1
|
Li S, Li Z, Kuo HCD, Kong AN. Ursolic Acid as a Protective Agent against UVB-Induced Metabolic and Epigenetic Alterations in Human Skin Keratinocytes: An Omics-Based Study. Cancer Prev Res (Phila) 2025; 18:135-144. [PMID: 39718470 PMCID: PMC11875927 DOI: 10.1158/1940-6207.capr-24-0441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/26/2024] [Accepted: 12/20/2024] [Indexed: 12/25/2024]
Abstract
This study aimed to assess how ursolic acid (UA) can protect human skin keratinocytes from damage caused by UVB radiation. Utilizing an omics-based approach, we characterized the features of photodamage and investigated the potential of UA to reverse HaCaT cell subpopulation injury caused by UVB radiation. The most significant changes in metabolite levels after UA treatment were in pathways associated with phosphatidylcholine biosynthesis and arginine and proline metabolism. Treatment with UA can reverse the levels of certain metabolites, including creatinine, creatine phosphate, and succinic acid. Pathways activated by UA treatment in UVB-irradiated HaCaT cells were associated with several biological processes, including the positive regulation of protein modification process, cell division, and enzyme-linked receptor protein signaling pathway. Treatment with UA demonstrates the capability to mitigate the effects of UVB radiation on specific genes, including S100 calcium-binding protein A9 and IL6 receptor. DNA/CpG methylation indicates that UA can partially reverse some of the alterations in the UVB-induced CpG methylome. Utilizing integrated RNA sequencing and methylation sequencing data, starburst plots illustrate the correlation between mRNA expression and CpG methylation status. UA potentially influences the metabolic pathway of glycerophospholipid metabolism by modulating the expression of several key enzymes, including phospholipase A2 group IIA and lipin 2. Altogether, these results indicate that UVB radiation induces metabolic reprogramming, epigenetic changes, and transcriptomic shifts. Meanwhile, UA demonstrates the capacity to inhibit or reduce the severity of these alterations, which may underlie its potential protective role against skin damage caused by UVB exposure. Prevention Relevance: Our research indicates that UA has the potential to mitigate or lessen the impact of UVB radiation, which is known to cause metabolic reprogramming, epigenetic alterations, and transcriptomic changes. These effects could be responsible for UA's possible protective function against skin damage induced by UVB exposure.
Collapse
Affiliation(s)
- Shanyi Li
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, PR China
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, 225001, PR China
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Zixin Li
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, PR China
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, 225001, PR China
| | - Hsiao-Chen Dina Kuo
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Ah-Ng Kong
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| |
Collapse
|
2
|
Yan LJ, Wang Y. Roles of Dihydrolipoamide Dehydrogenase in Health and Disease. Antioxid Redox Signal 2023; 39:794-806. [PMID: 37276180 PMCID: PMC10615065 DOI: 10.1089/ars.2022.0181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 05/22/2023] [Accepted: 05/28/2023] [Indexed: 06/07/2023]
Abstract
Significance: Dihydrolipoamide dehydrogenase (DLDH) is a flavin-dependent disulfide oxidoreductase. The active form of DLDH is a stable homodimer, and its deficiencies have been linked to numerous metabolic disorders. A better understanding of redox and nonredox features of DLDH may reveal druggable targets for disease interventions or preventions. Recent Advances: In this article, the authors review the different roles of DLDH in selected pathological conditions, including its deficiency in humans, its role in stroke and neuroprotection, skin photoaging, Alzheimer's disease, and DLDH as a nondehydrogenating protein, and construction of genetically modified DLDH animal models for further studying the role of DLDH in specific pathological conditions. DLDH is also vulnerable to oxidative modifications in pathological conditions. Critical Issues: Novel animal models need to be constructed using gene knockdown techniques to investigate the redox- and nonredox roles of DLDH in related metabolic diseases. Specific small-molecule DLDH inhibitors need to be discovered. The relationship between modifications of specific amino acid residues in DLDH and given pathological conditions is an interesting area that remains to be comprehensively evaluated. Future Directions: Cell-specific or tissue-specific knockdown of DLDH creating specific pathological conditions will provide more insights into the mechanisms, whereby DLDH may have therapeutic values under a variety of pathological conditions. Antioxid. Redox Signal. 39, 794-806.
Collapse
Affiliation(s)
- Liang-Jun Yan
- Department of Pharmaceutical Sciences, College of Pharmacy, University of North Texas Health Science Center, Fort Worth, Texas, USA
| | - Yucheng Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| |
Collapse
|
3
|
Lu D, Zhu X, Hong T, Yao X, Xie Z, Chen L, Wang Y, Zhang K, Ren Y, Cao Y, Wang X. Serum Metabolomics Analysis of Skin-Involved Systemic Lupus Erythematosus: Association of Anti-SSA Antibodies with Photosensitivity. J Inflamm Res 2023; 16:3811-3822. [PMID: 37667802 PMCID: PMC10475307 DOI: 10.2147/jir.s426337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 08/23/2023] [Indexed: 09/06/2023] Open
Abstract
Purpose Systemic lupus erythematosus is a heterogeneous autoimmune disease in which skin involvement is a common manifestation. It is currently thought that the photosensitivity of SLE skin involvement is associated with anti-SSA antibodies. This study aimed to expand the current state of knowledge surrounding the molecular pathophysiology of SLE skin photosensitivity through Serum metabolomics analysis. Patients and Methods The serum metabolites of 23 cases of skin-involved SLE (SI) group, 14 cases of no SI (NSI) group, and 30 cases of healthy controls (HC) were analyzed by using UPLC-MS/MS technology, and subgroup analysis was performed according to the expression of anti-SSA antibodies in SI. MetaboAnalyst 5.0 was used for enrichment analysis and ROC curve construction, identifying serum metabolic markers of skin-involved SLE associated with anti-SSA antibodies. Results We identified several metabolites and metabolic pathways associated with SLE photosensitivity. Two metabolites, SM (d18:1/24:0) and gamma-CEHC can distinguish between anti-SSA antibody-positive and negative SI, with AUC of 0.829 and 0.806. These two photosensitization-related substances may be potential markers of skin involvement in SLE associated with anti-SSA antibody. Conclusion This study provides new insights into the pathogenesis of SI patients, and provides a new molecular biological basis for the association between anti-SSA antibodies and skin photoallergic manifestations of SLE.
Collapse
Affiliation(s)
- Dingqi Lu
- First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, 310053, People’s Republic of China
| | - Xinchao Zhu
- Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, 310053, People’s Republic of China
| | - Tao Hong
- Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, 310053, People’s Republic of China
| | - Xinyi Yao
- Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, 310053, People’s Republic of China
| | - Zhiming Xie
- The Second Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, 310053, People’s Republic of China
| | - Liying Chen
- Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, 310053, People’s Republic of China
| | - Yihan Wang
- Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, 310053, People’s Republic of China
| | - Kaiyuan Zhang
- Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, 310053, People’s Republic of China
| | - Yating Ren
- Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, 310053, People’s Republic of China
| | - Yi Cao
- The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, 310053, People’s Republic of China
| | - Xinchang Wang
- The Second Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, 310053, People’s Republic of China
| |
Collapse
|
4
|
Cai Z, Yan T, Li S, Zhang J, Wang X, Li L, Wang H, Chen H, Tang Y. Ameliorative effect of dandelion (Taraxacum officinale) peptides on benzo(a)pyrene-induced oxidative stress and inflammation in human umbilical vein endothelial cells. J Pept Sci 2023; 29:e3447. [PMID: 35940823 DOI: 10.1002/psc.3447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 07/30/2022] [Accepted: 08/01/2022] [Indexed: 12/13/2022]
Abstract
Dandelion (Taraxacum officinale) is widely consumed as a health food and a traditional medicine. However, the protective effect of dandelion bio-active peptides (DPs) against polycyclic aromatic hydrocarbon-induced blood vessel inflammation and oxidative damage is not well documented. In the current study, four novel DPs were isolated using an activity tracking method. The protective activity of the DPs against benzo(a)pyrene (Bap)-induced human umbilical vein endothelial cell (HUVEC) damage was explored. The results indicated that DP-2 [cycle-(Thr-His-Ala-Trp)] effectively inhibited Bap-induced reactive oxygen species (ROS) and malondialdehyde (MDA) overproduction and reinforced antioxidant enzyme activity while inhibiting the production of inflammatory factors in HUVECs. Moreover, DP-2 increased NAD(P)H:quinone oxidoreductase 1, heme oxygenase-1, and nuclear factor E2-releated factor 2 expression levels by activating the PI3K/Akt signaling pathway. In addition, DP-2 attenuated Bap-induced HUVEC apoptosis via the Bcl-2/Bax/cytochrome c apoptotic pathway. These results suggest that DP-2 is a promising compound for protecting HUVECs from Bap-induced inflammatory and oxidative damage.
Collapse
Affiliation(s)
- Zhixiang Cai
- Panyu Central Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Tao Yan
- Department of Cardiovascular Surgery, General Hospital of Southern Theater Command, PLA, Guangzhou, China
| | - Siwen Li
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, China
| | - Jianyi Zhang
- Panyu Central Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xianyue Wang
- Department of Cardiovascular Surgery, General Hospital of Southern Theater Command, PLA, Guangzhou, China
| | - Li Li
- Department of Interventional Radiology, Guangzhou Panyu Central Hospital, Guangzhou, China
| | - Huailing Wang
- The Research Center of Allergy & Immunology, Shenzhen University Health Science Center, Shenzhen, China
| | - Hanwei Chen
- Department of Interventional Radiology, Guangzhou Panyu Central Hospital, Guangzhou, China
| | - Yukuan Tang
- Department of Interventional Radiology, Guangzhou Panyu Central Hospital, Guangzhou, China
| |
Collapse
|
5
|
Luo M, Luo D, Liu J, Wang H, Liu X, Yang M, Tian F, Qin S, Li Y. Ameliorative effect of the probiotic peptide against benzo(α)pyrene-induced inflammatory damages in enterocytes. Int Immunopharmacol 2022; 112:109255. [PMID: 36152539 DOI: 10.1016/j.intimp.2022.109255] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 08/25/2022] [Accepted: 09/12/2022] [Indexed: 11/28/2022]
Abstract
Probiotics are living bacteria that provide health benefits to the host when consumed in sufficient quantities. However, the protective effect of the bioactive peptides isolated from the probiotics against benzo(α)pyrene (BaP) induced gastrointestinal injury has never been investigated. The current work used a bio-assay guided technique to identify-four new cyclic peptides in BaP-induced Caco-2 cell culture and mouse colitis model. Lactobacillus rhamnosus cycle (Thr-His-Ala-Trp) peptide-1 (LRCP-1) effectively inhibited BaP-induced epithelial cytokine over-release and intracellular ROS over-production. Simultaneously, LRCP-1 attenuated BaP-induced NAD (P)H: oxidases (NOXs), Matrix metalloproteinases (MMPs) over-expression, respectively. Furthermore, increased NAD (P)H: quinone oxidoreductase 1 (NQO1)/heme oxygenase-1 (HO-1)/nuclear factor E2-related factor 2 (Nrf2) expression and aryl hydrocarbon receptor (AhR) pathway activation induced by the BaP-exposure were also inhibited after the LRCP-1 treatment. Notably, LRCP-1 is a promising agent protecting gastrointestinal epithelial cells from BaP-induced inflammatory and oxidative damages.
Collapse
Affiliation(s)
- Min Luo
- Laboratory of inflammation and allergy, Department of respiratory and critical care medicine, Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Dan Luo
- Laboratory of inflammation and allergy, Department of respiratory and critical care medicine, Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Jie Liu
- State Key Laboratory of Respiratory Disease for Allergy at Shenzhen University, Shenzhen Key Laboratory of Allergy & Immunology, Shenzhen University School of Medicine, Shenzhen 518060, China
| | - Huailing Wang
- State Key Laboratory of Respiratory Disease for Allergy at Shenzhen University, Shenzhen Key Laboratory of Allergy & Immunology, Shenzhen University School of Medicine, Shenzhen 518060, China
| | - Xiaoyu Liu
- State Key Laboratory of Respiratory Disease for Allergy at Shenzhen University, Shenzhen Key Laboratory of Allergy & Immunology, Shenzhen University School of Medicine, Shenzhen 518060, China
| | - Min Yang
- Kexing Biopharm Co., Ltd, Shenzhen 518057, China
| | | | - Suofu Qin
- Kexing Biopharm Co., Ltd, Shenzhen 518057, China
| | - Yuying Li
- Laboratory of inflammation and allergy, Department of respiratory and critical care medicine, Affiliated Hospital of Southwest Medical University, Luzhou 646000, China.
| |
Collapse
|
6
|
Anemopsis californica Attenuates Photoaging by Regulating MAPK, NRF2, and NFATc1 Signaling Pathways. Antioxidants (Basel) 2021; 10:antiox10121882. [PMID: 34942986 PMCID: PMC8698643 DOI: 10.3390/antiox10121882] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 11/19/2021] [Accepted: 11/23/2021] [Indexed: 12/11/2022] Open
Abstract
Long-term exposure of the skin to solar radiation causes chronic inflammation and oxidative stress, which accelerates collagen degradation. This contributes to the formation of wrinkles and dark spots, skin fragility, and even skin cancer. In this study, Anemopsis californica (AC), a herb from North America that is well known for treating microorganism infection and promoting wound healing, was investigated for its photoprotective effects. The biological effects of AC were studied on two in vitro models, namely, lipopolysaccharide (LPS)-induced macrophages and ultraviolet B (UVB)-irradiated dermal fibroblasts, to characterize its underlying molecular mechanisms. The results showed that AC decreased the mRNA levels of inflammatory mediators in sensitized macrophages, including cytokines, inducible nitric oxide synthase (iNOS), and cyclooxygenase (COX-2). Moreover, AC alleviated UVB-induced photoaging in dermal fibroblasts by restoring procollagen synthesis. This resulted from the regulation of excessive reactive oxygen species (ROS) by AC, which was mediated by the activation of the antioxidative system nuclear factor erythroid 2-related factor 2 (NRF2). AC also alleviated oxidative stress and inflammatory responses by inhibiting the phosphorylation of mitogen-activated protein kinase (MAPK) and interfering with the nuclear translocation of the immune regulator nuclear factor of activated T-cells 1 (NFATc1). In conclusion, the protective effects of AC on skin cellular components suggested that it has the potential for use in the development of drugs and cosmetics that protect the skin from UVB-induced chronic inflammation and aging.
Collapse
|
7
|
Larsson M, Rudqvist N, Spetz J, Shubbar E, Parris TZ, Langen B, Helou K, Forssell-Aronsson E. Long-term transcriptomic and proteomic effects in Sprague Dawley rat thyroid and plasma after internal low dose 131I exposure. PLoS One 2021; 15:e0244098. [PMID: 33382739 PMCID: PMC7774980 DOI: 10.1371/journal.pone.0244098] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 12/03/2020] [Indexed: 02/08/2023] Open
Abstract
Background Radioiodide (131I) is commonly used to treat thyroid cancer and hyperthyroidis.131I released during nuclear accidents, have resulted in increased incidence of thyroid cancer in children. Therefore, a better understanding of underlying cellular mechanisms behind 131I exposure is of great clinical and radiation protection interest. The aim of this work was to study the long-term dose-related effects of 131I exposure in thyroid tissue and plasma in young rats and identify potential biomarkers. Materials and methods Male Sprague Dawley rats (5-week-old) were i.v. injected with 0.5, 5.0, 50 or 500 kBq 131I (Dthyroid ca 1–1000 mGy), and killed after nine months at which time the thyroid and blood samples were collected. Gene expression microarray analysis (thyroid samples) and LC-MS/MS analysis (thyroid and plasma samples) were performed to assess differential gene and protein expression profiles in treated and corresponding untreated control samples. Bioinformatics analyses were performed using the DAVID functional annotation tool and Ingenuity Pathway Analysis (IPA). The gene expression microarray data and LC-MS/MS data were validated using qRT-PCR and ELISA, respectively. Results Nine 131I exposure-related candidate biomarkers (transcripts: Afp and RT1-Bb, and proteins: ARF3, DLD, IKBKB, NONO, RAB6A, RPN2, and SLC25A5) were identified in thyroid tissue. Two dose-related protein candidate biomarkers were identified in thyroid (APRT and LDHA) and two in plasma (DSG4 and TGM3). Candidate biomarkers for thyroid function included the ACADL and SORBS2 (all activities), TPO and TG proteins (low activities). 131I exposure was shown to have a profound effect on metabolism, immune system, apoptosis and cell death. Furthermore, several signalling pathways essential for normal cellular function (actin cytoskeleton signalling, HGF signalling, NRF2-mediated oxidative stress, integrin signalling, calcium signalling) were also significantly regulated. Conclusion Exposure-related and dose-related effects on gene and protein expression generated few expression patterns useful as biomarkers for thyroid function and cancer.
Collapse
Affiliation(s)
- Malin Larsson
- Departments of Radiation Physics, Institute of Clinical Sciences, Sahlgrenska Cancer Center, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
- * E-mail:
| | - Nils Rudqvist
- Departments of Radiation Physics, Institute of Clinical Sciences, Sahlgrenska Cancer Center, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Johan Spetz
- Departments of Radiation Physics, Institute of Clinical Sciences, Sahlgrenska Cancer Center, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Emman Shubbar
- Departments of Radiation Physics, Institute of Clinical Sciences, Sahlgrenska Cancer Center, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Toshima Z. Parris
- Departments of Oncology, Institute of Clinical Sciences, Sahlgrenska Cancer Center, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Britta Langen
- Departments of Radiation Physics, Institute of Clinical Sciences, Sahlgrenska Cancer Center, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Khalil Helou
- Departments of Oncology, Institute of Clinical Sciences, Sahlgrenska Cancer Center, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Eva Forssell-Aronsson
- Departments of Radiation Physics, Institute of Clinical Sciences, Sahlgrenska Cancer Center, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
8
|
Yumnam S, Kang MC, Oh SH, Kwon HC, Kim JC, Jung ES, Lee CH, Lee AY, Hwang JI, Kim SY. Downregulation of dihydrolipoyl dehydrogenase by UVA suppresses melanoma progression via triggering oxidative stress and altering energy metabolism. Free Radic Biol Med 2021; 162:77-87. [PMID: 33279616 DOI: 10.1016/j.freeradbiomed.2020.11.037] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 11/25/2020] [Accepted: 11/26/2020] [Indexed: 12/12/2022]
Abstract
Melanoma, the most severe form of skin cancer, has poor prognosis and is resistant to chemotherapy. Targeting cancer metabolism is a promising approach in cancer therapeutics. Dihydrolipoyl dehydrogenase (DLD) is a mitochondrial enzyme with diaphorase activity. Here we report a pivotal role of DLD in melanoma cell progression and proliferation. Suppression DLD expression by low intensity UVA (125 mJ/cm2) increased intracellular ROS production and decreased mitochondrial membrane potential thereby inducing autophagy cell death which were confirmed by increased LC3BII and decreased p62 expression in melanoma cells. Knockdown of DLD in melanoma cells also showed similar results. More so, suppression of DLD significantly inhibits in vivo melanoma growth and tumor proliferation. In addition, suppression of DLD increased the NAD+/NADH ratio in melanoma cells and also inhibits TCA cycle related metabolites. DLD downregulation markedly increased α-ketoglutarate and decreased succinic acid suggesting that DLD suppression may have decreased TCA cycle downstream metabolites, resulting in the alteration of mitochondrial energy metabolism Thus the downregulation of DLD induced autophagic cell death in melanoma cells and inhibits in vivo tumor growth and proliferation by increasing ROS production and altering energy metabolism. Our findings suggest that DLD plays a pivotal role in melanoma progression and proliferation.
Collapse
Affiliation(s)
- Silvia Yumnam
- College of Pharmacy, Gachon University, 191, Hambakmoero, Yeonsu-gu, Incheon, 21936, Republic of Korea
| | - Min Cheol Kang
- College of Pharmacy, Gachon University, 191, Hambakmoero, Yeonsu-gu, Incheon, 21936, Republic of Korea
| | - Seung Hyun Oh
- College of Pharmacy, Gachon University, 191, Hambakmoero, Yeonsu-gu, Incheon, 21936, Republic of Korea
| | - Hak Cheol Kwon
- Natural Product Informatics Research Center, KIST Gangneung Institute of Natural Products, 679 Saimdang-ro, Gangneung, Gangwon, 25451, Republic of Korea
| | - Jin Chul Kim
- Natural Product Informatics Research Center, KIST Gangneung Institute of Natural Products, 679 Saimdang-ro, Gangneung, Gangwon, 25451, Republic of Korea
| | - Eun Sung Jung
- Department of Systems Biotechnology, Konkuk University, Seoul, 05029, Republic of Korea
| | - Choong Hwan Lee
- Department of Systems Biotechnology, Konkuk University, Seoul, 05029, Republic of Korea
| | - Ai-Young Lee
- Department of Dermatology, Dongguk University Seoul, Graduate School of Medicine, Goyang, Republic of Korea
| | - Jong-Ik Hwang
- Graduate School of Medicine, Korea University, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Sun Yeou Kim
- College of Pharmacy, Gachon University, 191, Hambakmoero, Yeonsu-gu, Incheon, 21936, Republic of Korea; Gachon Institute of Pharmaceutical Science, Gachon University, Yeonsu-gu, Incheon, 21565, Republic of Korea.
| |
Collapse
|
9
|
Hu Z, Yao Y, Lv M, Zhang Y, Zhang L, Yuan Y, Yue T. Isolation and identification of three water-soluble selenoproteins in Se-enriched Agaricus blazei Murrill. Food Chem 2020; 344:128691. [PMID: 33248838 DOI: 10.1016/j.foodchem.2020.128691] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 11/13/2020] [Accepted: 11/17/2020] [Indexed: 12/28/2022]
Abstract
Selenoproteins in selenium (Se)-enriched vegetables play an important role in human health. In this study, three water-soluble selenoproteins PR-Se-1, PR-Se-2 and PR-Se-3 in Agaricus blazei Murrill (ABM) were isolated by anion exchange chromatography, gel filtration chromatography and SDS-PAGE. Sequence analyses performed by HPLC-MS/MS showed that PR-Se-1, a 114024 Da selenoprotein with 1019 amino acids (AAs), is an isoenzyme of isocitrate dehydrogenase. PR-Se-2, a 53983 Da selenoprotein with 508 AAs, is a kind of dihydrolipoyl dehydrogenase. PR-Se-3, a 47179 Da selenoprotein with 415 AAs, is a kind d-proline reductase. Se content is high at 26.1 μg/g, and selenocystine is the predominant Se unit in the three selenoproteins. Se content of ABM is 9.15 μg/g, and the organic form of Se accounts for ~81% of total Se content. ABM could be a promising source of Se in Se-poor regions.
Collapse
Affiliation(s)
- Zhongqiu Hu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China; Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture and Rural Affairs of the People's Republic of China, Yangling 712100, Shaanxi, China.
| | - Yuanxi Yao
- Logistic Affairs Department, Chang'an University, Xi'an 710054, China
| | - Meng Lv
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China; Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture and Rural Affairs of the People's Republic of China, Yangling 712100, Shaanxi, China
| | - Yiqian Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China; Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture and Rural Affairs of the People's Republic of China, Yangling 712100, Shaanxi, China
| | - Lin Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China; Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture and Rural Affairs of the People's Republic of China, Yangling 712100, Shaanxi, China
| | - Yahong Yuan
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China; Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture and Rural Affairs of the People's Republic of China, Yangling 712100, Shaanxi, China
| | - Tianli Yue
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China; Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture and Rural Affairs of the People's Republic of China, Yangling 712100, Shaanxi, China.
| |
Collapse
|
10
|
Ma N, Yang Y, Liu X, Li S, Qin Z, Li J. Plasma metabonomics and proteomics studies on the anti-thrombosis mechanism of aspirin eugenol ester in rat tail thrombosis model. J Proteomics 2019; 215:103631. [PMID: 31891783 DOI: 10.1016/j.jprot.2019.103631] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 12/10/2019] [Accepted: 12/27/2019] [Indexed: 01/09/2023]
Abstract
Aspirin eugenol eater (AEE), a new drug compound, was synthesized through the combination of aspirin and eugenol. Antithrombotic effects of AEE have been confirmed in carrageenan-induced rat tail thrombosis model. However, its mechanism is unclear. With the application of integrated approach combining proteomics and metabolomics, the profilings of protein and metabolite in plasma were examined in thrombosis rat pretreated with AEE, aspirin and eugenol, respectively. A clear separation of the plasma metabolic profiles from different groups was found in score plots. 15 metabolites related with the metabolism of fatty acid, energy and amino acid were found. A total of 144, 38, 41 and 54 differentially abundant proteins (DAPs) were identified in control, AEE, aspirin and eugenol group, respectively. Proteomic results showed that aspirin modulated 7 proteins in amino acid metabolism and 4 proteins in complement system; eugenol regulated the 8 proteins related with coagulation cascades and fibrinogen; AEE improved 3 proteins in TCA cycle and 3 in lipid metabolism. Integrated analysis suggested that AEE improved fatty acid, energy and lipid metabolism to against thrombosis. Results of this study indicated AEE had different action mechanism on thrombosis from aspirin and eugenol, and contribute to understanding the mechanisms of AEE on thrombosis. SIGNIFICANCE: Thrombosis is a threat to human health, and there is an urgent need for new drug. In this study, compared with the model group, plasma metabolic profiles in AEE-treated rats were clearly separated; 15 metabolites and 38 proteins were picked out. These metabolites and proteins may assist in understanding the action mechanism of AEE on thrombosis. The results of plasma metabonomics and proteomics also revealed the different action mechanism among AEE, aspirin and eugenol on thrombosis. This study established the foundation to further evaluate the druggability of AEE on thrombosis treatment.
Collapse
Affiliation(s)
- Ning Ma
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development, Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Science of Chinese Academy of Agricultural Sciences, Lanzhou 730050, PR China; College of Veterinary Medicine, Agricultural University of Hebei, Baoding, Hebei 071000, PR China
| | - Yajun Yang
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development, Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Science of Chinese Academy of Agricultural Sciences, Lanzhou 730050, PR China
| | - Xiwang Liu
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development, Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Science of Chinese Academy of Agricultural Sciences, Lanzhou 730050, PR China
| | - Shihong Li
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development, Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Science of Chinese Academy of Agricultural Sciences, Lanzhou 730050, PR China
| | - Zhe Qin
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development, Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Science of Chinese Academy of Agricultural Sciences, Lanzhou 730050, PR China
| | - Jianyong Li
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development, Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Science of Chinese Academy of Agricultural Sciences, Lanzhou 730050, PR China.
| |
Collapse
|
11
|
Newton VL, Riba-Garcia I, Griffiths CEM, Rawlings AV, Voegeli R, Unwin RD, Sherratt MJ, Watson REB. Mass spectrometry-based proteomics reveals the distinct nature of the skin proteomes of photoaged compared to intrinsically aged skin. Int J Cosmet Sci 2019; 41:118-131. [PMID: 30661253 DOI: 10.1111/ics.12513] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 12/15/2018] [Indexed: 12/15/2022]
Abstract
OBJECTIVE With increasing age, skin is subject to alterations in its organization, which impact on its function as well as having clinical consequences. Proteomics is a useful tool for non-targeted, semi-quantitative simultaneous investigation of high numbers of proteins. In the current study, we utilize proteomics to characterize and contrast age-associated differences in photoexposed and photoprotected skin, with a focus on the epidermis, dermal-epidermal junction and papillary dermis. METHODS Skin biopsies from buttock (photoprotected) and forearm (photoexposed) of healthy volunteers (aged 18-30 or ≥65 years) were transversely sectioned from the stratum corneum to a depth of 250 μm. Following SDS-PAGE, each sample lane was segmented prior to analysis by liquid chromatography-mass spectrometry/mass spectrometry. Pathway analysis was carried out using Ingenuity IPA. RESULTS Comparison of skin proteomes at buttock and forearm sites revealed differences in relative protein abundance. Ageing in skin on the photoexposed forearm resulted in 80% of the altered proteins being increased with age, in contrast to the photoprotected buttock where 74% of altered proteins with age were reduced. Functionally, age-altered proteins in the photoexposed forearm were associated with conferring structure, energy and metabolism. In the photoprotected buttock, proteins associated with gene expression, free-radical scavenging, protein synthesis and protein degradation were most frequently altered. CONCLUSION This study highlights the necessity of not considering photoageing as an accelerated intrinsic ageing, but as a distinct physiological process.
Collapse
Affiliation(s)
- V L Newton
- Centre for Dermatology Research, Division of Musculoskeletal & Dermatological Sciences, School of Biological Sciences, Manchester Academic Health Science Centre, University of Manchester, and Salford Royal NHS Foundation Trust, Manchester, UK.,NIHR Manchester Biomedical Research Centre, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - I Riba-Garcia
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Core Technology facility (3rd Floor), 46 Grafton Street, Manchester, M13 9NT, UK
| | - C E M Griffiths
- Centre for Dermatology Research, Division of Musculoskeletal & Dermatological Sciences, School of Biological Sciences, Manchester Academic Health Science Centre, University of Manchester, and Salford Royal NHS Foundation Trust, Manchester, UK.,NIHR Manchester Biomedical Research Centre, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | | | - R Voegeli
- DSM Nutritional Products Ltd, Kaiseraugst, Switzerland
| | - R D Unwin
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Core Technology facility (3rd Floor), 46 Grafton Street, Manchester, M13 9NT, UK
| | - M J Sherratt
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
| | - R E B Watson
- Centre for Dermatology Research, Division of Musculoskeletal & Dermatological Sciences, School of Biological Sciences, Manchester Academic Health Science Centre, University of Manchester, and Salford Royal NHS Foundation Trust, Manchester, UK.,NIHR Manchester Biomedical Research Centre, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| |
Collapse
|
12
|
Hameury S, Borderie L, Monneuse JM, Skorski G, Pradines D. Prediction of skin anti-aging clinical benefits of an association of ingredients from marine and maritime origins: Ex vivo evaluation using a label-free quantitative proteomic and customized data processing approach. J Cosmet Dermatol 2019; 18:355-370. [PMID: 29797450 DOI: 10.1111/jocd.12528] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/10/2018] [Indexed: 01/18/2023]
Abstract
BACKGROUND The application of ingredients from marine and maritime origins is increasingly common in skin care products, driven by consumer expectations for natural ingredients. However, these ingredients are typically studied for a few isolated in vitro activities. OBJECTIVES The purpose of this study was to carry out a comprehensive evaluation of the activity on the skin of an association of ingredients from marine and maritime origins using label-free quantitative proteomic analysis, in order to predict the clinical benefits if used in a skin care product. METHODS An aqueous gel containing 6.1% of ingredients from marine and maritime origins (amino acid-enriched giant kelp extract, trace element-enriched seawater, dedifferentiated sea fennel cells) was topically applied on human skin explants. The skin explants' proteome was analyzed in a label-free manner by high-performance liquid nano-chromatography coupled with tandem mass spectrometry. A specific data processing pipeline (CORAVALID) providing an objective and comprehensive interpretation of the statistically relevant biological activities processed the results. RESULTS Compared to untreated skin explants, 64 proteins were significantly regulated by the gel treatment (q-value ≤ 0.05). Computer data processing revealed an activity of the ingredients on the epidermis and the dermis. These significantly regulated proteins are involved in gene expression, cell survival and metabolism, inflammatory processes, dermal extracellular matrix synthesis, melanogenesis and keratinocyte proliferation, migration, and differentiation. CONCLUSIONS These results suggest that the tested ingredients could help to preserve a healthy epidermis and dermis, and possibly to prevent the visible signs of skin aging.
Collapse
Affiliation(s)
- Sebastien Hameury
- Research & Development Department, Laboratoires B.L.C. Thalgo Cosmetic S.A., Roquebrune-sur-Argens, France
| | | | | | | | - Dominique Pradines
- Research & Development Department, Laboratoires B.L.C. Thalgo Cosmetic S.A., Roquebrune-sur-Argens, France
| |
Collapse
|
13
|
Cole LM, Clench MR, Francese S. Sample Treatment for Tissue Proteomics in Cancer, Toxicology, and Forensics. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1073:77-123. [PMID: 31236840 DOI: 10.1007/978-3-030-12298-0_4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Since the birth of proteomics science in the 1990, the number of applications and of sample preparation methods has grown exponentially, making a huge contribution to the knowledge in life science disciplines. Continuous improvements in the sample treatment strategies unlock and reveal the fine details of disease mechanisms, drug potency, and toxicity as well as enable new disciplines to be investigated such as forensic science.This chapter will cover the most recent developments in sample preparation strategies for tissue proteomics in three areas, namely, cancer, toxicology, and forensics, thus also demonstrating breath of application within the domain of health and well-being, pharmaceuticals, and secure societies.In particular, in the area of cancer (human tumor biomarkers), the most efficient and multi-informative proteomic strategies will be covered in relation to the subsequent application of matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) and liquid extraction surface analysis (LESA), due to their ability to provide molecular localization of tumor biomarkers albeit with different spatial resolution.With respect to toxicology, methodologies applied in toxicoproteomics will be illustrated with examples from its use in two important areas: the study of drug-induced liver injury (DILI) and studies of effects of chemical and environmental insults on skin, i.e., the effects of irritants, sensitizers, and ionizing radiation. Within this chapter, mainly tissue proteomics sample preparation methods for LC-MS/MS analysis will be discussed as (i) the use of LC-MS/MS is majorly represented in the research efforts of the bioanalytical community in this area and (ii) LC-MS/MS still is the gold standard for quantification studies.Finally, the use of proteomics will also be discussed in forensic science with respect to the information that can be recovered from blood and fingerprint evidence which are commonly encountered at the scene of the crime. The application of proteomic strategies for the analysis of blood and fingerprints is novel and proteomic preparation methods will be reported in relation to the subsequent use of mass spectrometry without any hyphenation. While generally yielding more information, hyphenated methods are often more laborious and time-consuming; since forensic investigations need quick turnaround, without compromising validity of the information, the prospect to develop methods for the application of quick forensic mass spectrometry techniques such as MALDI-MS (in imaging or profiling mode) is of great interest.
Collapse
Affiliation(s)
- L M Cole
- Biomolecular Science Research Centre, Centre for Mass Spectrometry Imaging, Sheffield Hallam University, Sheffield, UK
| | - M R Clench
- Biomolecular Science Research Centre, Centre for Mass Spectrometry Imaging, Sheffield Hallam University, Sheffield, UK
| | - S Francese
- Biomolecular Science Research Centre, Centre for Mass Spectrometry Imaging, Sheffield Hallam University, Sheffield, UK.
| |
Collapse
|
14
|
Santi L, Coutinho-Rodrigues CJB, Berger M, Klein LAS, De Souza EM, Rosa RL, Guimarães JA, Yates JR, Perinotto WMS, Bittencourt VREP, Beys-da-Silva WO. Secretomic analysis of Beauveria bassiana related to cattle tick, Rhipicephalus microplus, infection. Folia Microbiol (Praha) 2018; 64:361-372. [PMID: 30361880 DOI: 10.1007/s12223-018-0659-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 10/12/2018] [Indexed: 01/10/2023]
Abstract
Beauveria bassiana is widely studied as an alternative to chemical acaricides in controlling the cattle tick Rhipicephalus microplus. Although its biocontrol efficiency has been proved in laboratory and field scales, there is a need to a better understanding of host interaction process at molecular level related to biocontrol activity. In this work, applying a proteomic technique multidimensional protein identification technology (MudPIT), the differential secretome of B. bassiana induced by the host R. microplus cuticle was evaluated. The use of the host cuticle in a culture medium, mimicking an infection condition, is an established experimental model that triggers the secretion of inducible enzymes. From a total of 236 proteins, 50 proteins were identified exclusively in infection condition, assigned to different aspects of infection like host adhesion, cuticle penetration and fungal defense, and stress. Other 32 proteins were considered up- or down-regulated. In order to get a meaningful global view of the secretome, several bioinformatic analyses were performed. Regarding molecular function classification, the highest number of proteins in the differential secretome was assigned in to hydrolase activity, enzyme class of all cuticle-degrading enzymes like lipases and proteases. These activities were also further validated through enzymatic assays. The results presented here reveal dozens of specific proteins and different processes potentially implicated in cattle tick infection improving the understanding of molecular basis of biocontrol of B. bassiana against R. microplus.
Collapse
Affiliation(s)
- Lucélia Santi
- Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Av Ipiranga, 2752, Porto Alegre, RS, 90610-000, Brazil
- Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, R. Ramiro Barcelos, 2350, Porto Alegre, RS, 90035-903, Brazil
| | - Caio J B Coutinho-Rodrigues
- Departamento de Parasitologia Animal, Universidade Federal Rural do Rio de Janeiro, Rod BR 465, km 7, Seropédica, RJ, 23890-000, Brazil
| | - Markus Berger
- Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, R. Ramiro Barcelos, 2350, Porto Alegre, RS, 90035-903, Brazil
| | - Lisete A S Klein
- Univates, Av Avelino Talini, 171, Lajeado, RS, 95914-014, Brazil
| | | | - Rafael L Rosa
- Programa de Pós-Graduação em Biologia Celular e Molecular, Universidade Federal do Rio Grande do Sul, Av Bento Gonçalves, 9500, Porto Alegre, RS, 91501-970, Brazil
| | - Jorge A Guimarães
- Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, R. Ramiro Barcelos, 2350, Porto Alegre, RS, 90035-903, Brazil
- Programa de Pós-Graduação em Biologia Celular e Molecular, Universidade Federal do Rio Grande do Sul, Av Bento Gonçalves, 9500, Porto Alegre, RS, 91501-970, Brazil
| | - John R Yates
- Department of Chemical Physiology and Molecular and Cellular Neuroscience, The Scripps Research Institute, 10550 N Torrey Pines Rd, La Jolla, CA, 92037, USA
| | - Wendell M S Perinotto
- Centro de Ciências Agrárias, Ambientais e Biológicas, Universidade Federal do Recôncavo da Bahia, Tv. Primeira Brejinhos, 540-736, Cruz das Almas, BA, 44380-000, Brazil
| | - Vânia R E P Bittencourt
- Departamento de Parasitologia Animal, Universidade Federal Rural do Rio de Janeiro, Rod BR 465, km 7, Seropédica, RJ, 23890-000, Brazil
| | - Walter O Beys-da-Silva
- Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Av Ipiranga, 2752, Porto Alegre, RS, 90610-000, Brazil.
- Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, R. Ramiro Barcelos, 2350, Porto Alegre, RS, 90035-903, Brazil.
| |
Collapse
|
15
|
Jiang B, Jia Y, He C. Promoting new concepts of skincare via skinomics and systems biology-From traditional skincare and efficacy-based skincare to precision skincare. J Cosmet Dermatol 2018; 17:968-976. [PMID: 29749695 DOI: 10.1111/jocd.12663] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/09/2018] [Indexed: 12/18/2022]
Abstract
Traditional skincare involves the subjective classification of skin into 4 categories (oily, dry, mixed, and neutral) prior to skin treatment. Following the development of noninvasive methods in skin and skin imaging technology, scientists have developed efficacy-based skincare products based on the physiological characteristics of skin under different conditions. Currently, the emergence of skinomics and systems biology has facilitated the development of precision skincare. In this article, the evolution of skincare based on the physiological states of the skin (from traditional skincare and efficacy-based skincare to precision skincare) is described. In doing so, we highlight skinomics and systems biology, with particular emphasis on the importance of skin lipidomics and microbiomes in precision skincare. The emerging trends of precision skincare are anticipated.
Collapse
Affiliation(s)
- Biao Jiang
- Beijing Key Laboratory of Plant Resources Research and Development, School of Science, Beijing Technology and Business University, Beijing, China
| | - Yan Jia
- Beijing Key Laboratory of Plant Resources Research and Development, School of Science, Beijing Technology and Business University, Beijing, China
| | - Congfen He
- Beijing Key Laboratory of Plant Resources Research and Development, School of Science, Beijing Technology and Business University, Beijing, China
| |
Collapse
|
16
|
Sun Z, Du J, Hwang E, Yi TH. Paeonol extracted from Paeonia suffruticosa
Andr. ameliorated UVB-induced skin photoaging via DLD/Nrf2/ARE and MAPK/AP-1 pathway. Phytother Res 2018; 32:1741-1749. [DOI: 10.1002/ptr.6100] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Revised: 02/27/2018] [Accepted: 04/03/2018] [Indexed: 01/04/2023]
Affiliation(s)
- ZhengWang Sun
- Department of Oriental Medicinal Material and Processing, College of Life Sciences; Kyung Hee University; 1732, Deogyeong-daero, Giheung-gu Yongin-si Gyeonggi-do 17104 Korea
| | - Juan Du
- College of Food and Bioengineering, Henan Province Collaborative Innovation Center for Food Production and Safety; Zhengzhou University of Light Industry; 166 Kexue Ave Zhengzhou Henan Sheng China
| | - Eunson Hwang
- Department of Oriental Medicinal Material and Processing, College of Life Sciences; Kyung Hee University; 1732, Deogyeong-daero, Giheung-gu Yongin-si Gyeonggi-do 17104 Korea
| | | |
Collapse
|
17
|
Gou L, Lee J, Yang JM, Park YD, Zhou HM, Zhan Y, Lü ZR. Inhibition of tyrosinase by fumaric acid: Integration of inhibition kinetics with computational docking simulations. Int J Biol Macromol 2017; 105:1663-1669. [DOI: 10.1016/j.ijbiomac.2016.12.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Revised: 11/30/2016] [Accepted: 12/05/2016] [Indexed: 10/20/2022]
|
18
|
The application of skin metabolomics in the context of transdermal drug delivery. Pharmacol Rep 2017; 69:252-259. [DOI: 10.1016/j.pharep.2016.10.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 09/17/2016] [Accepted: 10/12/2016] [Indexed: 01/09/2023]
|
19
|
Sun Z, Park SY, Hwang E, Zhang M, Seo SA, Lin P, Yi TH. Thymus vulgaris alleviates UVB irradiation induced skin damage via inhibition of MAPK/AP-1 and activation of Nrf2-ARE antioxidant system. J Cell Mol Med 2016; 21:336-348. [PMID: 27641753 PMCID: PMC5264136 DOI: 10.1111/jcmm.12968] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2016] [Accepted: 08/03/2016] [Indexed: 12/21/2022] Open
Abstract
Solar ultraviolet (UV) radiation-induced reactive oxidative species is mainly responsible for the development of photoageing. Rosmarinic acid was one of the main bioactive components detected in Thymus vulgaris (TV) we extracted. In this study, UVB-induced skin damages have been shown to be ameliorated by treatment with TV in hairless mice (HR-1) skin, demonstrated by decreased matrix metalloproteinases (MMPs) and increased collagen production. However, the underlying molecular mechanism on which TV acted was unclear. We examined the photoprotective effects of TV against UVB and elucidated the molecular mechanism in normal human dermal fibroblasts. Thymus vulgaris remarkably prevented the UVB-induced reactive oxygen species and lactate dehydrogenase. Dose-dependent increase in glutathione, NAD(P)H: quinone oxidoreductase1 and heme oxygenase-1, by TV was confirmed by increased nuclear accumulation of Nrf2. Furthermore, 5-Methoxyindole-2-carboxylic acid was introduced as a specific inhibitor of dihydrolipoyl dehydrogenase (DLD). We demonstrated that Nrf2 expression was regulated by DLD, which was a tricarboxylic acid cycle-associated protein that decreased after UVB exposure. Besides, TV significantly diminished UVB induced phosphorylation of mitogen activated protein kinases pathway, containing extracellular signal-regulated kinase, Jun N-terminal kinase and p38, which consequently reduced phosphorylated c-fos and c-jun. Our results suggest that TV is a potential botanical agent for use against UV radiation-induced oxidative stress mediated skin damages.
Collapse
Affiliation(s)
- Zhengwang Sun
- Department of Oriental Medicinal Biotechnology, College of Life Science, Kyung Hee University Global Campus, Yongin-si, Gyeonggi-do, Korea
| | - Sang Yong Park
- Department of Oriental Medicinal Biotechnology, College of Life Science, Kyung Hee University Global Campus, Yongin-si, Gyeonggi-do, Korea
| | - Eunson Hwang
- Department of Oriental Medicinal Biotechnology, College of Life Science, Kyung Hee University Global Campus, Yongin-si, Gyeonggi-do, Korea
| | - Mengyang Zhang
- Department of Oriental Medicinal Biotechnology, College of Life Science, Kyung Hee University Global Campus, Yongin-si, Gyeonggi-do, Korea
| | - Seul A Seo
- Department of Oriental Medicinal Biotechnology, College of Life Science, Kyung Hee University Global Campus, Yongin-si, Gyeonggi-do, Korea
| | - Pei Lin
- Department of Oriental Medicinal Biotechnology, College of Life Science, Kyung Hee University Global Campus, Yongin-si, Gyeonggi-do, Korea
| | - Tae-Hoo Yi
- Department of Oriental Medicinal Biotechnology, College of Life Science, Kyung Hee University Global Campus, Yongin-si, Gyeonggi-do, Korea
| |
Collapse
|
20
|
Fang JY, Wang PW, Huang CH, Chen MH, Wu YR, Pan TL. Skin aging caused by intrinsic or extrinsic processes characterized with functional proteomics. Proteomics 2016; 16:2718-2731. [PMID: 27459910 DOI: 10.1002/pmic.201600141] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 06/24/2016] [Accepted: 07/21/2016] [Indexed: 12/27/2022]
Abstract
The skin provides protection against environmental stress. However, intrinsic and extrinsic aging causes significant alteration to skin structure and components, which subsequently impairs molecular characteristics and biochemical processes. Here, we have conducted an immunohistological investigation and established the proteome profiles on nude mice skin to verify the specific responses during aging caused by different factors. Our results showed that UVB-elicited aging results in upregulation of proliferating cell nuclear antigen and strong oxidative damage in DNA, whereas chronological aging abolished epidermal cell growth and increased the expression of caspase-14, as well as protein carbonylation. Network analysis indicated that the programmed skin aging activated the ubiquitin system and triggered obvious downregulation of 14-3-3 sigma, which might accelerate the loss of cell growth capacity. On the other hand, UVB stimulation enhanced inflammation and the risk of skin carcinogenesis. Collectively, functional proteomics could provide large-scale investigation of the potent proteins and molecules that play important roles in skin subjected to both intrinsic and extrinsic aging.
Collapse
Affiliation(s)
- Jia-You Fang
- Pharmaceutics Laboratory, Graduate Institute of Natural Products, Chang Gung University, Taoyuan, Taiwan.,Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Pei-Wen Wang
- School of Traditional Chinese Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chun-Hsun Huang
- Research Center for Industry of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan
| | - Mu-Hong Chen
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan.,Department of Psychiatry, College of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Yun-Ru Wu
- Graduate Institute of Traditional Chinese Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Tai-Long Pan
- School of Traditional Chinese Medicine, Chang Gung University, Taoyuan, Taiwan. .,Research Center for Industry of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan. .,Liver Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan. .,Chinese Herbal Medicine Research Team, Healthy Aging Research Center, Chang Gung University, Taoyuan, Taiwan. .,Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan.
| |
Collapse
|
21
|
Uzzal Hossain M, Zaffar Shibly A, Md Omar T, Tous Zohora F, Sara Santona U, Hossain MJ, Hosen Khoka MS, Ara Keya C, Salimullah M. Towards finding the linkage between metabolic and age-related disorders using semantic gene data network analysis. Bioinformation 2016; 12:22-7. [PMID: 27212841 PMCID: PMC4857462 DOI: 10.6026/97320630012022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2015] [Accepted: 01/07/2016] [Indexed: 11/23/2022] Open
Abstract
A metabolic disorder (MD) occurs when the metabolic process is disturbed. This process is carried out by thousands of enzymes
participating in numerous inter-dependent metabolic pathways. Critical biochemical reactions that involve the processing and
transportation of carbohydrates, proteins and lipids are affected in metabolic diseases. Therefore, it is of interest to identify the
common pathways of metabolic disorders by building protein-protein interactions (PPI) for network analysis. The molecular
network linkages between MD and age related diseases (ARD) are intriguing. Hence, we created networks of protein-protein
interactions that are related with MD and ARD using relevant known data in the public domain. The network analysis identified
known MD associated proteins and predicted genes and or its products of ARD in common pathways. The genes in the common
pathways were isolated from the network and further analyzed for their co-localization and shared domains. Thus, a model
hypothesis is proposed using interaction networks that are linked between MD and ARD. This data even if less conclusive finds
application in understanding the molecular mechanism of known diseases in relation to observed molecular events
Collapse
Affiliation(s)
- Mohammad Uzzal Hossain
- Department of Biotechnology and Genetic Engineering, Life Science Faculty, Mawlana Bhashani Science and Technology University, Santosh, Tangail 1902, Bangladesh
| | - Abu Zaffar Shibly
- Department of Biotechnology and Genetic Engineering, Life Science Faculty, Mawlana Bhashani Science and Technology University, Santosh, Tangail 1902, Bangladesh
| | - Taimur Md Omar
- Department of Biotechnology and Genetic Engineering, Life Science Faculty, Mawlana Bhashani Science and Technology University, Santosh, Tangail 1902, Bangladesh
| | - Fatama Tous Zohora
- Department of Biotechnology and Genetic Engineering, Life Science Faculty, Mawlana Bhashani Science and Technology University, Santosh, Tangail 1902, Bangladesh
| | - Umme Sara Santona
- Department of Biotechnology and Genetic Engineering, Life Science Faculty, Mawlana Bhashani Science and Technology University, Santosh, Tangail 1902, Bangladesh
| | - Md Jakir Hossain
- Department of Biotechnology and Genetic Engineering, Life Science Faculty, Mawlana Bhashani Science and Technology University, Santosh, Tangail 1902, Bangladesh
| | - Md Sadek Hosen Khoka
- Department of Biotechnology and Genetic Engineering, Life Science Faculty, Mawlana Bhashani Science and Technology University, Santosh, Tangail 1902, Bangladesh
| | - Chaman Ara Keya
- Department of Biology and Chemistry, North south University, Bashundhara, Dhaka 1229, Bangladesh
| | - Md Salimullah
- Molecular Biotechnology Division, National Institute of Biotechnology, Ganakbari, Ashulia, Savar, Dhaka 1349, Bangladesh
| |
Collapse
|