T, Jiang J, Liu K, Wang S, Xu T, Niu P, Ma J, Yin J, Liu T. Simultaneous bond-selective deuterium-based isotopic labeling sensing with disposable ultra-miniature CARS fiber probe. OPTICS EXPRESS 2023; 31:40717-40729. [PMID: 38041364 DOI: 10.1364/oe.505939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 11/02/2023] [Indexed: 12/03/2023]
Abstract
Deuterium-based isotopic labeling is an important technique for tracking cellular metabolism with the Raman signals analysis of low-wavenumber (LW) C-D bonds and high-wavenumber (HW) C-H bonds. We propose and demonstrate a disposable ultra-miniature fiber probe to detect LW and HW coherent anti-Stokes Raman scattering (CARS) spectra for deuterated compounds simultaneously and bond-selectively sensing. The 10.78 µm diameter disposable fiber probe, comprised of focusing taper as fiber probe head and time-domain walk-off eliminating fiber section with designed length, realizes wide-frequency-interval dual Stokes pulse delivering and focusing. The fiber probe enables quantitative concentration determination with resolution down to 11 mM. The chemical vibration modes of LW region C-D bonds and HW region C-H bonds of the mixture samples of organic compounds and their deuterated counterparts in a simulated cell are simultaneously excited and characterized. The CARS disposable fiber probe introduces a promising handle for in vivo biochemical detection based on isotopic labeling sensing.
Collapse
|
27
|
Feucherolles M, Le W, Bour J, Jacques C, Duplan H, Frache G. A Comprehensive Comparison of Tissue Processing Methods for High-Quality MALDI Imaging of Lipids in Reconstructed Human Epidermis. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023; 34:2469-2480. [PMID: 37843012 PMCID: PMC10623569 DOI: 10.1021/jasms.3c00185] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 09/27/2023] [Accepted: 09/29/2023] [Indexed: 10/17/2023]
Abstract
Matrix-assisted laser desorption/ionization (MALDI) mass spectrometry imaging (MSI) has become an important tool for skin analysis, as it allows the simultaneous detection and localization of diverse molecular species within a sample. The use of in vivo and ex vivo human skin models is costly and presents ethical issues; therefore, reconstructed human epidermis (RHE) models, which mimic the upper part of native human skin, represent a suitable alternative to investigate adverse effects of chemicals applied to the skin. However, there are few publications investigating the feasibility of using MALDI MSI on RHE models. Therefore, the aim of this study was to investigate the effect of sample preparation techniques, i.e., substrate, sample thickness, washing, and matrix recrystallization, on the quality of MALDI MSI for lipids analysis of the SkinEthic RHE model. Images were generated using an atmospheric pressure MALDI source coupled to a high-resolution mass spectrometer with a pixel size of 5 μm. Masses detected in a defined region of interest were analyzed and annotated using the LipostarMSI platform. The results indicated that the combination of (1) coated metallic substrates, such as APTES-coated stainless-steel plates, (2) tissue sections of 6 μm thickness, and (3) aqueous washing before HCCA matrix spraying (without recrystallization), resulted in images with a significant signal intensity as well as numerous m/z values. This refined methodology using AP-MALDI coupled to a high-resolution mass spectrometer should improve the current sample preparation workflow to evaluate changes in skin composition after application of dermatocosmetics.
Collapse
Affiliation(s)
- Maureen Feucherolles
- Luxembourg
Institute of Science and Technology (LIST), Molecular and Thermal Analysis, Materials Research
and Technology, L-4422 Belvaux, Luxembourg
| | - William Le
- Luxembourg
Institute of Science and Technology (LIST), Molecular and Thermal Analysis, Materials Research
and Technology, L-4422 Belvaux, Luxembourg
| | - Jérôme Bour
- Luxembourg
Institute of Science and Technology (LIST), Molecular and Thermal Analysis, Materials Research
and Technology, L-4422 Belvaux, Luxembourg
| | - Carine Jacques
- Pierre
Fabre Dermo-Cosmétique et Personal Care, Centre R&D Pierre Fabre, Avenue Hubert Curien, 31025 Toulouse Cedex 01, France
| | - Hélène Duplan
- Pierre
Fabre Dermo-Cosmétique et Personal Care, Centre R&D Pierre Fabre, Avenue Hubert Curien, 31025 Toulouse Cedex 01, France
| | - Gilles Frache
- Luxembourg
Institute of Science and Technology (LIST), Molecular and Thermal Analysis, Materials Research
and Technology, L-4422 Belvaux, Luxembourg
| |
Collapse
|
28
|
Greco F, Pardini LF, Botto A, McDonnell LA. Low-melting point agarose as embedding medium for MALDI mass spectrometry imaging and laser-capture microdissection-based proteomics. Sci Rep 2023; 13:18678. [PMID: 37907539 PMCID: PMC10618491 DOI: 10.1038/s41598-023-45799-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 10/24/2023] [Indexed: 11/02/2023] Open
Abstract
The combination of MALDI mass spectrometry imaging, laser-capture microdissection, and quantitative proteomics allows the identification and characterization of molecularly distinct tissue compartments. Such workflows are typically performed using consecutive tissue sections, and so reliable sectioning and mounting of high-quality tissue sections is a prerequisite of such investigations. Embedding media facilitate the sectioning process but can introduce contaminants which may adversely affect either the mass spectrometry imaging or proteomics analyses. Seven low-temperature embedding media were tested in terms of embedding temperature and cutting performance. The two media that provided the best results (5% gelatin and 2% low-melting point agarose) were compared with non-embedded tissue by both MALDI mass spectrometry imaging of lipids and laser-capture microdissection followed by bottom-up proteomics. Two out of the seven tested media (5% gelatin and 2% low-melting point agarose) provided the best performances on terms of mechanical properties. These media allowed for low-temperature embedding and for the collection of high-quality consecutive sections. Comparisons with non-embedded tissues revealed that both embedding media had no discernable effect on proteomics analysis; 5% gelatin showed a light ion suppression effect in the MALDI mass spectrometry imaging experiments, 2% agarose performed similarly to the non-embedded tissue. 2% low-melting point agarose is proposed for tissue embedding in experiments involving MALDI mass spectrometry imaging of lipids and laser-capture microdissection, proteomics of consecutive tissue sections.
Collapse
Affiliation(s)
- Francesco Greco
- Institute of Life Sciences, Sant'Anna School of Advanced Studies, Pisa, Italy
- Fondazione Toscana Gabriele Monasterio, Pisa, Italy
- Fondazione Pisana per la Scienza ONLUS, San Giuliano Terme (PI), Italy
| | - Luca Fidia Pardini
- Fondazione Pisana per la Scienza ONLUS, San Giuliano Terme (PI), Italy
- Department of Chemistry and Industrial Chemistry, University of Pisa, Pisa, Italy
| | - Asia Botto
- Fondazione Pisana per la Scienza ONLUS, San Giuliano Terme (PI), Italy
- Department of Chemistry and Industrial Chemistry, University of Pisa, Pisa, Italy
| | | |
Collapse
|
29
|
Chen Y, Liu Y, Li X, He Y, Li W, Peng Y, Zheng J. Recent Advances in Mass Spectrometry-Based Spatially Resolved Molecular Imaging of Drug Disposition and Metabolomics. Drug Metab Dispos 2023; 51:1273-1283. [PMID: 37295949 DOI: 10.1124/dmd.122.001069] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 05/04/2023] [Accepted: 05/17/2023] [Indexed: 06/12/2023] Open
Abstract
Mass spectrometric imaging is a nontargeted, tag-free, high-throughput, and highly responsive analytical approach. The highly accurate molecular visualization detection technology enables qualitative and quantitative analyses of biologic tissues or cells scanned by mass spectrometry in situ, extracting known and unknown multiple compounds, and simultaneously assessing relative contents of targeting molecules by monitoring their molecular ions and pinpointing the spatial locations of those molecules distributed. Five mass spectrometric imaging techniques and their characteristics are introduced in the review, including matrix-assisted laser desorption ionization mass spectrometry, secondary ion mass spectrometry, desorption electrospray ionization mass spectrometry, laser ablation electrospray ionization mass spectrometry, and laser ablation inductively coupled plasma mass spectrometry. The mass spectrometry-based techniques provide the possibility for spatial metabolomics with the capability of high throughput and precision detection. The approaches have been widely employed to spatially image not only metabolome of endogenous amino acids, peptides, proteins, neurotransmitters, and lipids but also the disposition of exogenous chemicals, such as pharmaceutical agents, environmental pollutants, toxicants, natural products, and heavy metals. The techniques also provide us with spatial distribution imaging of analytes in single cells, tissue microregions, organs, and whole animals. SIGNIFICANCE STATEMENT: The review article includes an overview of five commonly used mass spectrometers for spatial imaging and describes the advantages and disadvantages of each. Examples of the technology applications cover drug disposition, diseases, and omics. Technical aspects of relative and absolute quantification by mass spectrometric imaging and challenges for future new applications are discussed as well. The reviewed knowledge may benefit the development of new drugs and provide a better understanding of biochemical processes related to physiology and diseases.
Collapse
Affiliation(s)
- Yu Chen
- State Key Laboratory of Functions and Applications of Medicinal Plants, Key Laboratory of Pharmaceutics of Guizhou Province, Guizhou Medical University, Guiyang, Guizhou, P.R. China (Y.C., Y.L., X.L., Y.H., W.L.); School of Basic Medicine, School of Pharmacy, Guizhou Medical University, Guiyang, Guizhou, P.R. China (Y.C., Y.L., X.L., Y.H., W.L.); Division of Pain Management, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, P.R. China (Y.C.); and Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, P.R. China (Y.P., J.Z.)
| | - Ying Liu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Key Laboratory of Pharmaceutics of Guizhou Province, Guizhou Medical University, Guiyang, Guizhou, P.R. China (Y.C., Y.L., X.L., Y.H., W.L.); School of Basic Medicine, School of Pharmacy, Guizhou Medical University, Guiyang, Guizhou, P.R. China (Y.C., Y.L., X.L., Y.H., W.L.); Division of Pain Management, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, P.R. China (Y.C.); and Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, P.R. China (Y.P., J.Z.)
| | - Ximei Li
- State Key Laboratory of Functions and Applications of Medicinal Plants, Key Laboratory of Pharmaceutics of Guizhou Province, Guizhou Medical University, Guiyang, Guizhou, P.R. China (Y.C., Y.L., X.L., Y.H., W.L.); School of Basic Medicine, School of Pharmacy, Guizhou Medical University, Guiyang, Guizhou, P.R. China (Y.C., Y.L., X.L., Y.H., W.L.); Division of Pain Management, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, P.R. China (Y.C.); and Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, P.R. China (Y.P., J.Z.)
| | - Yan He
- State Key Laboratory of Functions and Applications of Medicinal Plants, Key Laboratory of Pharmaceutics of Guizhou Province, Guizhou Medical University, Guiyang, Guizhou, P.R. China (Y.C., Y.L., X.L., Y.H., W.L.); School of Basic Medicine, School of Pharmacy, Guizhou Medical University, Guiyang, Guizhou, P.R. China (Y.C., Y.L., X.L., Y.H., W.L.); Division of Pain Management, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, P.R. China (Y.C.); and Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, P.R. China (Y.P., J.Z.)
| | - Weiwei Li
- State Key Laboratory of Functions and Applications of Medicinal Plants, Key Laboratory of Pharmaceutics of Guizhou Province, Guizhou Medical University, Guiyang, Guizhou, P.R. China (Y.C., Y.L., X.L., Y.H., W.L.); School of Basic Medicine, School of Pharmacy, Guizhou Medical University, Guiyang, Guizhou, P.R. China (Y.C., Y.L., X.L., Y.H., W.L.); Division of Pain Management, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, P.R. China (Y.C.); and Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, P.R. China (Y.P., J.Z.)
| | - Ying Peng
- State Key Laboratory of Functions and Applications of Medicinal Plants, Key Laboratory of Pharmaceutics of Guizhou Province, Guizhou Medical University, Guiyang, Guizhou, P.R. China (Y.C., Y.L., X.L., Y.H., W.L.); School of Basic Medicine, School of Pharmacy, Guizhou Medical University, Guiyang, Guizhou, P.R. China (Y.C., Y.L., X.L., Y.H., W.L.); Division of Pain Management, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, P.R. China (Y.C.); and Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, P.R. China (Y.P., J.Z.)
| | - Jiang Zheng
- State Key Laboratory of Functions and Applications of Medicinal Plants, Key Laboratory of Pharmaceutics of Guizhou Province, Guizhou Medical University, Guiyang, Guizhou, P.R. China (Y.C., Y.L., X.L., Y.H., W.L.); School of Basic Medicine, School of Pharmacy, Guizhou Medical University, Guiyang, Guizhou, P.R. China (Y.C., Y.L., X.L., Y.H., W.L.); Division of Pain Management, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, P.R. China (Y.C.); and Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, P.R. China (Y.P., J.Z.)
| |
Collapse
|
30
|
Bender KJ, Wang Y, Zhai CY, Saenz Z, Wang A, Neumann EK. Spatial lipidomics of fresh-frozen spines. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.23.554488. [PMID: 37662353 PMCID: PMC10473750 DOI: 10.1101/2023.08.23.554488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Technologies assessing the lipidomics, genomics, epigenomics, transcriptomics, and proteomics of tissue samples at single-cell resolution have deepened our understanding of physiology and pathophysiology at an unprecedented level of detail. However, the study of single-cell spatial metabolomics in undecalcified bones faces several significant challenges, such as the fragility of bone which often requires decalcification or fixation leading to the degradation or removal of lipids and other molecules and. As such, we describe a method for performing mass spectrometry imaging on undecalcified spine that is compatible with other spatial omics measurements. In brief, we use fresh-freeze rat spines and a system of carboxyl methylcellulose embedding, cryofilm, and polytetrafluoroethylene rollers to maintain tissue integrity, while avoiding signal loss from variations in laser focus and artifacts from traditional tissue processing. This reveals various tissue types and lipidomic profiles of spinal regions at 10 μm spatial resolutions using matrix-assisted laser desorption/ionization mass spectrometry imaging. We expect this method to be adapted and applied to the analysis of spinal cord, shedding light on the mechanistic aspects of cellular heterogeneity, development, and disease pathogenesis underlying different bone-related conditions and diseases. This study furthers the methodology for high spatial metabolomics of spines, as well as adds to the collective efforts to achieve a holistic understanding of diseases via single-cell spatial multi-omics.
Collapse
Affiliation(s)
- Kayle J. Bender
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, CA 95616, United States
| | - Yongheng Wang
- Department of Biomedical Engineering, University of California, Davis, Davis, CA 95616, United States
| | - Chuo Ying Zhai
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, CA 95616, United States
| | - Zoe Saenz
- Department of Surgery, University of California, Davis, School of Medicine, Sacramento, CA 95817, United States
| | - Aijun Wang
- Department of Biomedical Engineering, University of California, Davis, Davis, CA 95616, United States
- Department of Surgery, University of California, Davis, School of Medicine, Sacramento, CA 95817, United States
- Institute for Pediatric Regenerative Medicine, Shriners Hospital for Children Northern California, UC Davis School of Medicine, Sacramento, CA 96817, United States
| | - Elizabeth K. Neumann
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, CA 95616, United States
| |
Collapse
|
31
|
Maciel LÍL, Bernardo RA, Martins RO, Batista Junior AC, Oliveira JVA, Chaves AR, Vaz BG. Desorption electrospray ionization and matrix-assisted laser desorption/ionization as imaging approaches for biological samples analysis. Anal Bioanal Chem 2023:10.1007/s00216-023-04783-8. [PMID: 37329466 DOI: 10.1007/s00216-023-04783-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/19/2023] [Accepted: 05/30/2023] [Indexed: 06/19/2023]
Abstract
The imaging of biological tissues can offer valuable information about the sample composition, which improves the understanding of analyte distribution in such complex samples. Different approaches using mass spectrometry imaging (MSI), also known as imaging mass spectrometry (IMS), enabled the visualization of the distribution of numerous metabolites, drugs, lipids, and glycans in biological samples. The high sensitivity and multiple analyte evaluation/visualization in a single sample provided by MSI methods lead to various advantages and overcome drawbacks of classical microscopy techniques. In this context, the application of MSI methods, such as desorption electrospray ionization-MSI (DESI-MSI) and matrix-assisted laser desorption/ionization-MSI (MALDI-MSI), has significantly contributed to this field. This review discusses the evaluation of exogenous and endogenous molecules in biological samples using DESI and MALDI imaging. It offers rare technical insights not commonly found in the literature (scanning speed and geometric parameters), making it a comprehensive guide for applying these techniques step-by-step. Furthermore, we provide an in-depth discussion of recent research findings on using these methods to study biological tissues.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Boniek Gontijo Vaz
- Instituto de Química, Universidade Federal de Goiás, Goiânia, GO, 74690-900, Brazil.
| |
Collapse
|
32
|
Lin J, Yun K, Sun Q, Xiang P, Wu L, Yang S, Dun J, Fu S, Chen H. How to sample a seizure plant: the role of the visualization spatial distribution analysis of Lophophora williamsii as an example. Forensic Sci Res 2023; 8:140-151. [PMID: 37621449 PMCID: PMC10445667 DOI: 10.1093/fsr/owad014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 05/16/2023] [Indexed: 08/26/2023] Open
Abstract
Natural compounds in plants are often unevenly distributed, and determining the best sampling locations to obtain the most representative results is technically challenging. Matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) can provide the basis for formulating sampling guideline. For a succulent plant sample, ensuring the authenticity and in situ nature of the spatial distribution analysis results during MSI analysis also needs to be thoroughly considered. In this study, we developed a well-established and reliable MALDI-MSI method based on preservation methods, slice conditions, auxiliary matrices, and MALDI parameters to detect and visualize the spatial distribution of mescaline in situ in Lophophora williamsii. The MALDI-MSI results were validated using liquid chromatography-tandem mass spectrometry. Low-temperature storage at -80°C and drying of "bookmarks" were the appropriate storage methods for succulent plant samples and their flower samples, and cutting into 40 μm thick sections at -20°C using gelatin as the embedding medium is the appropriate sectioning method. The use of DCTB (trans-2-[3-(4-tert-butylphenyl)-2-methyl-2-propenylidene]malononitrile) as an auxiliary matrix and a laser intensity of 45 are favourable MALDI parameter conditions for mescaline analysis. The region of interest semi-quantitative analysis revealed that mescaline is concentrated in the epidermal tissues of L. williamsii as well as in the meristematic tissues of the crown. The study findings not only help to provide a basis for determining the best sampling locations for mescaline in L. williamsii, but they also provide a reference for the optimization of storage and preparation conditions for raw plant organs before MALDI detection. Key Points An accurate in situ MSI method for fresh water-rich succulent plants was obtained based on multi-parameter comparative experiments.Spatial imaging analysis of mescaline in Lophophora williamsii was performed using the above method.Based on the above results and previous results, a sampling proposal for forensic medicine practice is tentatively proposed.
Collapse
Affiliation(s)
- Jiaman Lin
- School of Forensic Medicine, Shanxi Medical University, Key Laboratory of Forensic Medicine in Shanxi Province, Key Laboratory of Forensic Toxicology of Ministry of Public Security, Jinzhong, China
- Department of Forensic Toxicology, Shanghai Key Laboratory of Forensic Medicine, Academy of Forensic Science, Shanghai, China
| | - Keming Yun
- School of Forensic Medicine, Shanxi Medical University, Key Laboratory of Forensic Medicine in Shanxi Province, Key Laboratory of Forensic Toxicology of Ministry of Public Security, Jinzhong, China
| | - Qiran Sun
- Department of Forensic Toxicology, Shanghai Key Laboratory of Forensic Medicine, Academy of Forensic Science, Shanghai, China
| | - Ping Xiang
- Department of Forensic Toxicology, Shanghai Key Laboratory of Forensic Medicine, Academy of Forensic Science, Shanghai, China
| | - Lina Wu
- School of Forensic Medicine, Shanxi Medical University, Key Laboratory of Forensic Medicine in Shanxi Province, Key Laboratory of Forensic Toxicology of Ministry of Public Security, Jinzhong, China
- Department of Forensic Toxicology, Shanghai Key Laboratory of Forensic Medicine, Academy of Forensic Science, Shanghai, China
| | - Shuo Yang
- Department of Forensic Toxicology, Shanghai Key Laboratory of Forensic Medicine, Academy of Forensic Science, Shanghai, China
| | | | - Shanlin Fu
- School of Forensic Medicine, Shanxi Medical University, Key Laboratory of Forensic Medicine in Shanxi Province, Key Laboratory of Forensic Toxicology of Ministry of Public Security, Jinzhong, China
| | - Hang Chen
- Department of Forensic Toxicology, Shanghai Key Laboratory of Forensic Medicine, Academy of Forensic Science, Shanghai, China
| |
Collapse
|
33
|
Liu Y, Wu Z, Armstrong DW, Wolosker H, Zheng Y. Detection and analysis of chiral molecules as disease biomarkers. Nat Rev Chem 2023; 7:355-373. [PMID: 37117811 PMCID: PMC10175202 DOI: 10.1038/s41570-023-00476-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/09/2023] [Indexed: 04/30/2023]
Abstract
The chirality of small metabolic molecules is important in controlling physiological processes and indicating the health status of humans. Abnormal enantiomeric ratios of chiral molecules in biofluids and tissues occur in many diseases, including cancers and kidney and brain diseases. Thus, chiral small molecules are promising biomarkers for disease diagnosis, prognosis, adverse drug-effect monitoring, pharmacodynamic studies and personalized medicine. However, it remains difficult to achieve cost-effective and reliable analysis of small chiral molecules in clinical procedures, in part owing to their large variety and low concentration. In this Review, we describe current and emerging techniques that detect and quantify small-molecule enantiomers and their biological importance.
Collapse
Affiliation(s)
- Yaoran Liu
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Zilong Wu
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX, USA.
- Texas Materials Institute, The University of Texas at Austin, Austin, TX, USA.
| | - Daniel W Armstrong
- Department of Chemistry & Biochemistry, University of Texas at Arlington, Arlington, TX, USA.
| | - Herman Wolosker
- Department of Biochemistry, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel.
| | - Yuebing Zheng
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, TX, USA.
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX, USA.
- Texas Materials Institute, The University of Texas at Austin, Austin, TX, USA.
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
34
|
Yang C, Wu R, Liu H, Qin L, Chen L, Xu H, Hu H, Li J, Guo H, Shi Y, Jiang D, Hao Q, Feng J, Zhou Y, Liu X, Li G, Wang X. Polyacrylamide gel as a new embedding medium for the enhancement of metabolite MALDI imaging. Chem Commun (Camb) 2023; 59:3842-3845. [PMID: 36883606 DOI: 10.1039/d2cc07075h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
In this study, polyacrylamide gel (PAAG) was successfully used as a new embedding medium to provide the more effective maintenance of biological tissues during the sectioning process, enhancing the tissue imaging of metabolites via matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI). Herein, PAAG, agarose, gelatin, optimal cutting temperature compound (OCT), and ice media were used to embed rat liver and Atlantic salmon (Salmo salar) eyeball samples. These embedded tissues were then sectioned into thin slices and thaw-mounted on conductive microscope glass slides for MALDI-MSI detection to evaluate the embedding effects. The results showed that PAAG embedding has characteristics superior to those of commonly-used embedding media (e.g., agarose, gelatin, OCT, and ice) with the advantages of one-step operation without heating, a better performance of morphology maintenance, the absence of PAAG polymer-ion-related interference below m/z 2000, and the more efficient in situ ionization of metabolites, providing a significant enhancement of both the numbers and intensities of the metabolite ion signals. Our study demonstrates the potential of PAAG embedding as a standard practice for metabolite MALDI tissue imaging, which will lead to an expanded application scope of MALDI-MSI.
Collapse
Affiliation(s)
- Chenyu Yang
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics, Minzu University of China, State Ethnic Affairs Commission, Beijing, 100081, China. .,Centre for Imaging & Systems Biology, College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Ran Wu
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics, Minzu University of China, State Ethnic Affairs Commission, Beijing, 100081, China. .,Centre for Imaging & Systems Biology, College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Haiqiang Liu
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics, Minzu University of China, State Ethnic Affairs Commission, Beijing, 100081, China. .,Centre for Imaging & Systems Biology, College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Liang Qin
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics, Minzu University of China, State Ethnic Affairs Commission, Beijing, 100081, China. .,Centre for Imaging & Systems Biology, College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Lulu Chen
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics, Minzu University of China, State Ethnic Affairs Commission, Beijing, 100081, China. .,Centre for Imaging & Systems Biology, College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Hualei Xu
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics, Minzu University of China, State Ethnic Affairs Commission, Beijing, 100081, China. .,Centre for Imaging & Systems Biology, College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Hao Hu
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics, Minzu University of China, State Ethnic Affairs Commission, Beijing, 100081, China. .,Centre for Imaging & Systems Biology, College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Jinrong Li
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics, Minzu University of China, State Ethnic Affairs Commission, Beijing, 100081, China. .,Centre for Imaging & Systems Biology, College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Hua Guo
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics, Minzu University of China, State Ethnic Affairs Commission, Beijing, 100081, China. .,Centre for Imaging & Systems Biology, College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Yiyang Shi
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics, Minzu University of China, State Ethnic Affairs Commission, Beijing, 100081, China. .,Centre for Imaging & Systems Biology, College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Dongxu Jiang
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics, Minzu University of China, State Ethnic Affairs Commission, Beijing, 100081, China. .,Centre for Imaging & Systems Biology, College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Qichen Hao
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics, Minzu University of China, State Ethnic Affairs Commission, Beijing, 100081, China. .,Centre for Imaging & Systems Biology, College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Jinchao Feng
- Centre for Imaging & Systems Biology, College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Yijun Zhou
- Centre for Imaging & Systems Biology, College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Xiangyi Liu
- Department of Laboratory Medicine, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China.
| | - Gaopeng Li
- General Surgery Department, Shanxi Bethune Hospital, Taiyun, 030032, China.
| | - Xiaodong Wang
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics, Minzu University of China, State Ethnic Affairs Commission, Beijing, 100081, China. .,Centre for Imaging & Systems Biology, College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| |
Collapse
|
35
|
Phetsanthad A, Vu NQ, Yu Q, Buchberger AR, Chen Z, Keller C, Li L. Recent advances in mass spectrometry analysis of neuropeptides. MASS SPECTROMETRY REVIEWS 2023; 42:706-750. [PMID: 34558119 PMCID: PMC9067165 DOI: 10.1002/mas.21734] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 08/22/2021] [Accepted: 08/28/2021] [Indexed: 05/08/2023]
Abstract
Due to their involvement in numerous biochemical pathways, neuropeptides have been the focus of many recent research studies. Unfortunately, classic analytical methods, such as western blots and enzyme-linked immunosorbent assays, are extremely limited in terms of global investigations, leading researchers to search for more advanced techniques capable of probing the entire neuropeptidome of an organism. With recent technological advances, mass spectrometry (MS) has provided methodology to gain global knowledge of a neuropeptidome on a spatial, temporal, and quantitative level. This review will cover key considerations for the analysis of neuropeptides by MS, including sample preparation strategies, instrumental advances for identification, structural characterization, and imaging; insightful functional studies; and newly developed absolute and relative quantitation strategies. While many discoveries have been made with MS, the methodology is still in its infancy. Many of the current challenges and areas that need development will also be highlighted in this review.
Collapse
Affiliation(s)
- Ashley Phetsanthad
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706, USA
| | - Nhu Q. Vu
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706, USA
| | - Qing Yu
- School of Pharmacy, University of Wisconsin-Madison, 777 Highland Avenue, Madison, WI 53705, USA
| | - Amanda R. Buchberger
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706, USA
| | - Zhengwei Chen
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706, USA
| | - Caitlin Keller
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706, USA
| | - Lingjun Li
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706, USA
- School of Pharmacy, University of Wisconsin-Madison, 777 Highland Avenue, Madison, WI 53705, USA
| |
Collapse
|
36
|
Shanmugaraj N, Rutten T, Svatoš A, Schnurbusch T, Mock HP. Fast and Reproducible Matrix Deposition for MALDI Mass Spectrometry Imaging with Improved Glass Sublimation Setup. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023; 34:513-517. [PMID: 36735868 DOI: 10.1021/jasms.2c00301] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Sublimation is one of the preferred methods of choice for matrix deposition in high spatial resolution MALDI mass spectrometry imaging (MALDI-MSI) experiments. However, reproducibility and time are the major concerns for this setup. Here we present a lab-made glass sublimator with significant improvements in fine control of the vacuum with real-time monitoring and a rapid sublimation process of only 22 min. This method yielded reproducible homogeneous matrix crystals of <1 μm on the sample surface. MALDI-MSI was performed in tissue sections of barley inflorescence meristems at 15 μm spatial resolution, thus demonstrating its efficiency. Overall, we believe these simple yet effective new modifications can be easily adapted to the standard glass sublimation devices to achieve highly reproducible matrix deposition for high spatial resolution MALDI-MSI.
Collapse
Affiliation(s)
- Nandhakumar Shanmugaraj
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstraße 3, OT Gatersleben, 06466, Seeland, Germany
| | - Twan Rutten
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstraße 3, OT Gatersleben, 06466, Seeland, Germany
| | - Aleš Svatoš
- Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, 07745, Jena, Germany
| | - Thorsten Schnurbusch
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstraße 3, OT Gatersleben, 06466, Seeland, Germany
- Institute of Agricultural and Nutritional Sciences, Faculty of Natural Sciences III, Martin Luther University Halle-Wittenberg, Universitätsplatz 10, 06108 Halle (Saale), Germany
| | - Hans-Peter Mock
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstraße 3, OT Gatersleben, 06466, Seeland, Germany
| |
Collapse
|
37
|
Zhang YX, Zhang YD, Shi YP. Tracking Spatial Distribution Alterations of Multiple Endogenous Molecules during Lentil Germination by MALDI Mass Spectrometry Imaging. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:2124-2133. [PMID: 36652673 DOI: 10.1021/acs.jafc.2c07513] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Exploring the spatial distribution alterations of metabolites during lentil germination is essential to reveal the nutritional value, physiological function, and metabolic pathway in lentils. Hence, an effective matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) method was established for the first time to visualize the spatial localization changes of 53 metabolites in lentils during germination for 12-72 h. The results of MALDI-MSI analysis showed that phosphatidylinositols, phosphatidylethanolamines, phosphatidylglycerols, and phosphatidic acids were mainly located in the cotyledons of lentils throughout the germination process, while triacylglycerols, phosphatidylcholines, diacylglycerols, amino acids, choline, and spermine spread throughout the lentil tissue at the initial stage of germination and gradually presented obvious distribution characteristics in the radicle with increasing germination time. Heat map analysis was used to visualize the correlations between lipid content changes and germination time, which supported the use of germinated lentils as nutraceutical or functional food.
Collapse
Affiliation(s)
- Yan-Xia Zhang
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Chinese Academy of Sciences, Lanzhou Institute of Chemical Physics, Lanzhou 730000, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yi-Da Zhang
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Chinese Academy of Sciences, Lanzhou Institute of Chemical Physics, Lanzhou 730000, P. R. China
| | - Yan-Ping Shi
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Chinese Academy of Sciences, Lanzhou Institute of Chemical Physics, Lanzhou 730000, P. R. China
| |
Collapse
|
38
|
Hou Y, Gao Y, Guo S, Zhang Z, Chen R, Zhang X. Applications of spatially resolved omics in the field of endocrine tumors. Front Endocrinol (Lausanne) 2023; 13:993081. [PMID: 36704039 PMCID: PMC9873308 DOI: 10.3389/fendo.2022.993081] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 12/15/2022] [Indexed: 01/11/2023] Open
Abstract
Endocrine tumors derive from endocrine cells with high heterogeneity in function, structure and embryology, and are characteristic of a marked diversity and tissue heterogeneity. There are still challenges in analyzing the molecular alternations within the heterogeneous microenvironment for endocrine tumors. Recently, several proteomic, lipidomic and metabolomic platforms have been applied to the analysis of endocrine tumors to explore the cellular and molecular mechanisms of tumor genesis, progression and metastasis. In this review, we provide a comprehensive overview of spatially resolved proteomics, lipidomics and metabolomics guided by mass spectrometry imaging and spatially resolved microproteomics directed by microextraction and tandem mass spectrometry. In this regard, we will discuss different mass spectrometry imaging techniques, including secondary ion mass spectrometry, matrix-assisted laser desorption/ionization and desorption electrospray ionization. Additionally, we will highlight microextraction approaches such as laser capture microdissection and liquid microjunction extraction. With these methods, proteins can be extracted precisely from specific regions of the endocrine tumor. Finally, we compare applications of proteomic, lipidomic and metabolomic platforms in the field of endocrine tumors and outline their potentials in elucidating cellular and molecular processes involved in endocrine tumors.
Collapse
Affiliation(s)
- Yinuo Hou
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Yan Gao
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Shudi Guo
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Zhibin Zhang
- General Surgery, Tianjin First Center Hospital, Tianjin, China
| | - Ruibing Chen
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Xiangyang Zhang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| |
Collapse
|
39
|
Qin L, Han J, Wang C, Xu B, Tan D, He S, Guo L, Bo X, Xie J. Key defatting tissue pretreatment protocol for enhanced MALDI MS Imaging of peptide biomarkers visualization in the castor beans and their attribution applications. FRONTIERS IN PLANT SCIENCE 2022; 13:1083901. [PMID: 36589060 PMCID: PMC9800866 DOI: 10.3389/fpls.2022.1083901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 11/29/2022] [Indexed: 06/17/2023]
Abstract
INTRODUCTION Castor bean or ricin-induced intoxication or terror events have threatened public security and social safety. Potential resources or materials include beans, raw extraction products, crude toxins, and purified ricin. The traceability of the origins of castor beans is thus essential for forensic and anti-terror investigations. As a new imaging technique with label-free, rapid, and high throughput features, matrix-assisted laser desorption ionization mass spectrometry imaging (MALDI-MSI) has been gradually stressed in plant research. However, sample preparation approaches for plant tissues still face severe challenges, especially for some lipid-rich, water-rich, or fragile tissues. Proper tissue washing procedures would be pivotal, but little information is known until now. METHODS For castor beans containing plenty of lipids that were fragile when handled, we developed a comprehensive tissue pretreatment protocol. Eight washing procedures aimed at removing lipids were discussed in detail. We then constructed a robust MALDI-MSI method to enhance the detection sensitivity of RCBs in castor beans. RESULTS AND DISCUSSION A modified six-step washing procedure was chosen as the most critical parameter regarding the MSI visualization of peptides. The method was further applied to visualize and quantify the defense peptides, Ricinus communis biomarkers (RCBs) in castor bean tissue sections from nine different geographic sources from China, Pakistan, and Ethiopia. Multivariate statistical models, including deep learning network, revealed a valuable classification clue concerning nationality and altitude.
Collapse
Affiliation(s)
- Luyuan Qin
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing, China
| | - Junshan Han
- Department of Bioinformatics, Institute of Health Service and Transfusion Medicine, Beijing, China
| | - Chuang Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing, China
- Ministry of Education Key Laboratory of Ethnic Medicine, College of Pharmacy, Minzu University of China, Beijing, China
| | - Bin Xu
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing, China
| | - Deyun Tan
- Institute of Cash Crop Research, Zibo Academy of Agricultural Sciences, Zibo, China
| | - Song He
- Department of Bioinformatics, Institute of Health Service and Transfusion Medicine, Beijing, China
| | - Lei Guo
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing, China
| | - Xiaochen Bo
- Department of Bioinformatics, Institute of Health Service and Transfusion Medicine, Beijing, China
| | - Jianwei Xie
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing, China
| |
Collapse
|
40
|
Lukowski JK, Olson H, Velickovic M, Wang J, Kyle JE, Kim YM, Williams SM, Zhu Y, Huyck HL, McGraw MD, Poole C, Rogers L, Misra R, Alexandrov T, Ansong C, Pryhuber GS, Clair G, Adkins JN, Carson JP, Anderton CR. An optimized approach and inflation media for obtaining complimentary mass spectrometry-based omics data from human lung tissue. Front Mol Biosci 2022; 9:1022775. [PMID: 36465564 PMCID: PMC9709465 DOI: 10.3389/fmolb.2022.1022775] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 11/02/2022] [Indexed: 04/23/2024] Open
Abstract
Human disease states are biomolecularly multifaceted and can span across phenotypic states, therefore it is important to understand diseases on all levels, across cell types, and within and across microanatomical tissue compartments. To obtain an accurate and representative view of the molecular landscape within human lungs, this fragile tissue must be inflated and embedded to maintain spatial fidelity of the location of molecules and minimize molecular degradation for molecular imaging experiments. Here, we evaluated agarose inflation and carboxymethyl cellulose embedding media and determined effective tissue preparation protocols for performing bulk and spatial mass spectrometry-based omics measurements. Mass spectrometry imaging methods were optimized to boost the number of annotatable molecules in agarose inflated lung samples. This optimized protocol permitted the observation of unique lipid distributions within several airway regions in the lung tissue block. Laser capture microdissection of these airway regions followed by high-resolution proteomic analysis allowed us to begin linking the lipidome with the proteome in a spatially resolved manner, where we observed proteins with high abundance specifically localized to the airway regions. We also compared our mass spectrometry results to lung tissue samples preserved using two other inflation/embedding media, but we identified several pitfalls with the sample preparation steps using this preservation method. Overall, we demonstrated the versatility of the inflation method, and we can start to reveal how the metabolome, lipidome, and proteome are connected spatially in human lungs and across disease states through a variety of different experiments.
Collapse
Affiliation(s)
| | - Heather Olson
- Pacific Northwest National Laboratory (PNNL), Richland, WA, United States
| | - Marija Velickovic
- Pacific Northwest National Laboratory (PNNL), Richland, WA, United States
| | - Juan Wang
- Pacific Northwest National Laboratory (PNNL), Richland, WA, United States
| | - Jennifer E. Kyle
- Pacific Northwest National Laboratory (PNNL), Richland, WA, United States
| | - Young-Mo Kim
- Pacific Northwest National Laboratory (PNNL), Richland, WA, United States
| | - Sarah M. Williams
- Pacific Northwest National Laboratory (PNNL), Richland, WA, United States
| | - Ying Zhu
- Pacific Northwest National Laboratory (PNNL), Richland, WA, United States
| | - Heidi L. Huyck
- Department of Pediatrics, University of Rochester Medical Center, Rochester, NY, United States
| | - Matthew D. McGraw
- Department of Pediatrics, University of Rochester Medical Center, Rochester, NY, United States
| | - Cory Poole
- Department of Pediatrics, University of Rochester Medical Center, Rochester, NY, United States
| | - Lisa Rogers
- Department of Pediatrics, University of Rochester Medical Center, Rochester, NY, United States
| | - Ravi Misra
- Department of Pediatrics, University of Rochester Medical Center, Rochester, NY, United States
| | - Theodore Alexandrov
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Charles Ansong
- Pacific Northwest National Laboratory (PNNL), Richland, WA, United States
| | - Gloria S. Pryhuber
- Department of Pediatrics, University of Rochester Medical Center, Rochester, NY, United States
| | - Geremy Clair
- Pacific Northwest National Laboratory (PNNL), Richland, WA, United States
| | - Joshua N. Adkins
- Pacific Northwest National Laboratory (PNNL), Richland, WA, United States
| | - James P. Carson
- Texas Advanced Computing Center (TACC), University of Texas at Austin, Austin, TX, United States
| | | |
Collapse
|
41
|
Next Generation Digital Pathology: Emerging Trends and Measurement Challenges for Molecular Pathology. JOURNAL OF MOLECULAR PATHOLOGY 2022. [DOI: 10.3390/jmp3030014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Digital pathology is revolutionising the analysis of histological features and is becoming more and more widespread in both the clinic and research. Molecular pathology extends the tissue morphology information provided by conventional histopathology by providing spatially resolved molecular information to complement the structural information provided by histopathology. The multidimensional nature of the molecular data poses significant challenge for data processing, mining, and analysis. One of the key challenges faced by new and existing pathology practitioners is how to choose the most suitable molecular pathology technique for a given diagnosis. By providing a comparison of different methods, this narrative review aims to introduce the field of molecular pathology, providing a high-level overview of many different methods. Since each pixel of an image contains a wealth of molecular information, data processing in molecular pathology is more complex. The key data processing steps and variables, and their effect on the data, are also discussed.
Collapse
|
42
|
Nwabufo CK, Aigbogun OP. The Role of Mass Spectrometry Imaging in Pharmacokinetic Studies. Xenobiotica 2022; 52:811-827. [PMID: 36048000 DOI: 10.1080/00498254.2022.2119900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
Although liquid chromatography-tandem mass spectrometry is the gold standard analytical platform for the quantification of drugs, metabolites, and biomarkers in biological samples, it cannot localize them in target tissues.The localization and quantification of drugs and/or their associated metabolites in target tissues is a more direct measure of bioavailability, biodistribution, efficacy, and regional toxicity compared to the traditional substitute studies using plasma.Therefore, combining high spatial resolution imaging functionality with the superior selectivity and sensitivity of mass spectrometry into one analytical technique will be a valuable tool for targeted localization and quantification of drugs, metabolites, and biomarkers.Mass spectrometry imaging (MSI) is a tagless analytical technique that allows for the direct localization and quantification of drugs, metabolites, and biomarkers in biological tissues, and has been used extensively in pharmaceutical research.The overall goal of this current review is to provide a detailed description of the working principle of MSI and its application in pharmacokinetic studies encompassing absorption, distribution, metabolism, excretion, and toxicity processes, followed by a discussion of the strategies for addressing the challenges associated with the functional utility of MSI in pharmacokinetic studies that support drug development.
Collapse
Affiliation(s)
- Chukwunonso K Nwabufo
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada
| | - Omozojie P Aigbogun
- Drug Discovery and Development Research Group, College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, Canada.,Department of Chemistry, University of Saskatchewan, Saskatoon, Canada
| |
Collapse
|
43
|
Lusk HJ, Levy SE, Bergsten TM, Burdette JE, Sanchez LM. Home-Built Spinning Apparatus for Drying Agarose-Based Imaging Mass Spectrometry Samples. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:1325-1328. [PMID: 35640101 PMCID: PMC9262851 DOI: 10.1021/jasms.2c00044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Matrix-assisted laser desorption/ionization (MALDI) imaging mass spectrometry (IMS) is a useful technique for mapping the spatial distribution of molecules across biological samples. Sample preparation is crucial for MALDI-IMS; samples must be flat, dry, and cocrystallized with a matrix prior to analysis. Agarose-based samples can be difficult to consistently prepare as they are susceptible to environmental changes, which can lead to inconsistent drying and wrinkling on the sample surface. Small height differences may cause low ionization of target analytes or introduce artifacts in imaging data depending on the instrument used for analysis. To overcome the variations, a home-built robotic spinner was constructed and applied to agarose-based samples. This robotic spinner is inexpensive and easy to assemble, and when it was applied to agarose-based samples, accelerated the drying process and reduced wrinkles, improving the overall quality of the resulting IMS data.
Collapse
Affiliation(s)
- Hannah J. Lusk
- Department of Chemistry and Biochemistry, University of California Santa Cruz, 1156 High St, Santa Cruz, CA 95064, United States
| | - Sarah E. Levy
- Department of Chemistry and Biochemistry, University of California Santa Cruz, 1156 High St, Santa Cruz, CA 95064, United States
| | - Tova M. Bergsten
- Department of Pharmaceutical Sciences, University of Illinois at Chicago College of Pharmacy, 900 S Ashland Ave, Chicago IL 60607, United States
| | - Joanna E. Burdette
- Department of Pharmaceutical Sciences, University of Illinois at Chicago College of Pharmacy, 900 S Ashland Ave, Chicago IL 60607, United States
| | - Laura M. Sanchez
- Department of Chemistry and Biochemistry, University of California Santa Cruz, 1156 High St, Santa Cruz, CA 95064, United States
- Corresponding author:
| |
Collapse
|
44
|
Tiquet M, La Rocca R, Kirnbauer S, Zoratto S, Van Kruining D, Quinton L, Eppe G, Martinez-Martinez P, Marchetti-Deschmann M, De Pauw E, Far J. FT-ICR Mass Spectrometry Imaging at Extreme Mass Resolving Power Using a Dynamically Harmonized ICR Cell with 1ω or 2ω Detection. Anal Chem 2022; 94:9316-9326. [PMID: 35604839 PMCID: PMC9260710 DOI: 10.1021/acs.analchem.2c00754] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 05/09/2022] [Indexed: 12/30/2022]
Abstract
MALDI mass spectrometry imaging (MALDI MSI) is a powerful analytical method for achieving 2D localization of compounds from thin sections of typically but not exclusively biological samples. The dynamically harmonized ICR cell (ParaCell) was recently introduced to achieve extreme spectral resolution capable of providing the isotopic fine structure of ions detected in complex samples. The latest improvement in the ICR technology also includes 2ω detection, which significantly reduces the transient time while preserving the nominal mass resolving power of the ICR cell. High-resolution MS images acquired on FT-ICR instruments equipped with 7T and 9.4T superconducting magnets and the dynamically harmonized ICR cell operating at suboptimal parameters suffered severely from the pixel-to-pixel shifting of m/z peaks due to space-charge effects. The resulting profile average mass spectra have depreciated mass measurement accuracy and mass resolving power under the instrument specifications that affect the confidence level of the identified ions. Here, we propose an analytical workflow based on the monitoring of the total ion current to restrain the pixel-to-pixel m/z shift. Adjustment of the laser parameters is proposed to maintain high spectral resolution and mass accuracy measurement within the instrument specifications during MSI analyses. The optimized method has been successfully employed in replicates to perform high-quality MALDI MS images at resolving power (FWHM) above 1,000,000 in the lipid mass range across the whole image for superconducting magnets of 7T and 9.4T using 1 and 2ω detection. Our data also compare favorably with MALDI MSI experiments performed on higher-magnetic-field superconducting magnets, including the 21T MALDI FT-ICR prototype instrument of the NHMFL group at Tallahassee, Florida.
Collapse
Affiliation(s)
- Mathieu Tiquet
- Mass
Spectrometry Laboratory, MolSys Research Unit, University of Liège, Allée de la Chimie 6-Quartier Agora, 4000 Liège, Belgium
| | - Raphaël La Rocca
- Mass
Spectrometry Laboratory, MolSys Research Unit, University of Liège, Allée de la Chimie 6-Quartier Agora, 4000 Liège, Belgium
| | - Stefan Kirnbauer
- Institute
of Chemical Technologies and Analytics, TU Wien (Vienna University of Technology), Getreidemarkt 9/164, 1060 Vienna, Austria
- Austrian
Cluster for Tissue Regeneration, TU Wien
(Vienna University of Technology), Getreidemarkt 9/164, 1060 Vienna, Austria
| | - Samuele Zoratto
- Institute
of Chemical Technologies and Analytics, TU Wien (Vienna University of Technology), Getreidemarkt 9/164, 1060 Vienna, Austria
- Austrian
Cluster for Tissue Regeneration, TU Wien
(Vienna University of Technology), Getreidemarkt 9/164, 1060 Vienna, Austria
- Christian
Doppler Laboratory for Skin Multimodal Imaging of Aging and Senescence, TU Wien (Vienna University of Technology), Getreidemarkt 9/164, 1060 Vienna, Austria
| | - Daan Van Kruining
- Department
of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Universiteitssingel 50, 6229ER Maastricht, the Netherlands
| | - Loïc Quinton
- Mass
Spectrometry Laboratory, MolSys Research Unit, University of Liège, Allée de la Chimie 6-Quartier Agora, 4000 Liège, Belgium
| | - Gauthier Eppe
- Mass
Spectrometry Laboratory, MolSys Research Unit, University of Liège, Allée de la Chimie 6-Quartier Agora, 4000 Liège, Belgium
| | - Pilar Martinez-Martinez
- Department
of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Universiteitssingel 50, 6229ER Maastricht, the Netherlands
| | - Martina Marchetti-Deschmann
- Institute
of Chemical Technologies and Analytics, TU Wien (Vienna University of Technology), Getreidemarkt 9/164, 1060 Vienna, Austria
- Austrian
Cluster for Tissue Regeneration, TU Wien
(Vienna University of Technology), Getreidemarkt 9/164, 1060 Vienna, Austria
- Christian
Doppler Laboratory for Skin Multimodal Imaging of Aging and Senescence, TU Wien (Vienna University of Technology), Getreidemarkt 9/164, 1060 Vienna, Austria
| | - Edwin De Pauw
- Mass
Spectrometry Laboratory, MolSys Research Unit, University of Liège, Allée de la Chimie 6-Quartier Agora, 4000 Liège, Belgium
| | - Johann Far
- Mass
Spectrometry Laboratory, MolSys Research Unit, University of Liège, Allée de la Chimie 6-Quartier Agora, 4000 Liège, Belgium
| |
Collapse
|
45
|
Baijnath S, Kaya I, Nilsson A, Shariatgorji R, Andrén PE. Advances in spatial mass spectrometry enable in-depth neuropharmacodynamics. Trends Pharmacol Sci 2022; 43:740-753. [DOI: 10.1016/j.tips.2022.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 05/06/2022] [Accepted: 06/06/2022] [Indexed: 11/24/2022]
|
46
|
Spruill ML, Maletic-Savatic M, Martin H, Li F, Liu X. Spatial analysis of drug absorption, distribution, metabolism, and toxicology using mass spectrometry imaging. Biochem Pharmacol 2022; 201:115080. [PMID: 35561842 PMCID: PMC9744413 DOI: 10.1016/j.bcp.2022.115080] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 05/03/2022] [Accepted: 05/04/2022] [Indexed: 12/14/2022]
Abstract
Mass spectrometry imaging (MSI) is emerging as a powerful analytical tool for detection, quantification, and simultaneous spatial molecular imaging of endogenous and exogenous molecules via in situ mass spectrometry analysis of thin tissue sections without the requirement of chemical labeling. The MSI generates chemically specific and spatially resolved ion distribution information for administered drugs and metabolites, which allows numerous applications for studies involving various stages of drug absorption, distribution, metabolism, excretion, and toxicity (ADMET). MSI-based pharmacokinetic imaging analysis provides a histological context and cellular environment regarding dynamic drug distribution and metabolism processes, and facilitates the understanding of the spatial pharmacokinetics and pharmacodynamic properties of drugs. Herein, we discuss the MSI's current technological developments that offer qualitative, quantitative, and spatial location information of small molecule drugs, antibody, and oligonucleotides macromolecule drugs, and their metabolites in preclinical and clinical tissue specimens. We highlight the macro and micro drug-distribution in the whole-body, brain, lung, liver, kidney, stomach, intestine tissue sections, organoids, and the latest applications of MSI in pharmaceutical ADMET studies.
Collapse
Affiliation(s)
- Michelle L Spruill
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204, USA
| | - Mirjana Maletic-Savatic
- Department of Pediatrics, Baylor College of Medicine, Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | | | - Feng Li
- Center for Drug Discovery and Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030, USA; NMR and Drug Metabolism Core, Advanced Technology Cores, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Xinli Liu
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204, USA.
| |
Collapse
|
47
|
Mass Spectrometry-Based Analysis of Lipid Involvement in Alzheimer’s Disease Pathology—A Review. Metabolites 2022; 12:metabo12060510. [PMID: 35736443 PMCID: PMC9228715 DOI: 10.3390/metabo12060510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 05/31/2022] [Accepted: 05/31/2022] [Indexed: 01/27/2023] Open
Abstract
Irregularities in lipid metabolism have been linked to numerous neurodegenerative diseases. The roles of abnormal brain, plasma, and cerebrospinal fluid (CSF) lipid levels in Alzheimer’s disease (AD) onset and progression specifically have been described to a great extent in the literature. Apparent hallmarks of AD include, but are not limited to, genetic predisposition involving the APOE Ɛ4 allele, oxidative stress, and inflammation. A common culprit tied to many of these hallmarks is disruption in brain lipid homeostasis. Therefore, it is important to understand the roles of lipids, under normal and abnormal conditions, in each process. Lipid influences in processes such as inflammation and blood–brain barrier (BBB) disturbance have been primarily studied via biochemical-based methods. There is a need, however, for studies focused on uncovering the relationship between lipid irregularities and AD by molecular-based quantitative analysis in transgenic animal models and human samples alike. In this review, mass spectrometry as it has been used as an analytical tool to address the convoluted relationships mentioned above is discussed. Additionally, molecular-based mass spectrometry strategies that should be used going forward to further relate structure and function relationships of lipid irregularities and hallmark AD pathology are outlined.
Collapse
|
48
|
Mikolasch TA, Oballa E, Vahdati-Bolouri M, Jarvis E, Cui Y, Cahn A, Terry RL, Sahota J, Thakrar R, Marshall P, Porter JC. Mass spectrometry detection of inhaled drug in distal fibrotic lung. Respir Res 2022; 23:118. [PMID: 35546672 PMCID: PMC9092847 DOI: 10.1186/s12931-022-02026-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 04/14/2022] [Indexed: 12/04/2022] Open
Abstract
Background Currently the only available therapies for fibrotic Interstitial Lung Disease are administered systemically, often causing significant side effects. Inhaled therapy could avoid these but to date there is no evidence that drug can be effectively delivered to distal, fibrosed lung. We set out to combine mass spectrometry and histopathology with rapid sample acquisition using transbronchial cryobiopsy to determine whether an inhaled drug can be delivered to fibrotic, distal lung parenchyma in participants with Interstitial Lung Disease. Methods Patients with radiologically and multidisciplinary team confirmed fibrotic Interstitial Lung Disease were eligible for this study. Transbronchial cryobiopsies and endobronchial biopsies were taken from five participants, with Interstitial Lung Disease, within 70 min of administration of a single dose of nebulised ipratropium bromide. Thin tissue cryosections were analysed by Matrix Assisted Laser Desorption/Ionization-Mass Spectrometry imaging and correlated with histopathology. The remainder of the cryobiopsies were homogenised and analysed by Liquid Chromatography—tandem Mass Spectrometry. Results Drug was detected in proximal and distal lung samples from all participants. Fibrotic regions were identified in research samples of four of the five participants. Matrix Assisted Laser Desorption/Ionization-Mass Spectrometry imaging showed co-location of ipratropium with fibrotic regions in samples from three participants. Conclusions In this proof of concept study, using mass spectrometry, we demonstrate for the first-time that an inhaled drug can deposit in distal fibrotic lung parenchyma in patients with Interstitial Lung Disease. This suggests that drugs to treat pulmonary fibrosis could potentially be administered by the inhaled route. Trial registration A prospective clinical study approved by London Camden and Kings Cross Research Ethics Committee and registered on clinicaltrials.gov (NCT03136120) Supplementary Information The online version contains supplementary material available at 10.1186/s12931-022-02026-5.
Collapse
Affiliation(s)
- Theresia A Mikolasch
- Centre for Inflammation and Tissue Repair, UCL Respiratory, University College London, London, UK. .,University College London Hospitals NHS Foundation Trust, London, UK.
| | - Eunice Oballa
- Discovery Medicine, Clinical Pharmacology and Experimental Medicine, GSK Research and Development, Stevenage, UK
| | | | - Emily Jarvis
- Development Biostatistics, GSK Development, Stevenage, UK
| | - Yi Cui
- Safety and Medical Governance, Pharma Safety, GSK Development, Stevenage, UK
| | - Anthony Cahn
- Discovery Medicine, Clinical Pharmacology and Experimental Medicine, GSK Research and Development, Stevenage, UK
| | - Rebecca L Terry
- Pathology, In Vitro/In Vivo Translation, GSK Research, Stevenage, UK
| | - Jagdeep Sahota
- Centre for Inflammation and Tissue Repair, UCL Respiratory, University College London, London, UK.,University College London Hospitals NHS Foundation Trust, London, UK
| | - Ricky Thakrar
- University College London Hospitals NHS Foundation Trust, London, UK
| | - Peter Marshall
- Bioimaging, In Vitro/In Vivo Translation, GSK Research, Stevenage, UK
| | - Joanna C Porter
- Centre for Inflammation and Tissue Repair, UCL Respiratory, University College London, London, UK.,University College London Hospitals NHS Foundation Trust, London, UK
| |
Collapse
|
49
|
Sample preparation optimization of insects and zebrafish for whole-body mass spectrometry imaging. Anal Bioanal Chem 2022; 414:4777-4790. [PMID: 35508646 DOI: 10.1007/s00216-022-04102-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/15/2022] [Accepted: 04/25/2022] [Indexed: 11/01/2022]
Abstract
Appropriate sample preparation is one of the most critical steps in mass spectrometry imaging (MSI), which is closely associated with reproducible and reliable images. Despite that model insects and organisms have been widely used in various research fields, including toxicology, drug discovery, disease models, and neurobiology, a systematic investigation on sample preparation optimization for MSI analysis has been relatively rare. Unlike mammalian tissues with satisfactory homogeneity, freezing sectioning of the whole body of insects is still challenging because some insect tissues are hard on the outside and soft on the inside, especially for some small and fragile insects. Herein, we systematically investigated the sample preparation conditions of various insects and model organisms, including honeybees (Apis cerana), oriental fruit flies (Bactrocera dorsalis), zebrafish (Danio rerio), fall armyworms (Spodoptera frugiperda), and diamondback moths (Plutella xylostella), for MSI. Three cutting temperatures, four embedding agents, and seven thicknesses were comprehensively investigated to achieve optimal sample preparation protocols for MSI analysis. The results presented herein indicated that the optimal cutting temperature and embedding agent were -20 °C and gelatin, respectively, providing better tissue integrity and less mass spectral interference. However, the optimal thickness for different organisms can vary with each individual. Using this optimized protocol, we exploited the potential of MSI for visualizing the tissue-specific distribution of endogenous lipids in four insects and zebrafish. Taken together, this work provides guidelines for the optimized sample preparation of insects and model organisms, facilitating the expansion of the potential of MSI in the life sciences and environmental sciences.
Collapse
|
50
|
Müller WH, Verdin A, De Pauw E, Malherbe C, Eppe G. Surface-assisted laser desorption/ionization mass spectrometry imaging: A review. MASS SPECTROMETRY REVIEWS 2022; 41:373-420. [PMID: 33174287 PMCID: PMC9292874 DOI: 10.1002/mas.21670] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 10/22/2020] [Accepted: 10/24/2020] [Indexed: 05/04/2023]
Abstract
In the last decades, surface-assisted laser desorption/ionization mass spectrometry (SALDI-MS) has attracted increasing interest due to its unique capabilities, achievable through the nanostructured substrates used to promote the analyte desorption/ionization. While the most widely recognized asset of SALDI-MS is the untargeted analysis of small molecules, this technique also offers the possibility of targeted approaches. In particular, the implementation of SALDI-MS imaging (SALDI-MSI), which is the focus of this review, opens up new opportunities. After a brief discussion of the nomenclature and the fundamental mechanisms associated with this technique, which are still highly controversial, the analytical strategies to perform SALDI-MSI are extensively discussed. Emphasis is placed on the sample preparation but also on the selection of the nanosubstrate (in terms of chemical composition and morphology) as well as its functionalization possibilities for the selective analysis of specific compounds in targeted approaches. Subsequently, some selected applications of SALDI-MSI in various fields (i.e., biomedical, biological, environmental, and forensic) are presented. The strengths and the remaining limitations of SALDI-MSI are finally summarized in the conclusion and some perspectives of this technique, which has a bright future, are proposed in this section.
Collapse
Affiliation(s)
- Wendy H. Müller
- Mass Spectrometry Laboratory, MolSys Research Unit, Chemistry DepartmentUniversity of LiègeLiègeBelgium
| | - Alexandre Verdin
- Mass Spectrometry Laboratory, MolSys Research Unit, Chemistry DepartmentUniversity of LiègeLiègeBelgium
| | - Edwin De Pauw
- Mass Spectrometry Laboratory, MolSys Research Unit, Chemistry DepartmentUniversity of LiègeLiègeBelgium
| | - Cedric Malherbe
- Mass Spectrometry Laboratory, MolSys Research Unit, Chemistry DepartmentUniversity of LiègeLiègeBelgium
| | - Gauthier Eppe
- Mass Spectrometry Laboratory, MolSys Research Unit, Chemistry DepartmentUniversity of LiègeLiègeBelgium
| |
Collapse
|