1
|
Wu W, Chen Y, Huang H, Li R, Yang B, Lv J, Yin L, Qu J, Song S, Peng Y, Fu P, Lu J. Origin and pathogenicity variation of Plasmopara viticola in China. Front Microbiol 2025; 15:1433024. [PMID: 39881981 PMCID: PMC11774888 DOI: 10.3389/fmicb.2024.1433024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 12/13/2024] [Indexed: 01/31/2025] Open
Abstract
Grapevine downy mildew caused by Plasmopara viticola (Pv) is one of the most devastating diseases of grapevine in China. To understand the origin and pathogenicity of Chinese Pv, a total of 193 single-sporangiophore isolates were obtained from 14 Chinese major viticulture areas. Phylogenetic analyses suggest that Chinese Pv isolates originate from North America and belong to the P. viticola clade aestivalis. Host range experiments reveal that Chinese Pv are able to infect a wide range of Vitis species from different geographic origins, including Eurasian species Vitis vinifera, North American species V. aestivalis, V. riparia, and V. rupestris, and East Asian Vitis species V. davidii, V. amurensis, and V. hancockii. Analyses of the interactions between Pv isolates and grapevines reveal that the virulence of Pv isolates is correlated with the occurrence time and magnitude of hypersensitive response-mediating leaf necrosis in grape leaves caused by Pv. These understandings of genetic diversity and pathogenicity of Chinese Pv isolate would be useful to develop strategies for controlling grapevine downy mildew spread.
Collapse
Affiliation(s)
- Wei Wu
- Center for Viticulture and Enology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- Chongqing Research Institute, Shanghai Jiao Tong University, Chongqing, China
| | - Yuchen Chen
- Center for Viticulture and Enology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Huimin Huang
- Center for Viticulture and Enology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Rongfang Li
- Center for Viticulture and Enology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Bohan Yang
- Center for Viticulture and Enology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Junli Lv
- Center for Viticulture and Enology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Ling Yin
- Center for Viticulture and Enology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- Guangxi Crop Genetic Improvement and Biotechnology Key Lab, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Junjie Qu
- Guangxi Crop Genetic Improvement and Biotechnology Key Lab, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Shiren Song
- Center for Viticulture and Enology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Yachun Peng
- Center for Viticulture and Enology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Peining Fu
- Center for Viticulture and Enology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Jiang Lu
- Center for Viticulture and Enology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
2
|
Xu J, Wang M, Ren Y, Luo W, Zhang L, Liu S, Hu P. A newly identified photosystem II Subunit P gene TaPsbP4A-1 in Triticeae species negatively regulates wheat powdery mildew resistance. FRONTIERS IN PLANT SCIENCE 2024; 15:1452281. [PMID: 39582632 PMCID: PMC11581894 DOI: 10.3389/fpls.2024.1452281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 10/14/2024] [Indexed: 11/26/2024]
Abstract
The photosystem II (PSII) Subunit P (PsbP) protein is a component of its oxygen-evolving complex, which can oxidize water to produce oxygen using light energy and is critical to the core components and stability of PSII. Using the whole-genome information, the PsbP genes of 10 plant species were comprehensively identified. The expression patterns of wheat PsbPs under Blumeria graminis f. sp. tritici (Bgt) infection were assessed using qRT-PCR, and the functions of TaPsbPs in wheat powdery mildew resistance were studied using barley stripe mosaic virus-induced gene silencing. In total, 122 PsbP genes were divided into 8 classes with similar gene structures. No tandem repeat events were identified in wheat PsbP, suggesting that the PsbP genes in common wheat were donated by its diploid progenitor species. The expression levels of TaPsbP2A-1, TaPsbP3A-1, TaPsbP4A-1, TaPsbP4A-2, and TaPsbP7A-2 were induced by Bgt. The silencing of TaPsbP4A-1 increased the resistance of common wheat 'Bainong AK58' to Bgt. This study provides valuable information for functional and evolutionary research on the PsbP gene family.
Collapse
Affiliation(s)
- Jun Xu
- College of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang, China
| | - Mengfei Wang
- College of Agriculture, Henan Engineering Research Center of Crop Genome Editing/Henan International Joint Laboratory of Plant Genetic Improvement and Soil Remediation, Henan Institute of Science and Technology, Xinxiang, China
| | - Yueming Ren
- College of Agriculture, Henan Engineering Research Center of Crop Genome Editing/Henan International Joint Laboratory of Plant Genetic Improvement and Soil Remediation, Henan Institute of Science and Technology, Xinxiang, China
| | - Wanglong Luo
- College of Agriculture, Henan Engineering Research Center of Crop Genome Editing/Henan International Joint Laboratory of Plant Genetic Improvement and Soil Remediation, Henan Institute of Science and Technology, Xinxiang, China
| | - Lu Zhang
- College of Agriculture, Henan Engineering Research Center of Crop Genome Editing/Henan International Joint Laboratory of Plant Genetic Improvement and Soil Remediation, Henan Institute of Science and Technology, Xinxiang, China
| | - Shuangwei Liu
- College of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang, China
| | - Ping Hu
- College of Agriculture, Henan Engineering Research Center of Crop Genome Editing/Henan International Joint Laboratory of Plant Genetic Improvement and Soil Remediation, Henan Institute of Science and Technology, Xinxiang, China
| |
Collapse
|
3
|
Kumari M, Kapoor R, Devanna BN, Varshney S, Kamboj R, Rai AK, Sharma TR. iTRAQ based proteomic analysis of rice lines having single or stacked blast resistance genes: Pi54/ Pi54rh during incompatible interaction with Magnaporthe oryzae. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2023; 29:871-887. [PMID: 37520805 PMCID: PMC10382468 DOI: 10.1007/s12298-023-01327-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 05/12/2023] [Accepted: 06/08/2023] [Indexed: 08/01/2023]
Abstract
Deployment of single or multiple blast resistance (R) genes in rice plant is considered to be the most promising approach to enhance resistance against blast disease caused by fungus Magnaporthe oryzae. At the proteome level, relatively little information about R gene mediated defence mechanisms for single and stacking resistance characteristics is available. The overall objective of this study is to look at the proteomics of rice plants that have R genes; Pi54, Pi54rh and stacked Pi54 + Pi54rh in response to rice blast infection. In this study 'isobaric tag for relative and absolute quantification' (iTRAQ)-based proteomics analysis was performed in rice plants at 72-h post inoculation with Magnaporthe oryzae and various differentially expressed proteins were identified in these three transgenic lines in comparison to wild type during resistance response to blast pathogen. Through STRING analysis, the observed proteins were further examined to anticipate their linked partners, and it was shown that several defense-related proteins were co-expressed. These proteins can be employed as targets in future rice resistance breeding against Magnaporthe oryzae. The current study is the first to report a proteomics investigation of rice lines that express single blast R gene Pi54, Pi54rh and stacked (Pi54 + Pi54rh) during incompatible interaction with Magnaporthe oryzae. The differentially expressed proteins indicated that secondary metabolites, reactive oxygen species-related proteins, phenylpropanoid, phytohormones and pathogenesis-related proteins have a substantial relationship with the defense response against Magnaporthe oryzae. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-023-01327-3.
Collapse
Affiliation(s)
- Mandeep Kumari
- ICAR-National Institute for Plant Biotechnology, New Delhi, India
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Vanasthali, Rajasthan India
| | - Ritu Kapoor
- National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab India
| | - B. N. Devanna
- ICAR-National Rice Research Institute, Cuttack, Odisha India
| | - Swati Varshney
- CSIR-Institute of Genomics and Integrative Biology, New Delhi, Delhi India
| | - Richa Kamboj
- ICAR-National Institute for Plant Biotechnology, New Delhi, India
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Vanasthali, Rajasthan India
| | - Amit Kumar Rai
- ICAR-National Institute for Plant Biotechnology, New Delhi, India
| | - T. R. Sharma
- ICAR-National Institute for Plant Biotechnology, New Delhi, India
- Division of Crop Science, Indian Council of Agricultural Research, Krishi Bhavan, New Delhi, India
| |
Collapse
|
4
|
Laureano G, Santos C, Gouveia C, Matos AR, Figueiredo A. Grapevine-Associated Lipid Signalling Is Specifically Activated in an Rpv3 Background in Response to an Aggressive P. viticola Pathovar. Cells 2023; 12:394. [PMID: 36766736 PMCID: PMC9913531 DOI: 10.3390/cells12030394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/04/2023] [Accepted: 01/19/2023] [Indexed: 01/24/2023] Open
Abstract
Vitis vinifera L. is highly susceptible to the biotrophic pathogen Plasmopara viticola. To control the downy mildew disease, several phytochemicals are applied every season. Recent European Union requirements to reduce the use of chemicals in viticulture have made it crucial to use alternative and more sustainable approaches to control this disease. Our previous studies pinpoint the role of fatty acids and lipid signalling in the establishment of an incompatible interaction between grapevine and P. viticola. To further understand the mechanisms behind lipid involvement in an effective defence response we have analysed the expression of several genes related to lipid metabolism in three grapevine genotypes: Chardonnay (susceptible); Regent (tolerant), harbouring an Rpv3-1 resistance loci; and Sauvignac (resistant) that harbours a pyramid of Rpv12 and Rpv3-1 resistance loci. A highly aggressive P. viticola isolate was used (NW-10/16). Moreover, we have characterised the grapevine phospholipases C and D gene families and monitored fatty acid modulation during infection. Our results indicate that both susceptible and resistant grapevine hosts did not present wide fatty acid or gene expression modulation. The modulation of genes associated with lipid signalling and fatty acids seems to be specific to Regent, which raises the hypothesis of being specifically linked to the Rpv3 loci. In Sauvignac, the Rpv12 may be dominant concerning the defence response, and, thus, this genotype may present the activation of other pathways rather than lipid signalling.
Collapse
|
5
|
Savoi S, Santiago A, Orduña L, Matus JT. Transcriptomic and metabolomic integration as a resource in grapevine to study fruit metabolite quality traits. FRONTIERS IN PLANT SCIENCE 2022; 13:937927. [PMID: 36340350 PMCID: PMC9630917 DOI: 10.3389/fpls.2022.937927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 09/09/2022] [Indexed: 06/16/2023]
Abstract
Transcriptomics and metabolomics are methodologies being increasingly chosen to perform molecular studies in grapevine (Vitis vinifera L.), focusing either on plant and fruit development or on interaction with abiotic or biotic factors. Currently, the integration of these approaches has become of utmost relevance when studying key plant physiological and metabolic processes. The results from these analyses can undoubtedly be incorporated in breeding programs whereby genes associated with better fruit quality (e.g., those enhancing the accumulation of health-promoting compounds) or with stress resistance (e.g., those regulating beneficial responses to environmental transition) can be used as selection markers in crop improvement programs. Despite the vast amount of data being generated, integrative transcriptome/metabolome meta-analyses (i.e., the joint analysis of several studies) have not yet been fully accomplished in this species, mainly due to particular specificities of metabolomic studies, such as differences in data acquisition (i.e., different compounds being investigated), unappropriated and unstandardized metadata, or simply no deposition of data in public repositories. These meta-analyses require a high computational capacity for data mining a priori, but they also need appropriate tools to explore and visualize the integrated results. This perspective article explores the universe of omics studies conducted in V. vinifera, focusing on fruit-transcriptome and metabolome analyses as leading approaches to understand berry physiology, secondary metabolism, and quality. Moreover, we show how omics data can be integrated in a simple format and offered to the research community as a web resource, giving the chance to inspect potential gene-to-gene and gene-to-metabolite relationships that can later be tested in hypothesis-driven research. In the frame of the activities promoted by the COST Action CA17111 INTEGRAPE, we present the first grapevine transcriptomic and metabolomic integrated database (TransMetaDb) developed within the Vitis Visualization (VitViz) platform (https://tomsbiolab.com/vitviz). This tool also enables the user to conduct and explore meta-analyses utilizing different experiments, therefore hopefully motivating the community to generate Findable, Accessible, Interoperable and Reusable (F.A.I.R.) data to be included in the future.
Collapse
Affiliation(s)
- Stefania Savoi
- Department of Agricultural, Forest and Food Sciences, University of Turin, Grugliasco, Italy
| | - Antonio Santiago
- Institute for Integrative Systems Biology (I2SysBio), Universitat de València-CSIC, Paterna, Spain
| | - Luis Orduña
- Institute for Integrative Systems Biology (I2SysBio), Universitat de València-CSIC, Paterna, Spain
| | - José Tomás Matus
- Institute for Integrative Systems Biology (I2SysBio), Universitat de València-CSIC, Paterna, Spain
| |
Collapse
|
6
|
Shaw RK, Shen Y, Zhao Z, Sheng X, Wang J, Yu H, Gu H. Molecular Breeding Strategy and Challenges Towards Improvement of Downy Mildew Resistance in Cauliflower ( Brassica oleracea var. botrytis L.). FRONTIERS IN PLANT SCIENCE 2021; 12:667757. [PMID: 34354719 PMCID: PMC8329456 DOI: 10.3389/fpls.2021.667757] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 05/31/2021] [Indexed: 06/13/2023]
Abstract
Cauliflower (Brassica oleracea var. botrytis L.) is one of the important, nutritious and healthy vegetable crops grown and consumed worldwide. But its production is constrained by several destructive fungal diseases and most importantly, downy mildew leading to severe yield and quality losses. For sustainable cauliflower production, developing resistant varieties/hybrids with durable resistance against broad-spectrum of pathogens is the best strategy for a long term and reliable solution. Identification of novel resistant resources, knowledge of the genetics of resistance, mapping and cloning of resistance QTLs and identification of candidate genes would facilitate molecular breeding for disease resistance in cauliflower. Advent of next-generation sequencing technologies (NGS) and publishing of draft genome sequence of cauliflower has opened the flood gate for new possibilities to develop enormous amount of genomic resources leading to mapping and cloning of resistance QTLs. In cauliflower, several molecular breeding approaches such as QTL mapping, marker-assisted backcrossing, gene pyramiding have been carried out to develop new resistant cultivars. Marker-assisted selection (MAS) would be beneficial in improving the precision in the selection of improved cultivars against multiple pathogens. This comprehensive review emphasizes the fascinating recent advances made in the application of molecular breeding approach for resistance against an important pathogen; Downy Mildew (Hyaloperonospora parasitica) affecting cauliflower and Brassica oleracea crops and highlights the QTLs identified imparting resistance against this pathogen. We have also emphasized the critical research areas as future perspectives to bridge the gap between availability of genomic resources and its utility in identifying resistance genes/QTLs to breed downy mildew resistant cultivars. Additionally, we have also discussed the challenges and the way forward to realize the full potential of molecular breeding for downy mildew resistance by integrating marker technology with conventional breeding in the post-genomics era. All this information will undoubtedly provide new insights to the researchers in formulating future breeding strategies in cauliflower to develop durable resistant cultivars against the major pathogens in general and downy mildew in particular.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Honghui Gu
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| |
Collapse
|
7
|
Liu R, Chen T, Yin X, Xiang G, Peng J, Fu Q, Li M, Shang B, Ma H, Liu G, Wang Y, Xu Y. A Plasmopara viticola RXLR effector targets a chloroplast protein PsbP to inhibit ROS production in grapevine. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 106:1557-1570. [PMID: 33783031 DOI: 10.1111/tpj.15252] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 03/02/2021] [Accepted: 03/22/2021] [Indexed: 06/12/2023]
Abstract
Pathogens secrete a large number of effectors that manipulate host processes to create an environment conducive to pathogen colonization. However, the underlying mechanisms by which Plasmopara viticola effectors manipulate host plant cells remain largely unclear. In this study, we reported that RXLR31154, a P. viticola RXLR effector, was highly expressed during the early stages of P. viticola infection. In our study, stable expression of RXLR31154 in grapevine (Vitis vinifera) and Nicotiana benthamiana promoted leaf colonization by P. viticola and Phytophthora capsici, respectively. By yeast two-hybrid screening, the 23-kDa oxygen-evolving enhancer 2 (VpOEE2 or VpPsbP), encoded by the PsbP gene, in Vitis piasezkii accession Liuba-8 was identified as a host target of RXLR31154. Overexpression of VpPsbP enhanced susceptibility to P. viticola in grapevine and P. capsici in N. benthamiana, and silencing of NbPsbPs, the homologs of PsbP in N. benthamiana, reduced P. capcisi colonization, indicating that PsbP is a susceptibility factor. RXLR31154 and VpPsbP protein were co-localized in the chloroplast. Moreover, VpPsbP reduced H2 O2 accumulation and activated the 1 O2 signaling pathway in grapevine. RXLR31154 could stabilize PsbP. Together, our data revealed that RXLR31154 reduces H2 O2 accumulation and activates the 1 O2 signaling pathway through stabilizing PsbP, thereby promoting disease.
Collapse
Affiliation(s)
- Ruiqi Liu
- State Key Laboratory of Crop Stress Biology in Arid Areas (Northwest A&F University), Yangling, Shaanxi, P.R. China
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, P.R. China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, P.R. China
| | - Tingting Chen
- State Key Laboratory of Crop Stress Biology in Arid Areas (Northwest A&F University), Yangling, Shaanxi, P.R. China
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, P.R. China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, P.R. China
| | - Xiao Yin
- State Key Laboratory of Crop Stress Biology in Arid Areas (Northwest A&F University), Yangling, Shaanxi, P.R. China
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, P.R. China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, P.R. China
| | - Gaoqing Xiang
- State Key Laboratory of Crop Stress Biology in Arid Areas (Northwest A&F University), Yangling, Shaanxi, P.R. China
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, P.R. China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, P.R. China
| | - Jing Peng
- State Key Laboratory of Crop Stress Biology in Arid Areas (Northwest A&F University), Yangling, Shaanxi, P.R. China
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, P.R. China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, P.R. China
| | - Qingqing Fu
- State Key Laboratory of Crop Stress Biology in Arid Areas (Northwest A&F University), Yangling, Shaanxi, P.R. China
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, P.R. China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, P.R. China
| | - Mengyuan Li
- State Key Laboratory of Crop Stress Biology in Arid Areas (Northwest A&F University), Yangling, Shaanxi, P.R. China
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, P.R. China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, P.R. China
| | - Boxing Shang
- State Key Laboratory of Crop Stress Biology in Arid Areas (Northwest A&F University), Yangling, Shaanxi, P.R. China
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, P.R. China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, P.R. China
| | - Hui Ma
- State Key Laboratory of Crop Stress Biology in Arid Areas (Northwest A&F University), Yangling, Shaanxi, P.R. China
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, P.R. China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, P.R. China
| | - Guotian Liu
- State Key Laboratory of Crop Stress Biology in Arid Areas (Northwest A&F University), Yangling, Shaanxi, P.R. China
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, P.R. China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, P.R. China
| | - Yuejin Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas (Northwest A&F University), Yangling, Shaanxi, P.R. China
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, P.R. China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, P.R. China
| | - Yan Xu
- State Key Laboratory of Crop Stress Biology in Arid Areas (Northwest A&F University), Yangling, Shaanxi, P.R. China
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, P.R. China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, P.R. China
| |
Collapse
|
8
|
Liu GT, Wang BB, Lecourieux D, Li MJ, Liu MB, Liu RQ, Shang BX, Yin X, Wang LJ, Lecourieux F, Xu Y. Proteomic analysis of early-stage incompatible and compatible interactions between grapevine and P. viticola. HORTICULTURE RESEARCH 2021; 8:100. [PMID: 33931609 PMCID: PMC8087781 DOI: 10.1038/s41438-021-00533-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 01/16/2021] [Accepted: 02/24/2021] [Indexed: 05/04/2023]
Abstract
Wild grapevines can show strong resistance to the downy mildew pathogen P. viticola, but the associated mechanisms are poorly described, especially at early stages of infection. Here, we performed comparative proteomic analyses of grapevine leaves from the resistant genotype V. davidii "LiuBa-8" (LB) and susceptible V. vinifera "Pinot Noir" (PN) 12 h after inoculation with P. viticola. By employing the iTRAQ technique, a total of 444 and 349 differentially expressed proteins (DEPs) were identified in LB and PN, respectively. The majority of these DEPs were related to photosynthesis, respiration, cell wall modification, protein metabolism, stress, and redox homeostasis. Compared with PN, LB showed fewer downregulated proteins associated with photosynthesis and more upregulated proteins associated with metabolism. At least a subset of PR proteins (PR10.2 and PR10.3) was upregulated upon inoculation in both genotypes, whereas HSP (HSP70.2 and HSP90.6) and cell wall-related XTH and BXL1 proteins were specifically upregulated in LB and PN, respectively. In the incompatible interaction, ROS signaling was evident by the accumulation of H2O2, and multiple APX and GST proteins were upregulated. These DEPs may play crucial roles in the grapevine response to downy mildew. Our results provide new insights into molecular events associated with downy mildew resistance in grapevine, which may be exploited to develop novel protection strategies against this disease.
Collapse
Affiliation(s)
- Guo-Tian Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, China
- UMR1287 EGFV, CNRS, Université de Bordeaux, INRAE, Bordeaux Sciences Agro, ISVV, Villenave d'Ornon, France
| | - Bian-Bian Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, China
| | - David Lecourieux
- UMR1287 EGFV, CNRS, Université de Bordeaux, INRAE, Bordeaux Sciences Agro, ISVV, Villenave d'Ornon, France
| | - Mei-Jie Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, China
| | - Ming-Bo Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, China
| | - Rui-Qi Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, China
| | - Bo-Xing Shang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, China
| | - Xiao Yin
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, China
| | - Li-Jun Wang
- Institute of Botany, The Chinese Academy of Sciences, Beijing, China
| | - Fatma Lecourieux
- UMR1287 EGFV, CNRS, Université de Bordeaux, INRAE, Bordeaux Sciences Agro, ISVV, Villenave d'Ornon, France.
| | - Yan Xu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, China.
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, China.
| |
Collapse
|
9
|
Grapevine-Downy Mildew Rendezvous: Proteome Analysis of the First Hours of an Incompatible Interaction. PLANTS 2020; 9:plants9111498. [PMID: 33167573 PMCID: PMC7694532 DOI: 10.3390/plants9111498] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 10/23/2020] [Accepted: 11/02/2020] [Indexed: 12/26/2022]
Abstract
Grapevine is one of the most relevant crops in the world being used for economically important products such as wine. However, relevant grapevine cultivars are heavily affected by diseases such as the downy mildew disease caused by Plasmopara viticola. Improvements on grapevine resistance are made mainly by breeding techniques where resistance traits are introgressed into cultivars with desired grape characteristics. However, there is still a lack of knowledge on how resistant or tolerant cultivars tackle the P. viticola pathogen. In this study, using a shotgun proteomics LC-MS/MS approach, we unravel the protein modulation of a highly tolerant grapevine cultivar, Vitis vinifera “Regent”, in the first hours post inoculation (hpi) with P. viticola. At 6 hpi, proteins related to defense and to response to stimuli are negatively modulated while at 12 hpi there is an accumulation of proteins belonging to both categories. The co-occurrence of indicators of effector-triggered susceptibility (ETS) and effector-triggered immunity (ETI) is detected at both time-points, showing that these defense processes present high plasticity. The results obtained in this study unravel the tolerant grapevine defense strategy towards P. viticola and may provide valuable insights on resistance associated candidates and mechanisms, which may play an important role in the definition of new strategies for breeding approaches.
Collapse
|
10
|
Plasmopara viticola infection affects mineral elements allocation and distribution in Vitis vinifera leaves. Sci Rep 2020; 10:18759. [PMID: 33127977 PMCID: PMC7603344 DOI: 10.1038/s41598-020-75990-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 10/05/2020] [Indexed: 12/21/2022] Open
Abstract
Plasmopara viticola is one of the most important pathogens infecting Vitis vinifera plants. The interactions among P. viticola and both susceptible and resistant grapevine plants have been extensively characterised, at transcriptomic, proteomic and metabolomic levels. However, the involvement of plants ionome in the response against the pathogen has been completely neglected so far. Therefore, this study was aimed at investigating the possible role of leaf ionomic modulation during compatible and incompatible interactions between P. viticola and grapevine plants. In susceptible cultivars, a dramatic redistribution of mineral elements has been observed, thus uncovering a possible role for mineral nutrients in the response against pathogens. On the contrary, the resistant cultivars did not present substantial rearrangement of mineral elements at leaf level, except for manganese (Mn) and iron (Fe). This might demonstrate that, resistant cultivars, albeit expressing the resistance gene, still exploit a pathogen response mechanism based on the local increase in the concentration of microelements, which are involved in the synthesis of secondary metabolites and reactive oxygen species. Moreover, these data also highlight the link between the mineral nutrition and plants' response to pathogens, further stressing that appropriate fertilization strategies can be fundamental for the expression of response mechanisms against pathogens.
Collapse
|
11
|
Ilnitskaya E, Makarkina M, Tokmakov S, Kotlyar V. DNA-marker identification of Rpv3 and Rpv12 resistance loci in genotypes of table and seedless grape varieties. BIO WEB OF CONFERENCES 2020. [DOI: 10.1051/bioconf/20202503004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
DNA markers are widely used in grapevine breeding to create forms with combined resistance genes. Downy mildew is one of the most common fungal diseases of the vine in the world. Growing grapevines with increased resistance allows to reduce the number of chemical treatments. The decrease in the use of pesticides is especially significant for viticulture of table varieties, since berries are directly consumed by humans for food. Currently, more than 20 resistance genes have been identified by molecular methods, and DNA markers for many genes have been developed. The genes Rpv3 (inherited from North American grape species) and Rpv12 (derived from V. amurensis) are among the most effective and have an additive effect. The study of 14 table grape varieties for the presence of the Rpv3 gene and 8 varieties for the presence of the Rpv12 gene was performed by using DNA-marker analysis. The analysis included varieties that could inherit these genes from the parent forms, according to their ancestry. The study was conducted using an automatic genetic analyzer ABI Prism 3130 and special software GeneMapper and PeakScanner, DNA-markers were taken from literature sources. According to the results of DNA-marker analysis, 9 varieties were identified, including 2 seedless varieties, with the Rpv3299-279 allele in the genotypes, which determines resistance to downy mildew, and 3 table varieties with the Rpv12 gene in the genotypes. One table grape genotype was identified with Rpv3 and Rpv12.
Collapse
|
12
|
Nogueira Júnior AF, Tränkner M, Ribeiro RV, von Tiedemann A, Amorim L. Photosynthetic Cost Associated With Induced Defense to Plasmopara viticola in Grapevine. FRONTIERS IN PLANT SCIENCE 2020; 11:235. [PMID: 32265949 PMCID: PMC7098430 DOI: 10.3389/fpls.2020.00235] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 02/14/2020] [Indexed: 05/10/2023]
Abstract
Downy mildew caused by Plasmopara viticola is one of the most destructive diseases of Vitis vinifera worldwide. Grapevine breeding programs have introgressed P. viticola-resistant traits into cultivated V. vinifera genotypes and launched interspecific hybrids with resistance against downy mildew. In general, pathogen infection affects primary metabolism, reduces plant growth and development and modifies the secondary metabolism toward defense responses, which are costly in terms of carbon production and utilization. The objective of this work was to evaluate the photosynthesis impairment by inducible defenses at the leaf level in V. vinifera cultivars resistant to P. viticola. Photosynthetic limitations imposed by P. viticola in susceptible and resistant grapevine cultivars were evaluated. Histochemical localization of hydrogen peroxide and superoxide and the activity of ascorbate peroxidase were assessed. Measurements of leaf gas exchange, chlorophyll fluorescence and the response of leaf CO2 assimilation to increasing air CO2 concentrations were taken, and photosynthetic limitations determined in cultivars Solaris (resistant) and Riesling (susceptible). The net photosynthetic rates were reduced (-25%) in inoculated Solaris plants even before the appearance of cell death-like hypersensitive reactions ("HR"). One day after "HR" visualization, the net photosynthetic rate of Solaris was reduced by 57% compared with healthy plants. A similar pattern was noticed in resistant Cabernet Blanc and Phoenix plants. While the susceptible cultivars did not show any variation in leaf gas exchange before the appearance of visual symptoms, drastic reductions in net photosynthetic rate and stomatal conductance were found in diseased plants 12 days after inoculation. Decreases in the maximum Rubisco carboxylation rate and photochemical impairment were noticed in Riesling after inoculation with P. viticola, which were not found in Solaris. Damage to the photochemical reactions of photosynthesis was likely associated with the oxidative burst found in resistant cultivars within the first 24 h after inoculation. Both chlorophyll degradation and stomatal closure were also noticed in the incompatible interaction. Taken together, our data clearly revealed that the defense response against P. viticola causes a photosynthetic cost to grapevines, which is not reversible even 12 days after the pathogen infection.
Collapse
Affiliation(s)
| | - Merle Tränkner
- Department of Crop Sciences, Institute of Applied Plant Nutrition, University of Göttingen, Göttingen, Germany
- Merle Tränkner, merle.traenkner@ agr.uni-goettingen.de
| | - Rafael V. Ribeiro
- Department of Plant Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Andreas von Tiedemann
- Department of Crop Sciences, Division of Plant Pathology and Crop Protection, University of Göttingen, Göttingen, Germany
| | - Lilian Amorim
- Department of Plant Pathology, ESALQ, University of São Paulo, Piracicaba, Brazil
- *Correspondence: Lilian Amorim,
| |
Collapse
|
13
|
Liu R, Weng K, Dou M, Chen T, Yin X, Li Z, Li T, Zhang C, Xiang G, Liu G, Xu Y. Transcriptomic analysis of Chinese wild Vitis pseudoreticulata in response to Plasmopara viticola. PROTOPLASMA 2019; 256:1409-1424. [PMID: 31115695 DOI: 10.1007/s00709-019-01387-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 04/24/2019] [Indexed: 05/04/2023]
Abstract
Downy mildew, resulted from Plasmopara viticola, is one of most severe fungal diseases of grapevine. Since Vitis vinifera is susceptible to downy mildew, much effort has been focused on improving the resistance of V. vinifera. The Chinese wild V. pseudoreticulata accession Baihe-35-1 (BH) shows resistance to P. viticola; however, the molecular mechanism underlying its resistance to P. viticola is largely unknown. In order to better understand the cellular processes, the transcriptomic changes were investigated at 0, 12, 24, 48, 96, and 120 h post infection (hpi). Transcriptome analysis identified a total of 175 differentially expressed genes. Most of them were found to be associated with oxidative stress, cell wall modification, and protein modification. Moreover, the BH resistance to P. viticola was involved in metabolism process, including terpene synthesis and hormone synthesis. In addition, we verified 12 genes to ensure the accuracy of transcriptome data using quantitative real-time PCR (qRT-PCR). This study broadly characterizes a molecular mechanism in which oxidative stress and cell wall biosynthesis and modification play important roles in the response of BH to P. viticola and provides a basis for further analysis of key genes involved in the resistance to P. viticola.
Collapse
Affiliation(s)
- Ruiqi Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, People's Republic of China
| | - Kai Weng
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, People's Republic of China
| | - Mengru Dou
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, People's Republic of China
| | - Tingting Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, People's Republic of China
| | - Xiao Yin
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, People's Republic of China
| | - Zhiqian Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, People's Republic of China
| | - Tiemei Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, People's Republic of China
| | - Chen Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, People's Republic of China
| | - Gaoqing Xiang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, People's Republic of China
| | - Guotian Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, People's Republic of China
| | - Yan Xu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi, People's Republic of China.
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, People's Republic of China.
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, People's Republic of China.
| |
Collapse
|
14
|
Kumari M, Rai AK, Devanna BN, Singh PK, Kapoor R, Rajashekara H, Prakash G, Sharma V, Sharma TR. Co-transformation mediated stacking of blast resistance genes Pi54 and Pi54rh in rice provides broad spectrum resistance against Magnaporthe oryzae. PLANT CELL REPORTS 2017; 36:1747-1755. [PMID: 28905253 DOI: 10.1007/s00299-017-2189-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Accepted: 07/27/2017] [Indexed: 05/25/2023]
Abstract
This is the first report of stacking two major blast resistance genes in blast susceptible rice variety using co-transformation method to widen the resistance spectrum against different isolates of Magnaporthe oryzae. Single resistance (R-) gene mediated approach for the management of rice blast disease has met with frequent breakdown in resistance response. Besides providing the durable resistance, gene pyramiding or stacking also imparts broad spectrum resistance against plant pathogens, including rice blast. In the present study, we stacked two R-genes; Pi54 and Pi54rh having broad spectrum resistance against multiple isolates of Magnaporthe oryzae (M. oryzae). Both Pi54 and Pi54rh expressed under independent promoters were transferred into the blast susceptible japonica rice Taipei 309 (TP309) using particle gun bombardment method. Functional complementation analysis of stacked transgenic rice lines showed higher level of resistance to a set of highly virulent M. oryzae isolates collected from different rice growing regions. qRT-PCR analysis has shown M. oryzae induced expression of both the R-genes in stacked transgenic lines. The present study also demonstrated the effectiveness of the strategy for rapid single step gene stacking using co-transformation approach to engineer durable resistance against rice blast disease and also this is the first report in which two blast R-genes are stacked together using co-transformation approach. The two-gene-stacked transgenic line developed in this study can be used further to understand the molecular aspects of defense-related pathways vis-a-vis single R-gene containing transgenic lines.
Collapse
Affiliation(s)
- Mandeep Kumari
- ICAR-National Research Centre on Plant Biotechnology, Pusa Campus, New Delhi, India
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Rajasthan, India
| | - Amit Kumar Rai
- ICAR-National Research Centre on Plant Biotechnology, Pusa Campus, New Delhi, India
| | - B N Devanna
- ICAR-National Research Centre on Plant Biotechnology, Pusa Campus, New Delhi, India
| | - Pankaj Kumar Singh
- ICAR-National Research Centre on Plant Biotechnology, Pusa Campus, New Delhi, India
| | - Ritu Kapoor
- ICAR-National Research Centre on Plant Biotechnology, Pusa Campus, New Delhi, India
| | - H Rajashekara
- Crop Protection Section, Vivekananda Institute of Hill Agriculture, Almora, 263 601, Uttarakhand, India
| | - G Prakash
- Division of Plant Pathology, Indian Agricultural Research Institute, New Delhi, 110 012, India
| | - Vinay Sharma
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Rajasthan, India
| | - Tilak Raj Sharma
- National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, India.
| |
Collapse
|