1
|
Mishra B, Kumar N, Shahid Mukhtar M. A Rice Protein Interaction Network Reveals High Centrality Nodes and Candidate Pathogen Effector Targets. Comput Struct Biotechnol J 2022; 20:2001-2012. [PMID: 35521542 PMCID: PMC9062363 DOI: 10.1016/j.csbj.2022.04.027] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 04/10/2022] [Accepted: 04/17/2022] [Indexed: 12/11/2022] Open
Abstract
Network science identifies key players in diverse biological systems including host-pathogen interactions. We demonstrated a scale-free network property for a comprehensive rice protein–protein interactome (RicePPInets) that exhibits nodes with increased centrality indices. While weighted k-shell decomposition was shown efficacious to predict pathogen effector targets in Arabidopsis, we improved its computational code for a broader implementation on large-scale networks including RicePPInets. We determined that nodes residing within the internal layers of RicePPInets are poised to be the most influential, central, and effective information spreaders. To identify central players and modules through network topology analyses, we integrated RicePPInets and co-expression networks representing susceptible and resistant responses to strains of the bacterial pathogens Xanthomonas oryzae pv. oryzae and X. oryzae pv. oryzicola (Xoc) and generated a RIce-Xanthomonas INteractome (RIXIN). This revealed that previously identified candidate targets of pathogen transcription activator-like (TAL) effectors are enriched in nodes with enhanced connectivity, bottlenecks, and information spreaders that are located in the inner layers of the network, and these nodes are involved in several important biological processes. Overall, our integrative multi-omics network-based platform provides a potentially useful approach to prioritizing candidate pathogen effector targets for functional validation, suggesting that this computational framework can be broadly translatable to other complex pathosystems.
Collapse
|
2
|
Joshi GAN, Chauhan C, Das S. Sequence and functional analysis of MIR319 promoter homologs from Brassica juncea reveals regulatory diversification and altered expression under stress. Mol Genet Genomics 2021; 296:731-749. [PMID: 33797588 DOI: 10.1007/s00438-021-01778-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 03/15/2021] [Indexed: 11/30/2022]
Abstract
KEY MESSAGE Extensive regulatory divergence during development, abiotic stress and ABA regime observed amongst promoter homologs and homeologs of MIR319 from Brassica juncea. Gene duplication followed by sub-functionalization, neo-functionalization, and pseudogenization are routes to functional and adaptive diversification. The influence of polyploidy on protein-coding genes is well investigated but little is known about their impact on transcriptional regulation of MIRNA gene family. The present study was therefore performed with an aim to uncover regulatory diversification of MIR319 homologs and homeologs in Brassica juncea. We employed comparative genomics to identify and isolate six promoter homologs of MIR319 from B. juncea. Regulatory diversification was studied using analysis of reporter activity driven by BjMIR319 promoters in a heterologous system employing promoter-reporter fusion constructs. MIR319 is known to play important roles in leaf and flower development, and multiple stress responses. Reporter activity was therefore monitored during development, hormonal and stress regimes. In-silico analyses revealed differential distribution of cis-regulatory motifs and functional analysis revealed distinct spatiotemporal expression patterns. The significance of presence of selected cis-regulatory motifs corresponding to heat, cold, salt and ABA stress were further functionally validated. It was observed that promoter of Bj -MIR319a-A01 was upregulated in response to cold and salt stress, while promoter of Bj -MIR319c-A04 (D1) and Bj -MIR319c-A05 (FL) were downregulated in response to high temperature. In summary, comparative analysis of homologous promoters from Brassica juncea, an allopolyploid revealed extensive sequence and functional diversity. Spatiotemporal activity of reporter gene driven by BjMIR319 promoter was distinct, and partially overlapping with from those reported previously for A. thaliana. The present study clearly demonstrates regulatory divergence amongst promoter homologs of MIR319 in Brassica juncea during development and stress response, and underlines the urgent need for dissection of promoter function and detailed characterization including identification of interacting trans-factors. Genbank accession numbers: MT379853-MT379858.
Collapse
Affiliation(s)
| | - Chetan Chauhan
- Department of Botany, University of Delhi, Delhi, 110 007, India
| | - Sandip Das
- Department of Botany, University of Delhi, Delhi, 110 007, India.
| |
Collapse
|
3
|
Leroux M, Boutchueng-Djidjou M, Faure R. Insulin's Discovery: New Insights on Its Hundredth Birthday: From Insulin Action and Clearance to Sweet Networks. Int J Mol Sci 2021; 22:ijms22031030. [PMID: 33494161 PMCID: PMC7864324 DOI: 10.3390/ijms22031030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 01/18/2021] [Accepted: 01/19/2021] [Indexed: 11/28/2022] Open
Abstract
In 2021, the 100th anniversary of the isolation of insulin and the rescue of a child with type 1 diabetes from death will be marked. In this review, we highlight advances since the ingenious work of the four discoverers, Frederick Grant Banting, John James Rickard Macleod, James Bertram Collip and Charles Herbert Best. Macleoad closed his Nobel Lecture speech by raising the question of the mechanism of insulin action in the body. This challenge attracted many investigators, and the question remained unanswered until the third part of the 20th century. We summarize what has been learned, from the discovery of cell surface receptors, insulin action, and clearance, to network and precision medicine.
Collapse
|
4
|
Hallin J, Cisneros AF, Hénault M, Fijarczyk A, Dandage R, Bautista C, Landry CR. Similarities in biological processes can be used to bridge ecology and molecular biology. Evol Appl 2020; 13:1335-1350. [PMID: 32684962 PMCID: PMC7359829 DOI: 10.1111/eva.12961] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 02/17/2020] [Accepted: 03/16/2020] [Indexed: 01/10/2023] Open
Abstract
Much of the research in biology aims to understand the origin of diversity. Naturally, ecological diversity was the first object of study, but we now have the necessary tools to probe diversity at molecular scales. The inherent differences in how we study diversity at different scales caused the disciplines of biology to be organized around these levels, from molecular biology to ecology. Here, we illustrate that there are key properties of each scale that emerge from the interactions of simpler components and that these properties are often shared across different levels of organization. This means that ideas from one level of organization can be an inspiration for novel hypotheses to study phenomena at another level. We illustrate this concept with examples of events at the molecular level that have analogs at the organismal or ecological level and vice versa. Through these examples, we illustrate that biological processes at different organization levels are governed by general rules. The study of the same phenomena at different scales could enrich our work through a multidisciplinary approach, which should be a staple in the training of future scientists.
Collapse
Affiliation(s)
- Johan Hallin
- Département de biochimie de microbiologie et de bio-informatique Faculté des sciences et de génie Université Laval Québec Canada.,Département de biologie Faculté des sciences et de génie Université Laval Québec Canada.,Institut de Biologie Intégrative et des Systèmes (IBIS) Université Laval Québec Canada.,PROTEO Le réseau québécois de recherche sur la fonction la structure et l'ingénierie des protéines Université Laval Québec Canada.,Centre de Recherche en Données Massives (CRDM) Université Laval Québec Canada
| | - Angel F Cisneros
- Département de biochimie de microbiologie et de bio-informatique Faculté des sciences et de génie Université Laval Québec Canada.,Département de biologie Faculté des sciences et de génie Université Laval Québec Canada.,Institut de Biologie Intégrative et des Systèmes (IBIS) Université Laval Québec Canada.,PROTEO Le réseau québécois de recherche sur la fonction la structure et l'ingénierie des protéines Université Laval Québec Canada.,Centre de Recherche en Données Massives (CRDM) Université Laval Québec Canada
| | - Mathieu Hénault
- Département de biochimie de microbiologie et de bio-informatique Faculté des sciences et de génie Université Laval Québec Canada.,Département de biologie Faculté des sciences et de génie Université Laval Québec Canada.,Institut de Biologie Intégrative et des Systèmes (IBIS) Université Laval Québec Canada.,PROTEO Le réseau québécois de recherche sur la fonction la structure et l'ingénierie des protéines Université Laval Québec Canada.,Centre de Recherche en Données Massives (CRDM) Université Laval Québec Canada
| | - Anna Fijarczyk
- Département de biochimie de microbiologie et de bio-informatique Faculté des sciences et de génie Université Laval Québec Canada.,Département de biologie Faculté des sciences et de génie Université Laval Québec Canada.,Institut de Biologie Intégrative et des Systèmes (IBIS) Université Laval Québec Canada.,PROTEO Le réseau québécois de recherche sur la fonction la structure et l'ingénierie des protéines Université Laval Québec Canada.,Centre de Recherche en Données Massives (CRDM) Université Laval Québec Canada
| | - Rohan Dandage
- Département de biochimie de microbiologie et de bio-informatique Faculté des sciences et de génie Université Laval Québec Canada.,Département de biologie Faculté des sciences et de génie Université Laval Québec Canada.,Institut de Biologie Intégrative et des Systèmes (IBIS) Université Laval Québec Canada.,PROTEO Le réseau québécois de recherche sur la fonction la structure et l'ingénierie des protéines Université Laval Québec Canada.,Centre de Recherche en Données Massives (CRDM) Université Laval Québec Canada
| | - Carla Bautista
- Département de biochimie de microbiologie et de bio-informatique Faculté des sciences et de génie Université Laval Québec Canada.,Département de biologie Faculté des sciences et de génie Université Laval Québec Canada.,Institut de Biologie Intégrative et des Systèmes (IBIS) Université Laval Québec Canada.,PROTEO Le réseau québécois de recherche sur la fonction la structure et l'ingénierie des protéines Université Laval Québec Canada.,Centre de Recherche en Données Massives (CRDM) Université Laval Québec Canada
| | - Christian R Landry
- Département de biochimie de microbiologie et de bio-informatique Faculté des sciences et de génie Université Laval Québec Canada.,Département de biologie Faculté des sciences et de génie Université Laval Québec Canada.,Institut de Biologie Intégrative et des Systèmes (IBIS) Université Laval Québec Canada.,PROTEO Le réseau québécois de recherche sur la fonction la structure et l'ingénierie des protéines Université Laval Québec Canada.,Centre de Recherche en Données Massives (CRDM) Université Laval Québec Canada
| |
Collapse
|
5
|
Bai X, Xu J, Shao X, Luo W, Niu Z, Gao C, Wan D. A Novel Gene Coding γ-Aminobutyric Acid Transporter May Improve the Tolerance of Populus euphratica to Adverse Environments. FRONTIERS IN PLANT SCIENCE 2019; 10:1083. [PMID: 31572409 PMCID: PMC6749060 DOI: 10.3389/fpls.2019.01083] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 08/08/2019] [Indexed: 05/28/2023]
Abstract
Novel genes provide important genetic resource for organism innovation. However, the evidence from genetic experiment is limited. In plants, γ-aminobutyric acid (GABA) transporters (GATs) primarily transport GABA and further involve in plant growth, development, and response to various stresses. In this study, we have identified the GATs family in Populus species and characterized their functional evolution and divergence in a desert poplar species (Populus euphratica). We found that the GATs underwent genus-specific expansion via multiple whole-genome duplications in Populus species. The purifying selection were identified across those GATs evolution and divergence in poplar diversity, except two paralogous PeuGAT2 and PeuGAT3 from P. euphratica. The both genes arose from a tandem duplication event about 49 million years ago and have experienced strong positive selection, suggesting that the divergence in PeuGAT3 protein function/structure might define gene function better than in expression pattern. Both PeuGAT genes were functionally characterized in Arabidopsis and poplar, respectively. The overexpression of PeuGAT3 increased the thickness of xylem cells walls in both Arabidopsis and poplar and enhanced the lignin content of xylem tissues and the proline accumulation in poplar leaves, all of which may improve tolerance of salt/drought stress in desert poplars. Our findings help clarify the genetic mechanisms underpinning high tolerance in desert poplars and suggest that PeuGAT3 could be an attractive candidate gene for engineering trees with improved brown-rot resistance.
Collapse
|
6
|
Marchant A, Cisneros AF, Dubé AK, Gagnon-Arsenault I, Ascencio D, Jain H, Aubé S, Eberlein C, Evans-Yamamoto D, Yachie N, Landry CR. The role of structural pleiotropy and regulatory evolution in the retention of heteromers of paralogs. eLife 2019; 8:46754. [PMID: 31454312 PMCID: PMC6711710 DOI: 10.7554/elife.46754] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 08/11/2019] [Indexed: 01/07/2023] Open
Abstract
Gene duplication is a driver of the evolution of new functions. The duplication of genes encoding homomeric proteins leads to the formation of homomers and heteromers of paralogs, creating new complexes after a single duplication event. The loss of these heteromers may be required for the two paralogs to evolve independent functions. Using yeast as a model, we find that heteromerization is frequent among duplicated homomers and correlates with functional similarity between paralogs. Using in silico evolution, we show that for homomers and heteromers sharing binding interfaces, mutations in one paralog can have structural pleiotropic effects on both interactions, resulting in highly correlated responses of the complexes to selection. Therefore, heteromerization could be preserved indirectly due to selection for the maintenance of homomers, thus slowing down functional divergence between paralogs. We suggest that paralogs can overcome the obstacle of structural pleiotropy by regulatory evolution at the transcriptional and post-translational levels.
Collapse
Affiliation(s)
- Axelle Marchant
- Département de biochimie, de microbiologie et de bio-informatique, Université Laval, Québec, Canada.,PROTEO, le réseau québécois de recherche sur la fonction, la structure et l'ingénierie des protéines, Université Laval, Québec, Canada.,Centre de Recherche en Données Massives (CRDM), Université Laval, Québec, Canada.,Département de biologie, Université Laval, Québec, Canada
| | - Angel F Cisneros
- Département de biochimie, de microbiologie et de bio-informatique, Université Laval, Québec, Canada.,PROTEO, le réseau québécois de recherche sur la fonction, la structure et l'ingénierie des protéines, Université Laval, Québec, Canada.,Centre de Recherche en Données Massives (CRDM), Université Laval, Québec, Canada
| | - Alexandre K Dubé
- Département de biochimie, de microbiologie et de bio-informatique, Université Laval, Québec, Canada.,PROTEO, le réseau québécois de recherche sur la fonction, la structure et l'ingénierie des protéines, Université Laval, Québec, Canada.,Centre de Recherche en Données Massives (CRDM), Université Laval, Québec, Canada.,Département de biologie, Université Laval, Québec, Canada
| | - Isabelle Gagnon-Arsenault
- Département de biochimie, de microbiologie et de bio-informatique, Université Laval, Québec, Canada.,PROTEO, le réseau québécois de recherche sur la fonction, la structure et l'ingénierie des protéines, Université Laval, Québec, Canada.,Centre de Recherche en Données Massives (CRDM), Université Laval, Québec, Canada.,Département de biologie, Université Laval, Québec, Canada
| | - Diana Ascencio
- Département de biochimie, de microbiologie et de bio-informatique, Université Laval, Québec, Canada.,PROTEO, le réseau québécois de recherche sur la fonction, la structure et l'ingénierie des protéines, Université Laval, Québec, Canada.,Centre de Recherche en Données Massives (CRDM), Université Laval, Québec, Canada.,Département de biologie, Université Laval, Québec, Canada
| | - Honey Jain
- Département de biochimie, de microbiologie et de bio-informatique, Université Laval, Québec, Canada.,PROTEO, le réseau québécois de recherche sur la fonction, la structure et l'ingénierie des protéines, Université Laval, Québec, Canada.,Centre de Recherche en Données Massives (CRDM), Université Laval, Québec, Canada.,Department of Biological Sciences, Birla Institute of Technology and Sciences, Pilani, India
| | - Simon Aubé
- Département de biochimie, de microbiologie et de bio-informatique, Université Laval, Québec, Canada.,PROTEO, le réseau québécois de recherche sur la fonction, la structure et l'ingénierie des protéines, Université Laval, Québec, Canada.,Centre de Recherche en Données Massives (CRDM), Université Laval, Québec, Canada
| | - Chris Eberlein
- PROTEO, le réseau québécois de recherche sur la fonction, la structure et l'ingénierie des protéines, Université Laval, Québec, Canada.,Centre de Recherche en Données Massives (CRDM), Université Laval, Québec, Canada.,Département de biologie, Université Laval, Québec, Canada
| | - Daniel Evans-Yamamoto
- Research Center for Advanced Science and Technology, University of Tokyo, Tokyo, Japan.,Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan.,Graduate School of Media and Governance, Keio University, Fujisawa, Japan
| | - Nozomu Yachie
- Research Center for Advanced Science and Technology, University of Tokyo, Tokyo, Japan.,Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan.,Graduate School of Media and Governance, Keio University, Fujisawa, Japan.,Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo, Japan
| | - Christian R Landry
- Département de biochimie, de microbiologie et de bio-informatique, Université Laval, Québec, Canada.,PROTEO, le réseau québécois de recherche sur la fonction, la structure et l'ingénierie des protéines, Université Laval, Québec, Canada.,Centre de Recherche en Données Massives (CRDM), Université Laval, Québec, Canada.,Département de biologie, Université Laval, Québec, Canada
| |
Collapse
|
7
|
Chrétien AÈ, Gagnon-Arsenault I, Dubé AK, Barbeau X, Després PC, Lamothe C, Dion-Côté AM, Lagüe P, Landry CR. Extended Linkers Improve the Detection of Protein-protein Interactions (PPIs) by Dihydrofolate Reductase Protein-fragment Complementation Assay (DHFR PCA) in Living Cells. Mol Cell Proteomics 2017; 17:373-383. [PMID: 29203496 DOI: 10.1074/mcp.tir117.000385] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Indexed: 01/08/2023] Open
Abstract
Understanding the function of cellular systems requires describing how proteins assemble with each other into transient and stable complexes and to determine their spatial relationships. Among the tools available to perform these analyses on a large scale is Protein-fragment Complementation Assay based on the dihydrofolate reductase (DHFR PCA). Here we test how longer linkers between the fusion proteins and the reporter fragments affect the performance of this assay. We investigate the architecture of the RNA polymerases, the proteasome and the conserved oligomeric Golgi (COG) complexes in living cells and performed large-scale screens with these extended linkers. We show that longer linkers significantly improve the detection of protein-protein interactions and allow to measure interactions further in space than the standard ones. We identify new interactions, for instance between the retromer complex and proteins related to autophagy and endocytosis. Longer linkers thus contribute an enhanced additional tool to the existing toolsets for the detection and measurements of protein-protein interactions and protein proximity in living cells.
Collapse
Affiliation(s)
- Andrée-Ève Chrétien
- From the ‡Institut de Biologie Intégrative et des Systèmes.,§The Quebec Network for Research on Protein Function, Engineering, and Applications.,¶Centre de Recherche en Données Massives de l'Université Laval.,‖Département de biologie
| | - Isabelle Gagnon-Arsenault
- From the ‡Institut de Biologie Intégrative et des Systèmes.,§The Quebec Network for Research on Protein Function, Engineering, and Applications.,¶Centre de Recherche en Données Massives de l'Université Laval.,‖Département de biologie
| | - Alexandre K Dubé
- From the ‡Institut de Biologie Intégrative et des Systèmes.,§The Quebec Network for Research on Protein Function, Engineering, and Applications.,¶Centre de Recherche en Données Massives de l'Université Laval.,‖Département de biologie
| | - Xavier Barbeau
- From the ‡Institut de Biologie Intégrative et des Systèmes.,§The Quebec Network for Research on Protein Function, Engineering, and Applications.,¶Centre de Recherche en Données Massives de l'Université Laval.,**Département de biochimie, microbiologie et bioinformatique. Université Laval, Québec, Québec, G1V 0A6, Canada
| | - Philippe C Després
- From the ‡Institut de Biologie Intégrative et des Systèmes.,§The Quebec Network for Research on Protein Function, Engineering, and Applications.,¶Centre de Recherche en Données Massives de l'Université Laval.,‖Département de biologie.,**Département de biochimie, microbiologie et bioinformatique. Université Laval, Québec, Québec, G1V 0A6, Canada
| | - Claudine Lamothe
- From the ‡Institut de Biologie Intégrative et des Systèmes.,§The Quebec Network for Research on Protein Function, Engineering, and Applications.,¶Centre de Recherche en Données Massives de l'Université Laval.,‖Département de biologie.,**Département de biochimie, microbiologie et bioinformatique. Université Laval, Québec, Québec, G1V 0A6, Canada
| | - Anne-Marie Dion-Côté
- From the ‡Institut de Biologie Intégrative et des Systèmes.,§The Quebec Network for Research on Protein Function, Engineering, and Applications.,¶Centre de Recherche en Données Massives de l'Université Laval.,‖Département de biologie
| | - Patrick Lagüe
- From the ‡Institut de Biologie Intégrative et des Systèmes.,§The Quebec Network for Research on Protein Function, Engineering, and Applications.,¶Centre de Recherche en Données Massives de l'Université Laval.,**Département de biochimie, microbiologie et bioinformatique. Université Laval, Québec, Québec, G1V 0A6, Canada
| | - Christian R Landry
- From the ‡Institut de Biologie Intégrative et des Systèmes; .,§The Quebec Network for Research on Protein Function, Engineering, and Applications.,¶Centre de Recherche en Données Massives de l'Université Laval.,‖Département de biologie.,**Département de biochimie, microbiologie et bioinformatique. Université Laval, Québec, Québec, G1V 0A6, Canada
| |
Collapse
|
8
|
Diss G, Gagnon-Arsenault I, Dion-Coté AM, Vignaud H, Ascencio DI, Berger CM, Landry CR. Gene duplication can impart fragility, not robustness, in the yeast protein interaction network. Science 2017; 355:630-634. [PMID: 28183979 DOI: 10.1126/science.aai7685] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 01/13/2017] [Indexed: 12/18/2022]
Abstract
The maintenance of duplicated genes is thought to protect cells from genetic perturbations, but the molecular basis of this robustness is largely unknown. By measuring the interaction of yeast proteins with their partners in wild-type cells and in cells lacking a paralog, we found that 22 out of 56 paralog pairs compensate for the lost interactions. An equivalent number of pairs exhibit the opposite behavior and require each other's presence for maintaining their interactions. These dependent paralogs generally interact physically, regulate each other's abundance, and derive from ancestral self-interacting proteins. This reveals that gene duplication may actually increase mutational fragility instead of robustness in a large number of cases.
Collapse
Affiliation(s)
- Guillaume Diss
- Département de Biologie, Université Laval, Québec, QC, Canada.,The Quebec Network for Research on Protein Function, Engineering, and Applications, Université Laval, Québec, QC, Canada.,Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, QC, Canada.,EMBL/CRG Systems Biology Research Unit, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), Doctor Aiguader 88, 08003 Barcelona, Spain.,Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
| | - Isabelle Gagnon-Arsenault
- Département de Biologie, Université Laval, Québec, QC, Canada.,The Quebec Network for Research on Protein Function, Engineering, and Applications, Université Laval, Québec, QC, Canada.,Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, QC, Canada
| | - Anne-Marie Dion-Coté
- Département de Biologie, Université Laval, Québec, QC, Canada.,The Quebec Network for Research on Protein Function, Engineering, and Applications, Université Laval, Québec, QC, Canada.,Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, QC, Canada
| | - Hélène Vignaud
- Département de Biologie, Université Laval, Québec, QC, Canada.,The Quebec Network for Research on Protein Function, Engineering, and Applications, Université Laval, Québec, QC, Canada.,Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, QC, Canada
| | - Diana I Ascencio
- Département de Biologie, Université Laval, Québec, QC, Canada.,The Quebec Network for Research on Protein Function, Engineering, and Applications, Université Laval, Québec, QC, Canada.,Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, QC, Canada.,Laboratorio Nacional de Genómica para la Biodiversidad (LANGEBIO), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Irapuato, Guanajuato, Mexico
| | - Caroline M Berger
- Département de Biologie, Université Laval, Québec, QC, Canada.,The Quebec Network for Research on Protein Function, Engineering, and Applications, Université Laval, Québec, QC, Canada.,Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, QC, Canada
| | - Christian R Landry
- Département de Biologie, Université Laval, Québec, QC, Canada. .,The Quebec Network for Research on Protein Function, Engineering, and Applications, Université Laval, Québec, QC, Canada.,Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, QC, Canada
| |
Collapse
|
9
|
Differential paralog divergence modulates genome evolution across yeast species. PLoS Genet 2017; 13:e1006585. [PMID: 28196070 PMCID: PMC5308817 DOI: 10.1371/journal.pgen.1006585] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 01/13/2017] [Indexed: 11/24/2022] Open
Abstract
Evolutionary outcomes depend not only on the selective forces acting upon a species, but also on the genetic background. However, large timescales and uncertain historical selection pressures can make it difficult to discern such important background differences between species. Experimental evolution is one tool to compare evolutionary potential of known genotypes in a controlled environment. Here we utilized a highly reproducible evolutionary adaptation in Saccharomyces cerevisiae to investigate whether experimental evolution of other yeast species would select for similar adaptive mutations. We evolved populations of S. cerevisiae, S. paradoxus, S. mikatae, S. uvarum, and interspecific hybrids between S. uvarum and S. cerevisiae for ~200–500 generations in sulfate-limited continuous culture. Wild-type S. cerevisiae cultures invariably amplify the high affinity sulfate transporter gene, SUL1. However, while amplification of the SUL1 locus was detected in S. paradoxus and S. mikatae populations, S. uvarum cultures instead selected for amplification of the paralog, SUL2. We measured the relative fitness of strains bearing deletions and amplifications of both SUL genes from different species, confirming that, converse to S. cerevisiae, S. uvarum SUL2 contributes more to fitness in sulfate limitation than S. uvarum SUL1. By measuring the fitness and gene expression of chimeric promoter-ORF constructs, we were able to delineate the cause of this differential fitness effect primarily to the promoter of S. uvarum SUL1. Our data show evidence of differential sub-functionalization among the sulfate transporters across Saccharomyces species through recent changes in noncoding sequence. Furthermore, these results show a clear example of how such background differences due to paralog divergence can drive changes in genome evolution. Both comparative genomics and experimental evolution are powerful tools that can be used to make inferences about evolutionary processes. Together, these approaches provide the opportunity to observe evolutionary adaptation over millions of years where selective history is largely unknown, and over short timescales under controlled selective pressures in the laboratory. We have used comparative experimental evolution to observe the evolutionary fate of an adaptive mutation, and determined to what degree the outcome is conditional on the genetic background. We evolved several populations of different yeast species for over 200 generations in sulfate-limited conditions to determine how the differences in genomic context can alter evolutionary routes when challenged with a nutrient limitation selection pressure. We find that the gene encoding a high affinity sulfur transporter becomes amplified in most species of Saccharomyces, except in S. uvarum, in which the amplification of the paralogous sulfate transporter gene SUL2 is recovered. We attribute this change in amplification preference to mutations in the non-coding region of SUL1, likely due to reduced expression of this gene in S. uvarum. We conclude that the adaptive mutations selected for in each organism depend on the genomic context, even when faced with the same environmental condition.
Collapse
|
10
|
Filteau M, Vignaud H, Rochette S, Diss G, Chrétien AÈ, Berger CM, Landry CR. Multi-scale perturbations of protein interactomes reveal their mechanisms of regulation, robustness and insights into genotype-phenotype maps. Brief Funct Genomics 2015; 15:130-7. [PMID: 26476431 DOI: 10.1093/bfgp/elv043] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Cellular architectures and signaling machineries are organized through protein-protein interactions (PPIs). High-throughput methods to study PPIs in yeast have opened a new perspective on the organization of the cell by allowing the study of whole protein interactomes. Recent investigations have moved from the description of this organization to the analysis of its dynamics by experimenting how protein interaction networks (PINs) are rewired in response to perturbations. Here we review studies that have used the budding yeast as an experimental system to explore these altered networks. Given the large space of possible PPIs and the diversity of potential genetic and environmental perturbations, high-throughput methods are an essential requirement to survey PIN perturbations on a large scale. Network perturbations are typically conceptualized as the removal of entire proteins (nodes), the modification of single PPIs (edges) or changes in growth conditions. These studies have revealed mechanisms of PPI regulation, PIN architectural organization, robustness and sensitivity to perturbations. Despite these major advances, there are still inherent limits to current technologies that lead to a trade-off between the number of perturbations and the number of PPIs that can be considered simultaneously. Nevertheless, as we exemplify here, targeted approaches combined with the existing resources remain extremely powerful to explore the inner organization of cells and their responses to perturbations.
Collapse
|
11
|
Filteau M, Hamel V, Pouliot MC, Gagnon-Arsenault I, Dubé AK, Landry CR. Evolutionary rescue by compensatory mutations is constrained by genomic and environmental backgrounds. Mol Syst Biol 2015; 11:832. [PMID: 26459777 PMCID: PMC4631203 DOI: 10.15252/msb.20156444] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Since deleterious mutations may be rescued by secondary mutations during evolution, compensatory evolution could identify genetic solutions leading to therapeutic targets. Here, we tested this hypothesis and examined whether these solutions would be universal or would need to be adapted to one's genetic and environmental makeups. We performed experimental evolutionary rescue in a yeast disease model for the Wiskott–Aldrich syndrome in two genetic backgrounds and carbon sources. We found that multiple aspects of the evolutionary rescue outcome depend on the genotype, the environment, or a combination thereof. Specifically, the compensatory mutation rate and type, the molecular rescue mechanism, the genetic target, and the associated fitness cost varied across contexts. The course of compensatory evolution is therefore highly contingent on the initial conditions in which the deleterious mutation occurs. In addition, these results reveal biologically favored therapeutic targets for the Wiskott–Aldrich syndrome, including the target of an unrelated clinically approved drug. Our results experimentally illustrate the importance of epistasis and environmental evolutionary constraints that shape the adaptive landscape and evolutionary rate of molecular networks.
Collapse
Affiliation(s)
- Marie Filteau
- Département de Biologie, PROTEO and Institut de Biologie Intégrative et des Systèmes (IBIS) Université Laval, Québec, Qc, Canada
| | - Véronique Hamel
- Département de Biologie, PROTEO and Institut de Biologie Intégrative et des Systèmes (IBIS) Université Laval, Québec, Qc, Canada
| | - Marie-Christine Pouliot
- Département de Biologie, PROTEO and Institut de Biologie Intégrative et des Systèmes (IBIS) Université Laval, Québec, Qc, Canada
| | - Isabelle Gagnon-Arsenault
- Département de Biologie, PROTEO and Institut de Biologie Intégrative et des Systèmes (IBIS) Université Laval, Québec, Qc, Canada
| | - Alexandre K Dubé
- Département de Biologie, PROTEO and Institut de Biologie Intégrative et des Systèmes (IBIS) Université Laval, Québec, Qc, Canada
| | - Christian R Landry
- Département de Biologie, PROTEO and Institut de Biologie Intégrative et des Systèmes (IBIS) Université Laval, Québec, Qc, Canada
| |
Collapse
|
12
|
Systematic identification of signal integration by protein kinase A. Proc Natl Acad Sci U S A 2015; 112:4501-6. [PMID: 25831502 DOI: 10.1073/pnas.1409938112] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Cellular processes and homeostasis control in eukaryotic cells is achieved by the action of regulatory proteins such as protein kinase A (PKA). Although the outbound signals from PKA directed to processes such as metabolism, growth, and aging have been well charted, what regulates this conserved regulator remains to be systematically identified to understand how it coordinates biological processes. Using a yeast PKA reporter assay, we identified genes that influence PKA activity by measuring protein-protein interactions between the regulatory and the two catalytic subunits of the PKA complex in 3,726 yeast genetic-deletion backgrounds grown on two carbon sources. Overall, nearly 500 genes were found to be connected directly or indirectly to PKA regulation, including 80 core regulators, denoting a wide diversity of signals regulating PKA, within and beyond the described upstream linear pathways. PKA regulators span multiple processes, including the antagonistic autophagy and methionine biosynthesis pathways. Our results converge toward mechanisms of PKA posttranslational regulation by lysine acetylation, which is conserved between yeast and humans and that, we show, regulates protein complex formation in mammals and carbohydrate storage and aging in yeast. Taken together, these results show that the extent of PKA input matches with its output, because this kinase receives information from upstream and downstream processes, and highlight how biological processes are interconnected and coordinated by PKA.
Collapse
|
13
|
Wang M, Herrmann CJ, Simonovic M, Szklarczyk D, von Mering C. Version 4.0 of PaxDb: Protein abundance data, integrated across model organisms, tissues, and cell-lines. Proteomics 2015; 15:3163-8. [PMID: 25656970 PMCID: PMC6680238 DOI: 10.1002/pmic.201400441] [Citation(s) in RCA: 423] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 12/20/2014] [Accepted: 01/30/2015] [Indexed: 01/17/2023]
Abstract
Protein quantification at proteome‐wide scale is an important aim, enabling insights into fundamental cellular biology and serving to constrain experiments and theoretical models. While proteome‐wide quantification is not yet fully routine, many datasets approaching proteome‐wide coverage are becoming available through biophysical and MS techniques. Data of this type can be accessed via a variety of sources, including publication supplements and online data repositories. However, access to the data is still fragmentary, and comparisons across experiments and organisms are not straightforward. Here, we describe recent updates to our database resource “PaxDb” (Protein Abundances Across Organisms). PaxDb focuses on protein abundance information at proteome‐wide scope, irrespective of the underlying measurement technique. Quantification data is reprocessed, unified, and quality‐scored, and then integrated to build a meta‐resource. PaxDb also allows evolutionary comparisons through precomputed gene orthology relations. Recently, we have expanded the scope of the database to include cell‐line samples, and more systematically scan the literature for suitable datasets. We report that a significant fraction of published experiments cannot readily be accessed and/or parsed for quantitative information, requiring additional steps and efforts. The current update brings PaxDb to 414 datasets in 53 organisms, with (semi‐) quantitative abundance information covering more than 300 000 proteins.
Collapse
Affiliation(s)
- Mingcong Wang
- Institute of Molecular Life Sciences and Swiss Institute of Bioinformatics, University of Zurich, Switzerland
| | - Christina J Herrmann
- Institute of Molecular Life Sciences and Swiss Institute of Bioinformatics, University of Zurich, Switzerland
| | - Milan Simonovic
- Institute of Molecular Life Sciences and Swiss Institute of Bioinformatics, University of Zurich, Switzerland
| | - Damian Szklarczyk
- Institute of Molecular Life Sciences and Swiss Institute of Bioinformatics, University of Zurich, Switzerland
| | - Christian von Mering
- Institute of Molecular Life Sciences and Swiss Institute of Bioinformatics, University of Zurich, Switzerland
| |
Collapse
|
14
|
Rochette S, Diss G, Filteau M, Leducq JB, Dubé AK, Landry CR. Genome-wide protein-protein interaction screening by protein-fragment complementation assay (PCA) in living cells. J Vis Exp 2015:52255. [PMID: 25867901 PMCID: PMC4401175 DOI: 10.3791/52255] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Proteins are the building blocks, effectors and signal mediators of cellular processes. A protein's function, regulation and localization often depend on its interactions with other proteins. Here, we describe a protocol for the yeast protein-fragment complementation assay (PCA), a powerful method to detect direct and proximal associations between proteins in living cells. The interaction between two proteins, each fused to a dihydrofolate reductase (DHFR) protein fragment, translates into growth of yeast strains in presence of the drug methotrexate (MTX). Differential fitness, resulting from different amounts of reconstituted DHFR enzyme, can be quantified on high-density colony arrays, allowing to differentiate interacting from non-interacting bait-prey pairs. The high-throughput protocol presented here is performed using a robotic platform that parallelizes mating of bait and prey strains carrying complementary DHFR-fragment fusion proteins and the survival assay on MTX. This protocol allows to systematically test for thousands of protein-protein interactions (PPIs) involving bait proteins of interest and offers several advantages over other PPI detection assays, including the study of proteins expressed from their endogenous promoters without the need for modifying protein localization and for the assembly of complex reporter constructs.
Collapse
Affiliation(s)
- Samuel Rochette
- Département de Biologie, Institut de biologie intégrative et des systémes & PROTEO, Université Laval
| | - Guillaume Diss
- Département de Biologie, Institut de biologie intégrative et des systémes & PROTEO, Université Laval
| | - Marie Filteau
- Département de Biologie, Institut de biologie intégrative et des systémes & PROTEO, Université Laval
| | - Jean-Baptiste Leducq
- Département de Biologie, Institut de biologie intégrative et des systémes & PROTEO, Université Laval
| | - Alexandre K Dubé
- Département de Biologie, Institut de biologie intégrative et des systémes & PROTEO, Université Laval
| | - Christian R Landry
- Département de Biologie, Institut de biologie intégrative et des systémes & PROTEO, Université Laval;
| |
Collapse
|
15
|
Nguyen Ba AN, Strome B, Hua JJ, Desmond J, Gagnon-Arsenault I, Weiss EL, Landry CR, Moses AM. Detecting functional divergence after gene duplication through evolutionary changes in posttranslational regulatory sequences. PLoS Comput Biol 2014; 10:e1003977. [PMID: 25474245 PMCID: PMC4256066 DOI: 10.1371/journal.pcbi.1003977] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Accepted: 10/07/2014] [Indexed: 11/18/2022] Open
Abstract
Gene duplication is an important evolutionary mechanism that can result in functional divergence in paralogs due to neo-functionalization or sub-functionalization. Consistent with functional divergence after gene duplication, recent studies have shown accelerated evolution in retained paralogs. However, little is known in general about the impact of this accelerated evolution on the molecular functions of retained paralogs. For example, do new functions typically involve changes in enzymatic activities, or changes in protein regulation? Here we study the evolution of posttranslational regulation by examining the evolution of important regulatory sequences (short linear motifs) in retained duplicates created by the whole-genome duplication in budding yeast. To do so, we identified short linear motifs whose evolutionary constraint has relaxed after gene duplication with a likelihood-ratio test that can account for heterogeneity in the evolutionary process by using a non-central chi-squared null distribution. We find that short linear motifs are more likely to show changes in evolutionary constraints in retained duplicates compared to single-copy genes. We examine changes in constraints on known regulatory sequences and show that for the Rck1/Rck2, Fkh1/Fkh2, Ace2/Swi5 paralogs, they are associated with previously characterized differences in posttranslational regulation. Finally, we experimentally confirm our prediction that for the Ace2/Swi5 paralogs, Cbk1 regulated localization was lost along the lineage leading to SWI5 after gene duplication. Our analysis suggests that changes in posttranslational regulation mediated by short regulatory motifs systematically contribute to functional divergence after gene duplication. How a protein is controlled is intimately linked to its function. Therefore, evolution can drive the functional divergence of proteins by tweaking their regulation, even if enzymatic capacities are preserved. Changes in posttranslational regulation (protein phosphorylation, degradation, subcellular localization, etc.) could therefore represent key mechanisms in functional divergence and lead to different phenotypic outcomes. Since disordered protein regions contain sites of protein modification and interaction (known as short linear motifs) and evolve rapidly relative to domains encoding enzymatic functions, these regions are good candidates to harbour sequence changes that underlie changes in function. In this study, we develop a statistical framework to identify changes in rate of evolution specific to protein regulatory sequences and identify hundreds of short linear motifs in disordered regions that are likely to have diverged after the whole-genome duplication in budding yeast. We show that these divergent motifs are much more frequent in paralogs than in single-copy proteins, and that they are more frequent in duplicate pairs that have functionally diverged. Our analysis suggests that changes in short linear motifs in disordered protein regions could be important molecular mechanisms of functional divergence after gene duplication.
Collapse
Affiliation(s)
- Alex N Nguyen Ba
- Department of Cell & Systems Biology, University of Toronto, Toronto, Canada; Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, Canada
| | - Bob Strome
- Department of Cell & Systems Biology, University of Toronto, Toronto, Canada
| | - Jun Jie Hua
- Department of Cell & Systems Biology, University of Toronto, Toronto, Canada
| | - Jonathan Desmond
- Department of Cell & Systems Biology, University of Toronto, Toronto, Canada
| | - Isabelle Gagnon-Arsenault
- Département de Biologie, IBIS and PROTEO, Pavillon Charles-Eugene-Marchand, Laval University, Québec City, Canada
| | - Eric L Weiss
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois, United States of America
| | - Christian R Landry
- Département de Biologie, IBIS and PROTEO, Pavillon Charles-Eugene-Marchand, Laval University, Québec City, Canada
| | - Alan M Moses
- Department of Cell & Systems Biology, University of Toronto, Toronto, Canada; Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, Canada
| |
Collapse
|
16
|
Zahiri J, Mohammad-Noori M, Ebrahimpour R, Saadat S, Bozorgmehr JH, Goldberg T, Masoudi-Nejad A. LocFuse: human protein-protein interaction prediction via classifier fusion using protein localization information. Genomics 2014; 104:496-503. [PMID: 25458812 DOI: 10.1016/j.ygeno.2014.10.006] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2014] [Revised: 09/28/2014] [Accepted: 10/02/2014] [Indexed: 12/20/2022]
Abstract
UNLABELLED Protein-protein interaction (PPI) detection is one of the central goals of functional genomics and systems biology. Knowledge about the nature of PPIs can help fill the widening gap between sequence information and functional annotations. Although experimental methods have produced valuable PPI data, they also suffer from significant limitations. Computational PPI prediction methods have attracted tremendous attentions. Despite considerable efforts, PPI prediction is still in its infancy in complex multicellular organisms such as humans. Here, we propose a novel ensemble learning method, LocFuse, which is useful in human PPI prediction. This method uses eight different genomic and proteomic features along with four types of different classifiers. The prediction performance of this classifier selection method was found to be considerably better than methods employed hitherto. This confirms the complex nature of the PPI prediction problem and also the necessity of using biological information for classifier fusion. The LocFuse is available at: http://lbb.ut.ac.ir/Download/LBBsoft/LocFuse. BIOLOGICAL SIGNIFICANCE The results revealed that if we divide proteome space according to the cellular localization of proteins, then the utility of some classifiers in PPI prediction can be improved. Therefore, to predict the interaction for any given protein pair, we can select the most accurate classifier with regard to the cellular localization information. Based on the results, we can say that the importance of different features for PPI prediction varies between differently localized proteins; however in general, our novel features, which were extracted from position-specific scoring matrices (PSSMs), are the most important ones and the Random Forest (RF) classifier performs best in most cases. LocFuse was developed with a user-friendly graphic interface and it is freely available for Linux, Mac OSX and MS Windows operating systems.
Collapse
Affiliation(s)
- Javad Zahiri
- Laboratory of Systems Biology and Bioinformatics (LBB), Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran; Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Morteza Mohammad-Noori
- School of Mathematics, Statistics and Computer Science, College of Science, University of Tehran, Tehran, Iran
| | - Reza Ebrahimpour
- Brain and Intelligent Systems Research Lab, Department of Electrical and Computer Engineering, Shahid Rajaee Teacher Training University, Tehran, Iran
| | - Samaneh Saadat
- Laboratory of Systems Biology and Bioinformatics (LBB), Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Joseph H Bozorgmehr
- Laboratory of Systems Biology and Bioinformatics (LBB), Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Tatyana Goldberg
- Department for Bioinformatics and Computational Biology, Faculty of Informatics, TUM, Garching 85748, Germany
| | - Ali Masoudi-Nejad
- Laboratory of Systems Biology and Bioinformatics (LBB), Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran.
| |
Collapse
|
17
|
Rochette S, Gagnon-Arsenault I, Diss G, Landry CR. Modulation of the yeast protein interactome in response to DNA damage. J Proteomics 2013; 100:25-36. [PMID: 24262151 DOI: 10.1016/j.jprot.2013.11.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2013] [Revised: 10/10/2013] [Accepted: 11/05/2013] [Indexed: 01/24/2023]
Abstract
UNLABELLED Cells deploy diverse mechanisms to physiologically adapt to potentially detrimental perturbations. These mechanisms include changes in the organization of protein-protein interaction networks (PINs). Most PINs characterized to date are portrayed in a single environmental condition and are thus likely to miss important connections among biological processes. In this report, we show that the yeast DHFR-PCA on high-density arrays allows to detects modulations of protein-protein interactions (PPIs) in different conditions by testing more than 1000 PPIs in standard and in a drug-inducing DNA damage conditions. We identify 156 PPIs that show significant modulation in response to DNA damage. We provide evidence that modulated PPIs involve essential genes (NOP7, EXO84 and LAS17) playing critical roles in response to DNA damage. Additionally, we show that a significant proportion of PPI changes are likely explained by changes in protein localization and, to a lesser extent, protein abundance. The protein interaction modules affected by changing PPIs support the role of mRNA stability and translation, protein degradation and ubiquitylation and the regulation of the actin cytoskeleton in response to DNA damage. Overall, we provide a valuable tool and dataset for the study of the rewiring of PINs in response to environmental perturbations. BIOLOGICAL SIGNIFICANCE We show that the DHFR-PCA is a high-throughput method that allows the detection of changes in PPIs associated with different environmental conditions using DNA damage response as a testbed. We provide a valuable resource for the study of DNA damage in eukaryotic cells. This article is part of a Special Issue: Can Proteomics Fill the Gap Between Genomics and Phenotypes?
Collapse
Affiliation(s)
- Samuel Rochette
- Département de Biologie, PROTEO and Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, Québec G1V 0A6, Canada
| | - Isabelle Gagnon-Arsenault
- Département de Biologie, PROTEO and Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, Québec G1V 0A6, Canada
| | - Guillaume Diss
- Département de Biologie, PROTEO and Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, Québec G1V 0A6, Canada
| | - Christian R Landry
- Département de Biologie, PROTEO and Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, Québec G1V 0A6, Canada.
| |
Collapse
|
18
|
Landry C, Levy E, Abd Rabbo D, Tarassov K, Michnick S. Extracting Insight from Noisy Cellular Networks. Cell 2013; 155:983-9. [DOI: 10.1016/j.cell.2013.11.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Indexed: 01/25/2023]
|
19
|
Diss G, Dubé AK, Boutin J, Gagnon-Arsenault I, Landry CR. A systematic approach for the genetic dissection of protein complexes in living cells. Cell Rep 2013; 3:2155-67. [PMID: 23746448 DOI: 10.1016/j.celrep.2013.05.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Revised: 04/11/2013] [Accepted: 05/04/2013] [Indexed: 01/23/2023] Open
Abstract
Cells contain many important protein complexes involved in performing and regulating structural, metabolic, and signaling functions. One major challenge in cell biology is to elucidate the organization and mechanisms of robustness of these complexes in vivo. We developed a systematic approach to study structural dependencies within complexes in living cells by deleting subunits and measuring pairwise interactions among other components. We used our methodology to perturb two conserved eukaryotic complexes: the retromer and the nuclear pore complex. Our results identify subunits that are critical for the assembly of these complexes, reveal their structural architecture, and uncover mechanisms by which protein interactions are modulated. Our results also show that paralogous proteins play a key role in the robustness of protein complexes and shape their assembly landscape. Our approach paves the way for studying the response of protein interactomes to mutations and enhances our understanding of genotype-phenotype maps.
Collapse
Affiliation(s)
- Guillaume Diss
- Département de Biologie, PROTEO and Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, QC G1V 0A6, Canada
| | | | | | | | | |
Collapse
|