1
|
Di Meo F, Kale B, Koomen JM, Perna F. Mapping the cancer surface proteome in search of target antigens for immunotherapy. Mol Ther 2024; 32:2892-2904. [PMID: 39068512 PMCID: PMC11403220 DOI: 10.1016/j.ymthe.2024.07.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/26/2024] [Accepted: 07/25/2024] [Indexed: 07/30/2024] Open
Abstract
Immune-based therapeutic interventions recognizing proteins localized on the cell surface of cancer cells are emerging as a promising cancer treatment. Antibody-based therapies and engineered T cells are now approved by the Food and Drug Administration to treat some malignancies. These therapies utilize a few cell surface proteins highly expressed on cancer cells to release the negative regulation of immune activation that limits antitumor responses (e.g., PD-1, PD-L1, CTLA4) or to redirect the T cell specificity toward blood cancer cells (e.g., CD19 and B cell maturation antigen). One limitation preventing broader application of these novel therapeutic strategies to all cancer types is the lack of suitable target antigens for all indications owing in part to the challenges in identifying such targets. Ideal target antigens are cell surface proteins highly expressed on malignant cells and absent in healthy tissues. Technological advances in mass spectrometry, enrichment protocols, and computational tools for cell surface protein isolation and annotation have recently enabled comprehensive analyses of the cancer cell surface proteome, from which novel immunotherapeutic target antigens may emerge. Here, we review the most recent progress in this field.
Collapse
Affiliation(s)
- Francesco Di Meo
- Department of Blood and Marrow Transplant and Cellular Immunotherapy, Tampa, FL, USA
| | - Brandon Kale
- Department of Blood and Marrow Transplant and Cellular Immunotherapy, Tampa, FL, USA
| | - John M Koomen
- Department of Molecular Oncology, Moffitt Cancer Center, Tampa, FL, USA
| | - Fabiana Perna
- Department of Blood and Marrow Transplant and Cellular Immunotherapy, Tampa, FL, USA.
| |
Collapse
|
2
|
Zhang B, Guo M, Wang H, Wang Z, Zhang L, Zhang Y, Cao C, Xiao H. Metal Organic Framework Nanomaterial-Based Extraction and Proteome Analysis of Membrane and Membrane-Associated Proteins. Anal Chem 2021; 93:15922-15930. [PMID: 34817162 DOI: 10.1021/acs.analchem.1c03219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Membrane proteins (MPs) play a key role in various biological processes, while difficulties still exist in the extraction because of their inherent low abundance and poor solubility caused by high hydrophobicity. Metal organic framework (MOF) materials with good hydrophobic properties have the ability to absorb MPs, especially zeolitic imidazolate framework (ZIF) materials. Here, two MOF materials (ZIF-8 and ZIF-67) were compared for MP extraction, and our results revealed that higher yield was obtained with ZIF-67. After method development, the optimal enrichment effect was obtained when the mass ratio of proteins and ZIF-67 reached 1:20 with 100 mM NaCl in 20% ethanol at 4 °C and pH 9.0. When compared with a commercial kit, the extraction yield increased by 88.11% and the average number of identified MPs elevated by 29.17% with the developed ZIF method. Normal lung cell MRC5 was employed to verify the effectiveness of the ZIF method. Results showed 45.13% increase in yield and 22.88% increase in average number of identified MPs by the ZIF method. Our method was further applied to the enrichment of MPs for high-metastatic (95D) and low-metastatic (95C) human lung cancer cells. A total of 1732 (95D) and 1711 (95C) MPs were identified, among which 710 MPs were dysregulated significantly; 441 upregulated MPs in 95D cells were found to be closely related to the growth, proliferation, and migration of lung cancer cells. Our results collectively demonstrated that ZIF-67 was an ideal material for MP extraction, which might be helpful for analysis of cancer proteomics and discovery of cancer migration associated MPs.
Collapse
Affiliation(s)
- Baohui Zhang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Miao Guo
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Huiyu Wang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zeyuan Wang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lu Zhang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yan Zhang
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chengxi Cao
- Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hua Xiao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
3
|
Capture and Analysis of Cell Surface N-Glycans by Hydrazide-Modified Magnetic Beads and CE-LIF. Chromatographia 2019. [DOI: 10.1007/s10337-019-03742-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
4
|
Kuhlmann L, Cummins E, Samudio I, Kislinger T. Cell-surface proteomics for the identification of novel therapeutic targets in cancer. Expert Rev Proteomics 2018; 15:259-275. [DOI: 10.1080/14789450.2018.1429924] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Laura Kuhlmann
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Emma Cummins
- The Centre for Drug Research and Development, Division of Biologics, Vancouver, Canada
| | - Ismael Samudio
- The Centre for Drug Research and Development, Division of Biologics, Vancouver, Canada
| | - Thomas Kislinger
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
| |
Collapse
|
5
|
An atlas of bloodstream-accessible bone marrow proteins for site-directed therapy of acute myeloid leukemia. Leukemia 2017; 32:510-519. [DOI: 10.1038/leu.2017.208] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 06/01/2017] [Accepted: 06/20/2017] [Indexed: 12/15/2022]
|