1
|
Mechahougui H, Hildebrand L, Haberberger J, Sivakumar S, Saiji E, Tukachinsky H, Madison R, Killian JK, Huang RSP, Elvin JA, Marks E, Heinrich MC, Koessler T, Lin DI. Clinical Use of Liquid-Based Comprehensive Genomic Profiling in Gastrointestinal Stromal Tumors. J Transl Med 2025; 105:104116. [PMID: 39984125 DOI: 10.1016/j.labinv.2025.104116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 01/29/2025] [Accepted: 02/06/2025] [Indexed: 02/23/2025] Open
Abstract
Treatment for gastrointestinal stromal tumor (GIST) focuses on tyrosine kinase inhibitors, the selection of which depends on specific mutations. We sought to determine the clinical use of liquid biopsy in advanced GIST. Liquid (n = 181) (FoundationOne Liquid CDx) and tissue (n = 2198) (FoundationOne and FoundationOne CDx) comprehensive genomic profiling of GIST were evaluated. The presence of circulating tumor DNA in liquid was determined via tumor fraction (TF), with an elevated TF defined as TF ≥ 1%. Liquid comprehensive genomic profiling revealed 30% (54/181) of samples had an elevated TF, among which the prevalence of KIT and PDGFRA alterations were 89% (48/54) and 2% (1/54), respectively. In patient-matched tissue/liquid samples (n = 49), the positive percent agreement of driver alterations in liquid with an elevated TF relative to tissue was 100%. Fifty-five percent (42/77) of liquid samples with a KIT driver mutation had a co-occurring imatinib-resistant alteration; a minority of cases harbored non-KIT mechanisms of resistance such as FGFR2 fusions and BRAF or EGFR alterations. The relative prevalence of imatinib resistance KIT exon 13 and 17 mutations was enriched in liquid compared with tissue. Finally, in the liquid cohort, 2.2%, 1.7%, and 1.1% of patients were predicted to harbor germline KIT, SDHx, or NF1 mutations, respectively. In conclusion, known driver and tyrosine kinase inhibitor--resistant mutations were identified in liquid biopsies of patients with GIST with high concordance to tissue in the presence of an elevated TF. Liquid biopsy may be valuable in the molecular classification and medical management of GIST.
Collapse
Affiliation(s)
| | - Lindsey Hildebrand
- Division of Hematology & Medical Oncology, Boston Medical Center, Boston, Massachusetts
| | | | | | - Essia Saiji
- Geneva University Hospital, Geneva, Switzerland
| | | | | | | | | | | | - Eric Marks
- Division of Hematology & Medical Oncology, Boston Medical Center, Boston, Massachusetts
| | - Michael C Heinrich
- Portland Veterans Affairs Health Care System, Portland, Oregon; Division of Hematology and Oncology, Oregon Health & Science University Knight Cancer Institute, Portland, Oregon
| | | | | |
Collapse
|
2
|
Naniwa K, Hirose K, Usami Y, Hata K, Araki R, Uzawa N, Komori T, Toyosawa S. Fam20C overexpression in odontoblasts regulates dentin formation and odontoblast differentiation. J Mol Histol 2023; 54:329-347. [PMID: 37357253 DOI: 10.1007/s10735-023-10123-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 04/27/2023] [Indexed: 06/27/2023]
Abstract
FAM20C phosphorylates secretory proteins at S-x-E/pS motifs, and previous studies of Fam20C-dificient mice revealed that FAM20C played essential roles in bone and tooth formation. Inactivation of FAM20C in mice led to hypophosphatemia that masks direct effect of FAM20C in these tissues, and consequently the direct role of FAM20C remains unknown. Our previous study reported that osteoblast/odontoblast-specific Fam20C transgenic (Fam20C-Tg) mice had normal serum phosphate levels and that osteoblastic FAM20C-mediated phosphorylation regulated bone formation and resorption. Here, we investigated the direct role of FAM20C in dentin using Fam20C-Tg mice. The tooth of Fam20C-Tg mice contained numerous highly phosphorylated proteins, including SIBLINGs, compared to that of wild-type mice. In Fam20C-Tg mice, coronal dentin volume decreased and mineral density unchanged at early age, while the volume unchanged and the mineral density elevated at maturity. In these mice, radicular dentin volume and mineral density decreased at all ages, and histologically, the radicular dentin had wider predentin and abnormal apical-side dentin with embedded cells and argyrophilic canaliculi. Immunohistochemical analyses revealed that abnormal apical-side dentin had bone and dentin matrix properties accompanied with osteoblast-lineage cells. Further, in Fam20C-Tg mice, DSPP content which is important for dentin formation, was reduced in dentin, especially radicular dentin, which might lead to defects mainly in radicular dentin. Renal subcapsular transplantations of tooth germ revealed that newly formed radicular dentin replicated apical abnormal dentin of Fam20C-Tg mice, corroborating that FAM20C overexpression indeed caused the abnormal dentin. Our findings indicate that odontoblastic FAM20C-mediated phosphorylation in the tooth regulates dentin formation and odontoblast differentiation.
Collapse
Affiliation(s)
- Kohei Naniwa
- Department of Oral and Maxillofacial Pathology, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka, 565-0871, Japan
- Department of Oral & Maxillofacial Oncology and Surgery, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Katsutoshi Hirose
- Department of Oral and Maxillofacial Pathology, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yu Usami
- Department of Oral and Maxillofacial Pathology, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Kenji Hata
- Department of Molecular and Cellular Biochemistry, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Rikita Araki
- Bruker Japan K.K. BioSpin Division, Application Department, 3-9 Kanagawaku Moriyacho, Yokohama, Kanagawa, 221-0022, Japan
| | - Narikazu Uzawa
- Department of Oral & Maxillofacial Oncology and Surgery, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Toshihisa Komori
- Department of Molecular Bone Biology, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8588, Japan
| | - Satoru Toyosawa
- Department of Oral and Maxillofacial Pathology, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
3
|
Sato A, Shimotsuma A, Miyoshi T, Takahashi Y, Funayama N, Ogino Y, Hiramoto A, Wataya Y, Kim HS. Extracellular Leakage Protein Patterns in Two Types of Cancer Cell Death: Necrosis and Apoptosis. ACS OMEGA 2023; 8:25059-25065. [PMID: 37483236 PMCID: PMC10357420 DOI: 10.1021/acsomega.3c01691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 06/27/2023] [Indexed: 07/25/2023]
Abstract
Dead cells release fragments of DNA, RNA, and proteins (including peptides) into the extracellular space. Two major forms of cell death during cancer development have been identified: necrosis and apoptosis. Our group investigated the mechanisms that regulate cell death during the treatment of mouse tumor FM3A cells with the anticancer drug floxuridine (FUdR). In the original strain F28-7, FUdR induced necrosis, whereas in the variant F28-7-A, it induced apoptosis. Here, we report that the extracellular leakage proteome (i.e., the secretome) is involved in these cell death phenomena. The secretome profile, which was analyzed via shotgun proteomic analysis, revealed that altered protein leakage was involved in signal transduction, transcription, RNA processing, translation, and cell death. Notably, the characteristic secretory proteins high mobility group box 1 and 2 were detected in the culture medium of both necrotic and apoptotic cells. Overall, these results indicate that unique cellular events mediated by secretory proteins may be involved in necrosis and apoptosis.
Collapse
Affiliation(s)
- Akira Sato
- Department
of Biochemistry and Molecular Biology, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba 278-8510, Japan
| | - Akira Shimotsuma
- Department
of Biochemistry and Molecular Biology, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba 278-8510, Japan
| | - Tetsuya Miyoshi
- Department
of Biochemistry and Molecular Biology, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba 278-8510, Japan
| | - Yui Takahashi
- Department
of Biochemistry and Molecular Biology, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba 278-8510, Japan
| | - Naoki Funayama
- Department
of Biochemistry and Molecular Biology, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba 278-8510, Japan
| | - Yoko Ogino
- Department
of Biochemistry and Molecular Biology, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba 278-8510, Japan
- Department
of Gene Regulation, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba 278-8510, Japan
| | - Akiko Hiramoto
- Division
of International Infectious Diseases Control, Faculty of Pharmaceutical
Sciences, Okayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Yusuke Wataya
- Division
of International Infectious Diseases Control, Faculty of Pharmaceutical
Sciences, Okayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Hye-Sook Kim
- Division
of International Infectious Diseases Control, Faculty of Pharmaceutical
Sciences, Okayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| |
Collapse
|
4
|
Zhai LH, Chen KF, Hao BB, Tan MJ. Proteomic characterization of post-translational modifications in drug discovery. Acta Pharmacol Sin 2022; 43:3112-3129. [PMID: 36372853 PMCID: PMC9712763 DOI: 10.1038/s41401-022-01017-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 08/07/2022] [Indexed: 11/15/2022]
Abstract
Protein post-translational modifications (PTMs), which are usually enzymatically catalyzed, are major regulators of protein activity and involved in almost all celluar processes. Dysregulation of PTMs is associated with various types of diseases. Therefore, PTM regulatory enzymes represent as an attractive and important class of targets in drug research and development. Inhibitors against kinases, methyltransferases, deacetyltransferases, ubiquitin ligases have achieved remarkable success in clinical application. Mass spectrometry-based proteomics technologies serve as a powerful approach for system-wide characterization of PTMs, which facilitates the identification of drug targets, elucidation of the mechanisms of action of drugs, and discovery of biomakers in personalized therapy. In this review, we summarize recent advances of proteomics-based studies on PTM targeting drugs and discuss how proteomics strategies facilicate drug target identification, mechanism elucidation, and new therapy development in precision medicine.
Collapse
Affiliation(s)
- Lin-Hui Zhai
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Zhongshan Institute of Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Science, Zhongshan, 528400, China
| | - Kai-Feng Chen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Bing-Bing Hao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Min-Jia Tan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Zhongshan Institute of Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Science, Zhongshan, 528400, China.
| |
Collapse
|
5
|
Nomura K, Liu Y, Kajihara Y. Synthesis of homogeneous glycoproteins with diverse N-glycans. Adv Carbohydr Chem Biochem 2022; 81:57-93. [DOI: 10.1016/bs.accb.2022.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
6
|
Nomura K, Maki Y, Okamoto R, Satoh A, Kajihara Y. Glycoprotein Semisynthesis by Chemical Insertion of Glycosyl Asparagine Using a Bifunctional Thioacid-Mediated Strategy. J Am Chem Soc 2021; 143:10157-10167. [PMID: 34189908 DOI: 10.1021/jacs.1c02601] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Glycosylation is a major modification of secreted and cell surface proteins, and the resultant glycans show considerable heterogeneity in their structures. To understand the biological processes arising from each glycoform, the preparation of homogeneous glycoproteins is essential for extensive biological experiments. To establish a more robust and rapid synthetic route for the synthesis of homogeneous glycoproteins, we studied several key reactions based on amino thioacids. We found that diacyl disulfide coupling (DDC) formed with glycosyl asparagine thioacid and peptide thioacid yielded glycopeptides. This efficient coupling reaction enabled us to develop a new glycoprotein synthesis method, such as the bifunctional thioacid-mediated strategy, which can couple two peptides with the N- and C-termini of glycosyl asparagine thioacid. Previous glycoprotein synthesis methods required valuable glycosyl asparagine in the early stage and subsequent multiple glycoprotein synthesis routes, whereas the developed concept can generate glycoproteins within a few steps from peptide and glycosyl asparagine thioacid. Herein, we report the characterization of the DDC of amino thioacids and the efficient ability of glycosyl asparagine thioacid to be used for robust glycoprotein semisynthesis.
Collapse
Affiliation(s)
| | | | | | - Ayano Satoh
- Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, 3-1-1, Tsushimanaka, Okayama 700-0082, Japan
| | | |
Collapse
|
7
|
Vallilas C, Sarantis P, Kyriazoglou A, Koustas E, Theocharis S, Papavassiliou AG, Karamouzis MV. Gastrointestinal Stromal Tumors (GISTs): Novel Therapeutic Strategies with Immunotherapy and Small Molecules. Int J Mol Sci 2021; 22:493. [PMID: 33419029 PMCID: PMC7825300 DOI: 10.3390/ijms22020493] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/03/2021] [Accepted: 01/04/2021] [Indexed: 02/08/2023] Open
Abstract
Gastrointestinal stromal tumors (GISTs) are the most common types of malignant mesenchymal tumors in the gastrointestinal tract, with an estimated incidence of 1.5/100.000 per year and 1-2% of gastrointestinal neoplasms. About 75-80% of patients have mutations in the KIT gene in exons 9, 11, 13, 14, 17, and 5-10% of patients have mutations in the platelet-derived growth factor receptor a (PDGFRA) gene in exons 12, 14, 18. Moreover, 10-15% of patients have no mutations and are classified as wild type GIST. The treatment for metastatic or unresectable GISTs includes imatinib, sunitinib, and regorafenib. So far, GIST therapies have raised great expectations and offered patients a better quality of life, but increased pharmacological resistance to tyrosine kinase inhibitors is often observed. New treatment options have emerged, with ripretinib, avapritinib, and cabozantinib getting approvals for these tumors. Nowadays, immune checkpoint inhibitors form a new landscape in cancer therapeutics and have already shown remarkable responses in various tumors. Studies in melanoma, non-small-cell lung cancer, and renal cell carcinoma are very encouraging as these inhibitors have increased survival rates. The purpose of this review is to present alternative approaches for the treatment of the GIST patients, such as combinations of immunotherapy and novel inhibitors with traditional therapies (tyrosine kinase inhibitors).
Collapse
Affiliation(s)
- Christos Vallilas
- Molecular Oncology Unit, Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (C.V.); (P.S.); (E.K.); (A.G.P.)
| | - Panagiotis Sarantis
- Molecular Oncology Unit, Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (C.V.); (P.S.); (E.K.); (A.G.P.)
| | - Anastasios Kyriazoglou
- 2nd Propaedeutic Department of Medicine, ATTIKON University Hospital, 12462 Athens, Greece;
| | - Evangelos Koustas
- Molecular Oncology Unit, Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (C.V.); (P.S.); (E.K.); (A.G.P.)
| | - Stamatios Theocharis
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Athanasios G. Papavassiliou
- Molecular Oncology Unit, Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (C.V.); (P.S.); (E.K.); (A.G.P.)
| | - Michalis V. Karamouzis
- Molecular Oncology Unit, Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (C.V.); (P.S.); (E.K.); (A.G.P.)
| |
Collapse
|
8
|
Hirose K, Ishimoto T, Usami Y, Sato S, Oya K, Nakano T, Komori T, Toyosawa S. Overexpression of Fam20C in osteoblast in vivo leads to increased cortical bone formation and osteoclastic bone resorption. Bone 2020; 138:115414. [PMID: 32416287 DOI: 10.1016/j.bone.2020.115414] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 05/10/2020] [Accepted: 05/11/2020] [Indexed: 01/03/2023]
Abstract
Fam20C, which phosphorylates many secretory proteins with S-x-E/pS motifs, is highly expressed in bone and tooth tissues, implying that Fam20C-mediated phosphorylation is critical for regulation of these mineralized tissues. Previous studies of Fam20C-deficient mice revealed that Fam20C plays important roles in bone formation and mineralization. However, Fam20C-deficient mice develop hypophosphatemia, a systemic factor that masks the local effect of Fam20C in the bone tissue; consequently, the local role of Fam20C remains unknown. To elucidate the local function of Fam20C in bone tissue, we studied osteoblast-specific Fam20C transgenic (Fam20C-Tg) mice, which have no alteration in serum calcium and phosphate levels. Fam20C-Tg mice had more highly phosphorylated proteins in bone tissue than wild-type mice. In cortical bone of Fam20C-Tg mice, bone volume, mineralization surface (MS/BS), and mineral apposition rate (MAR) were elevated; in addition, the transgenic mice had an elevated number of vascular canals, resulting in an increased cortical porosity. Osteocyte number was elevated in the transgenics, but osteoblast number was unchanged. The microstructure of bone matrix characterized by the preferential orientation of collagen and apatite, was degraded and thus the mechanical function of bone material was deteriorated. In trabecular bone of Fam20C-Tg mice, bone volume was reduced, whereas MS/BS and MAR were unchanged. Osteoclast number was elevated and eroded surface area was non-significantly elevated with an increased serum CTX-I level, whereas osteoblast number was unchanged. These findings indicated that Fam20C overexpression in osteoblasts promotes cortical bone formation by increasing MS/BS and MAR and promoting osteocyte differentiation, but does not affect trabecular bone formation. Furthermore, Fam20C overexpression indirectly promotes osteoclastic bone resorption in cortical and trabecular bones. Our findings show that osteoblastic Fam20C-mediated phosphorylation in bone tissue regulates bone formation and resorption, and bone material quality.
Collapse
Affiliation(s)
- Katsutoshi Hirose
- Department of Oral Pathology, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Takuya Ishimoto
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Yu Usami
- Department of Oral Pathology, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Sunao Sato
- Department of Oral Pathology, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Kaori Oya
- Clinical Laboratory, Osaka University Dental Hospital, 1-8 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Takayoshi Nakano
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Toshihisa Komori
- Basic and Translational Research Center for Hard Tissue Disease, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki 852-8588, Japan.
| | - Satoru Toyosawa
- Department of Oral Pathology, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
9
|
Investigation of cancer drug resistance mechanisms by phosphoproteomics. Pharmacol Res 2020; 160:105091. [PMID: 32712320 DOI: 10.1016/j.phrs.2020.105091] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 07/20/2020] [Accepted: 07/20/2020] [Indexed: 12/23/2022]
Abstract
Cancer cell mutations can be identified by genomic and transcriptomic techniques. However, they are not sufficient to understand the full complexity of cancer heterogeneity. Analyses of proteins expressed in cancers and their modification profiles show how these mutations could be translated at the functional level. Protein phosphorylation is a major post-translational modification critical for regulating several cellular functions. The covalent addition of phosphate groups to serine, threonine, and tyrosine is catalyzed by protein kinases. Over the past years, kinases were strongly associated with cancer, thus inhibition of protein kinases emanated as novel cancer treatment. However, cancers frequently develop drug resistance. Therefore, a better understanding of drug effects on tumors is urgently needed. In this perspective, phosphoproteomics arose as advanced tool to monitor cancer therapies and to discover novel drugs. This review highlights the role of phosphoproteomics in predicting sensitivity or resistance of cancers towards tyrosine kinase inhibitors and cytotoxic drugs. It also shows the importance of phosphoproteomics in identifying biomarkers that could be applied in clinical diagnostics to predict responses to drugs.
Collapse
|
10
|
Quantitative phosphoproteomic analysis identifies the potential therapeutic target EphA2 for overcoming sorafenib resistance in hepatocellular carcinoma cells. Exp Mol Med 2020; 52:497-513. [PMID: 32203105 PMCID: PMC7156679 DOI: 10.1038/s12276-020-0404-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 10/24/2019] [Accepted: 02/05/2020] [Indexed: 12/22/2022] Open
Abstract
Limited therapeutic options are available for advanced-stage hepatocellular carcinoma owing to its poor diagnosis. Drug resistance to sorafenib, the only available targeted agent, is commonly reported. The comprehensive elucidation of the mechanisms underlying sorafenib resistance may thus aid in the development of more efficacious therapeutic agents. To clarify the signaling changes contributing to resistance, we applied quantitative phosphoproteomics to analyze the differential phosphorylation changes between parental and sorafenib-resistant HuH-7 cells. Consequently, an average of ~1500 differential phosphoproteins were identified and quantified, among which 533 were significantly upregulated in resistant cells. Further bioinformatic integration via functional categorization annotation, pathway enrichment and interaction linkage analysis led to the discovery of alterations in pathways associated with cell adhesion and motility, cell survival and cell growth and the identification of a novel target, EphA2, in resistant HuH-7R cells. In vitro functional analysis indicated that the suppression of EphA2 function impairs cell proliferation and motility and, most importantly, overcomes sorafenib resistance. The attenuation of sorafenib resistance may be achieved prior to its development through the modulation of EphA2 and the subsequent inhibition of Akt activity. Binding analyses and in silico modeling revealed a ligand mimic lead compound, prazosin, that could abate the ligand-independent oncogenic activity of EphA2. Finally, data obtained from in vivo animal models verified that the simultaneous inhibition of EphA2 with sorafenib treatment can effectively overcome sorafenib resistance and extend the projected survival of resistant tumor-bearing mice. Thus our findings regarding the targeting of EphA2 may provide an effective approach for overcoming sorafenib resistance and may contribute to the management of advanced hepatocellular carcinoma.
Collapse
|
11
|
Burns J, Wilding CP, L Jones R, H Huang P. Proteomic research in sarcomas - current status and future opportunities. Semin Cancer Biol 2019; 61:56-70. [PMID: 31722230 PMCID: PMC7083238 DOI: 10.1016/j.semcancer.2019.11.003] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 11/04/2019] [Indexed: 02/07/2023]
Abstract
Sarcomas are a rare group of mesenchymal cancers comprising over 70 different histological subtypes. For the majority of these diseases, the molecular understanding of the basis of their initiation and progression remains unclear. As such, limited clinical progress in prognosis or therapeutic regimens have been made over the past few decades. Proteomics techniques are being increasingly utilised in the field of sarcoma research. Proteomic research efforts have thus far focused on histological subtype characterisation for the improvement of biological understanding, as well as for the identification of candidate diagnostic, predictive, and prognostic biomarkers for use in clinic. However, the field itself is in its infancy, and none of these proteomic research findings have been translated into the clinic. In this review, we provide a brief overview of the proteomic strategies that have been employed in sarcoma research. We evaluate key proteomic studies concerning several rare and ultra-rare sarcoma subtypes including, gastrointestinal stromal tumours, osteosarcoma, liposarcoma, leiomyosarcoma, malignant rhabdoid tumours, Ewing sarcoma, myxofibrosarcoma, and alveolar soft part sarcoma. Consequently, we illustrate how routine implementation of proteomics within sarcoma research, integration of proteomics with other molecular profiling data, and incorporation of proteomics into clinical trial studies has the potential to propel the biological and clinical understanding of this group of complex rare cancers moving forward.
Collapse
Affiliation(s)
- Jessica Burns
- Division of Molecular Pathology, The Institute of Cancer Research, London, SW3 6JB, UK
| | - Christopher P Wilding
- Division of Molecular Pathology, The Institute of Cancer Research, London, SW3 6JB, UK
| | - Robin L Jones
- Division of Clinical Studies, The Institute of Cancer Research, London SW3 6JB, UK; Sarcoma Unit, The Royal Marsden NHS Foundation Trust, London, SW3 6JJ, UK
| | - Paul H Huang
- Division of Molecular Pathology, The Institute of Cancer Research, London, SW3 6JB, UK.
| |
Collapse
|
12
|
Vyse S, McCarthy F, Broncel M, Paul A, Wong JP, Bhamra A, Huang PH. Quantitative phosphoproteomic analysis of acquired cancer drug resistance to pazopanib and dasatinib. J Proteomics 2017; 170:130-140. [PMID: 28842319 PMCID: PMC5673060 DOI: 10.1016/j.jprot.2017.08.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Revised: 07/19/2017] [Accepted: 08/17/2017] [Indexed: 12/14/2022]
Abstract
Acquired drug resistance impacts the majority of patients being treated with tyrosine kinase inhibitors (TKIs) and remains a key challenge in modern anti-cancer therapy. The lack of clinically effective therapies to overcome resistance represents an unmet need. Understanding the signalling that drives drug resistance will facilitate the development of new salvage therapies to treat patients with secondary TKI resistance. In this study, we utilise mass spectrometry to characterise the global phosphoproteomic alterations that accompany the acquisition of resistance to two FDA-approved TKIs, pazopanib and dasatinib, in the A204 rhabdoid tumour cell line. Our analysis finds that only 6% and 9.7% of the quantified phosphoproteome is altered upon the acquisition of pazopanib and dasatinib resistance, respectively. Pazopanib resistant cells display elevated phosphorylation in cytoskeletal regulatory pathways while dasatinib resistant cells show an upregulation of the insulin receptor/IGF-1R signalling pathway. Drug response profiling rediscovers several previously reported vulnerabilities associated with pazopanib and dasatinib resistance and identifies a new dependency to the second generation HSP90 inhibitor NVP-AUY-922. This study provides a useful resource detailing the candidate signalling determinants of acquired TKI resistance; and reveals a therapeutic approach of inhibiting HSP90 function as a means of salvage therapy to overcome pazopanib and dasatinib resistance. Significance Pazopanib and dasatinib are tyrosine kinase inhibitors (TKIs) approved for the treatment of multiple cancer types. Patients who are treated with these drugs are prone to the development of drug resistance and consequently tumour relapse. Here we use quantitative phosphoproteomics to characterise the signalling pathways which are enriched in cells that have acquired resistance to these two drugs. Furthermore, targeted drug screens were used to identify salvage therapies capable of overcoming pazopanib and dasatinib resistance. This data advances our understanding of the mechanisms of TKI resistance and highlights candidate targets for cancer therapy. Pazopanib resistant cells display elevated phosphorylation in cytoskeletal regulatory pathways. Phosphoproteins in the insulin and IGF-1R pathways are upregulated in dasatinib resistant cells. Less than 10% of the phosphoproteome is altered in acquired drug-resistant A204 cells. Both dasatinib and pazopanib resistant A204 cells are vulnerable to HSP90 inhibition.
Collapse
Affiliation(s)
- Simon Vyse
- Division of Cancer Biology, The Institute of Cancer Research, London SW3 6JB, UK
| | - Frank McCarthy
- Division of Cancer Biology, The Institute of Cancer Research, London SW3 6JB, UK
| | - Malgorzata Broncel
- Division of Cancer Biology, The Institute of Cancer Research, London SW3 6JB, UK
| | - Angela Paul
- Proteomics Core Facility, The Institute of Cancer Research, London SW3 6JB, UK
| | - Jocelyn P Wong
- Division of Cancer Biology, The Institute of Cancer Research, London SW3 6JB, UK
| | - Amandeep Bhamra
- Proteomics Core Facility, The Institute of Cancer Research, London SW3 6JB, UK
| | - Paul H Huang
- Division of Cancer Biology, The Institute of Cancer Research, London SW3 6JB, UK.
| |
Collapse
|
13
|
Fleuren EDG, Vlenterie M, van der Graaf WTA, Hillebrandt-Roeffen MHS, Blackburn J, Ma X, Chan H, Magias MC, van Erp A, van Houdt L, Cebeci SAS, van de Ven A, Flucke UE, Heyer EE, Thomas DM, Lord CJ, Marini KD, Vaghjiani V, Mercer TR, Cain JE, Wu J, Versleijen-Jonkers YMH, Daly RJ. Phosphoproteomic Profiling Reveals ALK and MET as Novel Actionable Targets across Synovial Sarcoma Subtypes. Cancer Res 2017; 77:4279-4292. [PMID: 28634201 DOI: 10.1158/0008-5472.can-16-2550] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 04/21/2017] [Accepted: 06/06/2017] [Indexed: 11/16/2022]
Abstract
Despite intensive multimodal treatment of sarcomas, a heterogeneous group of malignant tumors arising from connective tissue, survival remains poor. Candidate-based targeted treatments have demonstrated limited clinical success, urging an unbiased and comprehensive analysis of oncogenic signaling networks to reveal therapeutic targets and personalized treatment strategies. Here we applied mass spectrometry-based phosphoproteomic profiling to the largest and most heterogeneous set of sarcoma cell lines characterized to date and identified novel tyrosine phosphorylation patterns, enhanced tyrosine kinases in specific subtypes, and potential driver kinases. ALK was identified as a novel driver in the Aska-SS synovial sarcoma (SS) cell line via expression of an ALK variant with a large extracellular domain deletion (ALKΔ2-17). Functional ALK dependency was confirmed in vitro and in vivo with selective inhibitors. Importantly, ALK immunopositivity was detected in 6 of 43 (14%) of SS patient specimens, one of which exhibited an ALK rearrangement. High PDGFRα phosphorylation also characterized SS cell lines, which was accompanied by enhanced MET activation in Yamato-SS cells. Although Yamato-SS cells were sensitive to crizotinib (ALK/MET-inhibitor) but not pazopanib (VEGFR/PDGFR-inhibitor) monotherapy in vitro, synergistic effects were observed upon drug combination. In vivo, both drugs were individually effective, with pazopanib efficacy likely attributable to reduced angiogenesis. MET or PDGFRα expression was detected in 58% and 84% of SS patients, respectively, with coexpression in 56%. Consequently, our integrated approach has led to the identification of ALK and MET as promising therapeutic targets in SS. Cancer Res; 77(16); 4279-92. ©2017 AACR.
Collapse
Affiliation(s)
- Emmy D G Fleuren
- Division of Clinical Studies, The Institute of Cancer Research, London, United Kingdom.
- The CRUK Gene Function Laboratory and the Breast Cancer Now Toby Robins Breast Cancer Research Centre, The Institute of Cancer Research, London, United Kingdom
| | - Myrella Vlenterie
- Department of Medical Oncology, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Winette T A van der Graaf
- Division of Clinical Studies, The Institute of Cancer Research, London, United Kingdom
- Royal Marsden NHS Foundation Trust, London, United Kingdom
| | | | - James Blackburn
- Genomics and Epigenetics Division, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
- St. Vincent's Clinical School, Faculty of Medicine, UNSW, Sydney, New South Wales, Australia
| | - Xiuquan Ma
- Cancer Research Program, Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Howard Chan
- Cancer Research Program, Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Mandy C Magias
- Cancer Research Program, Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Anke van Erp
- Department of Medical Oncology, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Laurens van Houdt
- Department of Medical Oncology, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Sabri A S Cebeci
- Department of Medical Oncology, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Amy van de Ven
- Department of Medical Oncology, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Uta E Flucke
- Department of Pathology, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Erin E Heyer
- Genomics and Epigenetics Division, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - David M Thomas
- Cancer Division, The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - Christopher J Lord
- The CRUK Gene Function Laboratory and the Breast Cancer Now Toby Robins Breast Cancer Research Centre, The Institute of Cancer Research, London, United Kingdom
| | - Kieren D Marini
- Centre for Cancer Research, Hudson Institute of Medical Research and Department of Molecular and Translational Science, Monash University, Clayton, Victoria, Australia
| | - Vijesh Vaghjiani
- Centre for Cancer Research, Hudson Institute of Medical Research and Department of Molecular and Translational Science, Monash University, Clayton, Victoria, Australia
| | - Tim R Mercer
- Genomics and Epigenetics Division, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
- St. Vincent's Clinical School, Faculty of Medicine, UNSW, Sydney, New South Wales, Australia
| | - Jason E Cain
- Centre for Cancer Research, Hudson Institute of Medical Research and Department of Molecular and Translational Science, Monash University, Clayton, Victoria, Australia
| | - Jianmin Wu
- Cancer Division, The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Center for Cancer Bioinformatics, Peking University Cancer Hospital & Institute, Hai-Dian District, Beijing, China
| | | | - Roger J Daly
- Cancer Research Program, Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia.
| |
Collapse
|
14
|
Kondo T. Proteogenomics for the Study of Gastrointestinal Stromal Tumors. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 926:139-151. [DOI: 10.1007/978-3-319-42316-6_9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
15
|
Okayama A, Kimura Y, Miyagi Y, Oshima T, Oshita F, Ito H, Nakayama H, Nagashima T, Rino Y, Masuda M, Ryo A, Hirano H. Relationship between phosphorylation of sperm-specific antigen and prognosis of lung adenocarcinoma. J Proteomics 2016; 139:60-6. [DOI: 10.1016/j.jprot.2016.03.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 02/22/2016] [Accepted: 03/02/2016] [Indexed: 12/18/2022]
|
16
|
Kinsella P, Greene LM, Bright SA, Pollock JK, Butini S, Campiani G, Bauer S, Williams DC, Zisterer DM. The novel pyrrolo-1,5-benzoxazepine, PBOX-15, synergistically enhances the apoptotic efficacy of imatinib in gastrointestinal stromal tumours; suggested mechanism of action of PBOX-15. Invest New Drugs 2016; 34:159-67. [PMID: 26885657 DOI: 10.1007/s10637-016-0331-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 02/09/2016] [Indexed: 01/08/2023]
Abstract
The C-KIT receptor tyrosine kinase is constitutively activated in the majority of gastrointestinal stromal tumours (GIST). Imatinib (IM) a selective inhibitor of C-KIT, is indicated for the treatment of KIT-positive unresectable and/or metastatic GIST, and has tripled the survival time of patients with metastatic GIST. However, the majority of patients develop IM-resistance and progress. Although IM elicits strong antiproliferative effects, it fails to induce sufficient levels of apoptosis; acquired IM-resistance and disease recurrence remain an issue, a more effective drug treatment is greatly needed. We examined the effect of a novel microtubule-targeting agent (MTA), pyrrolo-1,5-benzoxazepine (PBOX)-15 in combination with IM on GIST cells. PBOX-15 decreased viability and in combination with IM synergistically enhanced apoptosis in both IM-sensitive and IM-resistant GIST cells, decreased the anti-apoptotic protein Mcl-1, and enhanced activation of pro-caspase-3 and PARP cleavage. The combination treatment also led to an enhanced inhibition of C-KIT-phosphorylation and inactivation of C-KIT-dependent signalling in comparison to either drug alone; CDC37, a key regulator of C-KIT in GIST was also dramatically decreased. Furthermore, PBOX-15 reduced CKII expression, an enzyme which regulates the expression of CDC37. In conclusion, our findings indicate the potential of PBOX-15 to improve the apoptotic response of IM in GIST cells and provide a more effective treatment option for GIST patients.
Collapse
Affiliation(s)
- Paula Kinsella
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, Ireland.
| | - Lisa M Greene
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, Ireland
| | - Sandra A Bright
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, Ireland
| | - Jade K Pollock
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, Ireland
| | - Stefania Butini
- European Research Centre for Drug Discovery & Development, DBCF, University of Siena, Siena, Italy
| | - Giuseppe Campiani
- European Research Centre for Drug Discovery & Development, DBCF, University of Siena, Siena, Italy
| | | | - D Clive Williams
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, Ireland
| | - Daniela M Zisterer
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, Ireland
| |
Collapse
|
17
|
Okayama A, Miyagi Y, Oshita F, Ito H, Nakayama H, Nishi M, Kurata Y, Kimura Y, Ryo A, Hirano H. Identification of Tyrosine-Phosphorylated Proteins Upregulated during Epithelial–Mesenchymal Transition Induced with TGF-β. J Proteome Res 2015. [DOI: 10.1021/acs.jproteome.5b00082] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Akiko Okayama
- Yokohama City University, Advanced Medical Research Center, 3-9 Fukuura, Kanazawa-ku, Yokohama, Kanagawa 236-0004, Japan
| | - Yohei Miyagi
- Kanagawa Cancer Center Research Institute, 2-3-2 Nakao, Asahi-ku, Yokohama, Kanagawa 241-8515, Japan
| | - Fumihiro Oshita
- Kanagawa Cancer Center, 2-3-2 Nakao, Asahi-ku, Yokohama, Kanagawa 241-8515, Japan
| | - Hiroyuki Ito
- Kanagawa Cancer Center, 2-3-2 Nakao, Asahi-ku, Yokohama, Kanagawa 241-8515, Japan
| | - Haruhiko Nakayama
- Kanagawa Cancer Center, 2-3-2 Nakao, Asahi-ku, Yokohama, Kanagawa 241-8515, Japan
| | - Mayuko Nishi
- Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, Kanagawa 236-0004, Japan
| | - Yoichi Kurata
- Yokohama City University, Advanced Medical Research Center, 3-9 Fukuura, Kanazawa-ku, Yokohama, Kanagawa 236-0004, Japan
| | - Yayoi Kimura
- Yokohama City University, Advanced Medical Research Center, 3-9 Fukuura, Kanazawa-ku, Yokohama, Kanagawa 236-0004, Japan
| | - Akihide Ryo
- Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, Kanagawa 236-0004, Japan
| | - Hisashi Hirano
- Yokohama City University, Advanced Medical Research Center, 3-9 Fukuura, Kanazawa-ku, Yokohama, Kanagawa 236-0004, Japan
| |
Collapse
|
18
|
Alturkmani HJ, Pessetto ZY, Godwin AK. Beyond standard therapy: drugs under investigation for the treatment of gastrointestinal stromal tumor. Expert Opin Investig Drugs 2015; 24:1045-58. [PMID: 26098203 DOI: 10.1517/13543784.2015.1046594] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Gastrointestinal stromal tumor (GIST) is the most common nonepithelial malignancy of the GI tract. With the discovery of KIT and later platelet-derived growth factor α (PDGFRA) gain-of-function mutations as factors in the pathogenesis of the disease, GIST was the quintessential model for targeted therapy. Despite the successful clinical use of imatinib mesylate, a selective receptor tyrosine kinase (RTK) inhibitor that targets KIT, PDGFRA and BCR-ABL, we still do not have treatment for the long-term control of advanced GIST. AREAS COVERED This review summarizes the drugs that are under investigation or have been assessed in trials for GIST treatment. The article focuses on their mechanisms of actions, the preclinical evidence of efficacy, and the clinical trials concerning safety and efficacy in humans. EXPERT OPINION It is known that KIT and PDGFRA mutations in GIST patients influence the response to treatment. This observation should be taken into consideration when investigating new drugs. RECIST was developed to help uniformly report efficacy trials in oncology. Despite the usefulness of this system, many questions are being addressed about its validity in evaluating the true efficacy of drugs knowing that new targeted therapies do not affect the tumor size as much as they halt progression and prolong survival.
Collapse
Affiliation(s)
- Hani J Alturkmani
- University of Kansas Medical Center, Department of Pathology and Laboratory Medicine , Kansas City, Kansas , USA
| | | | | |
Collapse
|