1
|
Zhang CM, Zhou Q, Li YQ, Li J. Effects of clarithromycin exposure on the growth of Microcystis aeruginosa and the production of algal dissolved organic matter. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 271:106918. [PMID: 38598945 DOI: 10.1016/j.aquatox.2024.106918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/03/2024] [Accepted: 04/05/2024] [Indexed: 04/12/2024]
Abstract
Antibiotics are commonly found in the aquatic environment, which can affect microbial community compositions and activities, and even have potential adverse impacts on human and ecosystem health. The current understanding of the effects of antibiotics on microalgae growth and algal dissolved organic matter (DOM) remains indistinct. To understand the toxic effects of antibiotics on the microalgae, Microcystis aeruginosa was exposed to clarithromycin (CLA) in this study. Cell density determination, chlorophyll content determination, and organic spectrum analysis were conducted to show the effect of CLA exposure on the growth, photosynthetic activity, and organic metabolic processes of Microcystis aeruginosa. The findings revealed that the physiological status of algae could be significantly influenced by CLA exposure in aquatic environments. Specifically, exposure to 1 μg/L CLA stimulated the growth and photosynthetic activity of algal cells. Conversely, CLA above 10 μg/L led to the inhibition of algal cell growth and photosynthesis. Notably, the inhibitory effects intensified with the increasing concentration of CLA. The molecular weight of DOM produced by Microcystis aeruginosa increased when exposed to CLA. Under the exposure of 60 μg/L CLA, a large number of algal cells ruptured and died, and the intracellular organic matter was released into the algal liquid. This resulted in an increase in high molecular weight substances and soluble microbial-like products in the DOM. Exposure to 1 and 10 μg/L CLA stimulated Microcystis aeruginosa to produce more humic acid-like substances, which may be a defense mechanism against CLA. The results were useful for assessing the effects of antibiotic pollution on the stability of the microalgae population and endogenous DOM characteristics in aquatic ecosystems.
Collapse
Affiliation(s)
- Chong-Miao Zhang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; International Science and Technology Cooperation Center for Urban Alternative Water Resources Development, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Qing Zhou
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Yong-Qiang Li
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Jie Li
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|
2
|
Chen C, Han X, Yan Q, Wang C, Jia L, Taj A, Zhao L, Ma Y. The Inhibitory Effect of GlmU Acetyltransferase Inhibitor TPSA on Mycobacterium tuberculosis May Be Affected Due to Its Methylation by Methyltransferase Rv0560c. Front Cell Infect Microbiol 2019; 9:251. [PMID: 31380295 PMCID: PMC6652808 DOI: 10.3389/fcimb.2019.00251] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 06/27/2019] [Indexed: 01/01/2023] Open
Abstract
Mycobacterium tuberculosis bifunctional enzyme GlmU is a novel target for anti-TB drugs and is involved in glycosyl donor UDP-N-acetylglucosamine biosynthesis. Here, we found that TPSA (2-[5-(2-{[4-(2-thienyl)-2-pyrimidinyl]sulfanyl}acetyl)-2-thienyl]acetic acid) was a novel inhibitor for GlmU acetyltransferase activity (IC50: 5.3 μM). The interaction sites of GlmU and TPSA by molecular docking were confirmed by site-directed mutagenesis. TPSA showed an inhibitory effect on Mtb H37Ra growth and intracellular H37Ra in macrophage cells (MIC: 66.5 μM). To investigate why TPSA at a higher concentration (66.5 μM) was able to inhibit H37Ra growth, proteome and transcriptome of H37Ra treated with TPSA were analyzed. The expression of two methyltransferases MRA_0565 (Rv0558) and MRA_0567 (Rv0560c) were markedly increased. TPSA was pre-incubated with purified Rv0558 and Rv0560c in the presence of S-adenosylmethionine (methyl donor) respectively, resulting in its decreased inhibitory effect of GlmU on acetyltransferase activity. The inhibition of TPSA on growth of H37Ra with overexpressed Rv0558 and Rv0560c was reduced. These implied that methyltransferases could modify TPSA. The methylation of TPSA catalyzed by Rv0560c was subsequently confirmed by LC-MS. Therefore, TPSA as a GlmU acetyltransferase activity inhibitor may offer a structural basis for new anti-tuberculosis drugs. TPSA needs to be modified further by some groups to prevent its methylation by methyltransferases.
Collapse
Affiliation(s)
- Changming Chen
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Xiuyan Han
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Qiulong Yan
- Department of Microbiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Chao Wang
- College of Pharmacy, Dalian Medical University, Dalian, China
| | - Liqiu Jia
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Ayaz Taj
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Lizhe Zhao
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Yufang Ma
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China.,Department of Microbiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| |
Collapse
|
3
|
Mihăşan M, Babii C, Aslebagh R, Channaveerappa D, Dupree EJ, Darie CC. Exploration of Nicotine Metabolism in Paenarthrobacter nicotinovorans pAO1 by Microbial Proteomics. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1140:515-529. [DOI: 10.1007/978-3-030-15950-4_30] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
4
|
Xiong L, Liao D, Lu X, Yan H, Shi L, Mo Z. Proteomic analysis reveals that a global response is induced by subinhibitory concentrations of ampicillin. Bioengineered 2017; 8:732-741. [PMID: 28881168 DOI: 10.1080/21655979.2017.1373532] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
In this study, a recipient-donor co-culture system was used to research the effect of subinhibitory concentrations of antibiotics on horizontal transmission in bacteria and the influence of antibiotics on protein expression. We employed two-dimensional gel electrophoresis combined with mass spectrometry to compare the protein expression profiles in systems with or without 0.5 × the minimum inhibitory concentration of ampicillin. RT-PCR was used to assess the transcriptional levels of the differentially expressed genes. Fifty-seven different proteins were induced or suppressed. The upregulated proteins were involved in transcription and translation, cell wall synthesis, bacterial SOS response, and detoxifying functions, and the downregulated proteins were involved in metabolism. These results indicated that a global response was induced in the recipient-donor co-culture system by the subinhibitory concentration of ampicillin. Further analysis revealed that a global regulatory network based on key pathways was induced in the system in response to the antibiotic pressure. These findings provide a new, more comprehensive view for research on antibiotic-resistance mechanisms in recipient-donor co-culture.
Collapse
Affiliation(s)
- Lina Xiong
- a The First Affiliated Hospital of Guangzhou Medical University , Guangzhou Institute of Respiratory Disease, State Key Laboratory of Respiratory Disease , Guangzhou , China.,b Jinan University , Guangzhou , China.,c School of Food Sciences and Technology , South China University of Technology , Guangzhou , China
| | - Dongjiang Liao
- a The First Affiliated Hospital of Guangzhou Medical University , Guangzhou Institute of Respiratory Disease, State Key Laboratory of Respiratory Disease , Guangzhou , China
| | - Xinpeng Lu
- a The First Affiliated Hospital of Guangzhou Medical University , Guangzhou Institute of Respiratory Disease, State Key Laboratory of Respiratory Disease , Guangzhou , China
| | - He Yan
- c School of Food Sciences and Technology , South China University of Technology , Guangzhou , China
| | - Lei Shi
- b Jinan University , Guangzhou , China.,c School of Food Sciences and Technology , South China University of Technology , Guangzhou , China
| | - Ziyao Mo
- a The First Affiliated Hospital of Guangzhou Medical University , Guangzhou Institute of Respiratory Disease, State Key Laboratory of Respiratory Disease , Guangzhou , China
| |
Collapse
|
5
|
Chen S, Liu Y, Zhang J, Gao B. iTRAQ-based quantitative proteomic analysis of Microcystis aeruginosa exposed to spiramycin at different nutrient levels. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2017; 185:193-200. [PMID: 28236765 DOI: 10.1016/j.aquatox.2017.02.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 02/10/2017] [Accepted: 02/14/2017] [Indexed: 06/06/2023]
Abstract
Research on the combined effects of antibiotic contaminants and environmental factors in cyanobacteria is still limited. This study focused on the action and its mechanism of spiramycin combined with changes in nitrogen and phosphorus level in Microcystis aeruginosa at environmentally relevant concentrations. Though photosynthetic activity was stimulated by spiramycin at a high nutrient level, no significant correlation (p>0.05) was found between photosynthesis-related proteins and growth-related proteins, and the growth rate was inhibited by 200ngL-1 of spiramycin. At low nitrogen and low phosphorus levels, up-regulated photosynthesis-related proteins were closely correlated with (p<0.05) stress response-related, transcription-related and cell division-related proteins, which consequently led to stimulated growth of M. aeruginosa under spiramycin exposure. Spiramycin exposure also regulated the production of microcystins (MCs) and the expression of two microcystin synthetases (mcyB and mcyC). The spiramycin-induced protein secretion process and the up-regulation of ATP binding cassette transporters might contribute to the increased MC release. Enolase, superoxide dismutase, protein GrpE, DNA-directed RNA polymerase subunit alpha and serine protease were candidate target proteins of spiramycin in M. aeruginosa under different nutrient conditions. Coexisting spiramycin mitigated the threat of cyanobacteria to aquatic environments at a high nutrient level but aggravated cyanobacterial bloom at a low nitrogen level.
Collapse
Affiliation(s)
- Shi Chen
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan, 250100, PR China
| | - Ying Liu
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan, 250100, PR China.
| | - Jian Zhang
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan, 250100, PR China
| | - Baoyu Gao
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan, 250100, PR China
| |
Collapse
|
6
|
Gokgoz NB, Akbulut BS. Proteomics Evidence for the Activity of the Putative Antibacterial Plant Alkaloid (-)-Roemerine: Mainstreaming Omics-Guided Drug Discovery. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2016; 19:478-89. [PMID: 26230533 DOI: 10.1089/omi.2015.0056] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Discovery of new antibacterials with novel mechanisms is important to counteract the ingenious resistance mechanisms of bacteria. In this connection, omics-guided drug discovery offers a rigorous method in the quest of new antibacterials. (-)-Roemerine is a plant alkaloid that has been reported to possess putative antibacterial activity against Escherichia coli, Bacillus subtilis, and Salmonella typhimurium. The aim of the present study was to characterize the activity of (-)-roemerine in Escherichia coli TB1 using proteomics tools. With (-)-roemerine treatment, we found limited permeability through the outer membrane and repression of transport proteins involved in carbohydrate metabolism, resulting in poor carbon source availability. The shortfall of intracellular carbon sources in turn led to impaired cell growth. The reduction in the abundance of proteins related to translational machinery, amino acid biosynthesis, and metabolism was accompanied by a nutrient-limited state. The latter finding could suggest a metabolic shutdown in E. coli cells. High osmolarity was clearly not one of the reasons of bacterial death by (-)-roemerine. These observations collectively attest to the promise of plant omics and profiling of putative drug candidates using proteomics tools. Omics-guided drug discovery deserves greater attention in mainstream pharmacology so as to better understand the plants' medicinal potentials.
Collapse
|
7
|
Reddy PJ, Ray S, Sathe GJ, Prasad TSK, Rapole S, Panda D, Srivastava S. Proteomics analyses of Bacillus subtilis after treatment with plumbagin, a plant-derived naphthoquinone. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2015; 19:12-23. [PMID: 25562197 DOI: 10.1089/omi.2014.0099] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Infectious diseases and increasing antibiotic resistance among diverse classes of microbes are global health concerns and a prime focus of omics systems science applications in novel drug discovery. Plumbagin is a plant-derived naphthoquinone, a natural product that exhibits antibacterial activity against gram-positive bacteria. In the present study, we investigated the antimicrobial effects of plumbagin against Bacillus subtilis using two complementary proteomics techniques: two-dimensional electrophoresis (2-DE) and isobaric tag for relative and absolute quantification (iTRAQ). Comparative quantitative proteomics analysis of plumbagin treated and untreated control samples identified differential expression of 230 proteins (1% FDR, 1.5 fold-change and ≥2 peptides) in B. subtilis after plumbagin treatment. Pathway analysis involving the differentially expressed proteins suggested that plumbagin effectively increases heme and protein biosynthesis, whereas fatty acid synthesis was significantly reduced. Gene expression and metabolic activity assays further corroborated the proteomics findings. We anticipate that plumbagin blocks the cell division by altering the membrane permeability required for energy generation. This is the first report, to the best of our knowledge, offering new insights, at proteome level, for the putative mode(s) of action of plumbagin and attendant cellular targets in B. subtilis. The findings also suggest new ways forward for the modern omics-guided drug target discovery, building on traditional plant medicine.
Collapse
Affiliation(s)
- Panga Jaipal Reddy
- 1 Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay , Powai, Mumbai, India
| | | | | | | | | | | | | |
Collapse
|
8
|
A comprehensive proteomic analysis of totarol induced alterations in Bacillus subtilis by multipronged quantitative proteomics. J Proteomics 2015; 114:247-62. [DOI: 10.1016/j.jprot.2014.10.025] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Revised: 09/28/2014] [Accepted: 10/20/2014] [Indexed: 12/25/2022]
|
9
|
Comparative proteomics of mitosis and meiosis in Saccharomyces cerevisiae. J Proteomics 2014; 109:1-15. [DOI: 10.1016/j.jprot.2014.06.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2013] [Revised: 05/21/2014] [Accepted: 06/08/2014] [Indexed: 12/18/2022]
|
10
|
Patkari M, Mehra S. Transcriptomic study of ciprofloxacin resistance in Streptomyces coelicolor A3(2). MOLECULAR BIOSYSTEMS 2013; 9:3101-16. [DOI: 10.1039/c3mb70341j] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|