1
|
He L, Li A, Yu P, Qin S, Tan HY, Zou D, Wu H, Wang S. Therapeutic peptides in the treatment of digestive inflammation: Current advances and future prospects. Pharmacol Res 2024; 209:107461. [PMID: 39423954 DOI: 10.1016/j.phrs.2024.107461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 10/06/2024] [Accepted: 10/10/2024] [Indexed: 10/21/2024]
Abstract
Digestive inflammation is a widespread global issue that significantly impacts quality of life. Recent advances have highlighted the unique potential of therapeutic peptides for treating this condition, owing to their specific bioactivity and high specificity. By specifically targeting key proteins involved in the pathological process and modulating biomolecular functions, therapeutic peptides offer a novel and promising approach to managing digestive inflammation. This review explores the development history, pharmacological characteristics, clinical applications, and regulatory mechanisms of therapeutic peptides in treating digestive inflammation. Additionally, the review addresses pharmacokinetics and quality control methods of therapeutic peptides, focusing on challenges such as low bioavailability, poor stability, and difficulties in delivery. The role of modern biotechnologies and nanotechnologies in overcoming these challenges is also examined. Finally, future directions for therapeutic peptides and their potential impact on clinical applications are discussed, with emphasis placed on their significant role in advancing medical and therapeutic practices.
Collapse
Affiliation(s)
- Liangliang He
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research and Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou, China
| | - Aijing Li
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research and Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou, China
| | - Ping Yu
- Department of Pharmacy, Xixi Hospital of Hangzhou, Hangzhou, China
| | - Shumin Qin
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, State Key Laboratory of Traditional Chinese Medicine Syndrome, State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Hor-Yue Tan
- Centre for Chinese Herbal Medicine Drug Development, Hong Kong Baptist University, Hong Kong SAR
| | - Denglang Zou
- Hubei Shizhen Laboratory, Hubei University of Chinese Medicine, Wuhan, China.
| | - Haomeng Wu
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, State Key Laboratory of Traditional Chinese Medicine Syndrome, State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China.
| | - Shuai Wang
- Chinese Medicine Guangdong Laboratory, Hengqin, China; School of Pharmaceutical Sciences, State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China.
| |
Collapse
|
2
|
Rahaman KA, Muresan AR, Min H, Son J, Han HS, Kang MJ, Kwon OS. Simultaneous quantification of TB-500 and its metabolites in in-vitro experiments and rats by UHPLC-Q-Exactive orbitrap MS/MS and their screening by wound healing activities in-vitro. J Chromatogr B Analyt Technol Biomed Life Sci 2024; 1235:124033. [PMID: 38382158 DOI: 10.1016/j.jchromb.2024.124033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 01/08/2024] [Accepted: 01/23/2024] [Indexed: 02/23/2024]
Abstract
BACKGROUND TB-500 (Ac-LKKTETQ), derived from the active site of thymosin β4 (Tβ4), has various biological functions in its unacetylated form, LKKTETQ. These functions include actin binding, dermal wound healing, angiogenesis, and skin repair. The biological effects of TB-500, however, have not been documented. And the analysis of TB-500 and its metabolites have been neither simultaneously quantified nor structurally identified using synthesized authentic standards. METHODS This study was aimed to investigating simultaneous analytical methods of TB-500 and its metabolites in in-vitro and urine samples by using UHPLC-Q-Exactive orbitrap MS, and to comparing the biological activity of its metabolites with the parent TB-500. The metabolism of TB-500 was investigated in human serum, various in-vitro enzyme systems, and urine samples from rats treated with TB-500, and their biological activities measured by cytotoxicity and wound healing experiments were also evaluated in fibroblasts. RESULTS The simultaneous analytical method for TB-500 and its metabolites was developed and validated. The study found that Ac-LK was the primary metabolite with the highest concentration in rats at 0-6 h intervals. Also, the metabolite Ac-LKK was a long-term metabolite of TB-500 detected up to 72 hr. No cytotoxicity of the parent and its metabolites was found. Ac-LKKTE only showed a significant wound healing activity compared to the control. CONCLUSION The study provides a valuable tool for quantifying TB-500 and its metabolites, contributing to the understanding of metabolism and potential therapeutic applications. Our results also suggest that the previously reported wound-healing activity of TB-500 in literature may be due to its metabolite Ac-LKKTE rather than the parent form.
Collapse
Affiliation(s)
- Khandoker Asiqur Rahaman
- Division of Bio-Medical Science & Technology, KIST School, University of Science and Technology, Seoul 02792, Republic of Korea; Doping Control Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea; Center for Biomaterials, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Anca Raluca Muresan
- Division of Bio-Medical Science & Technology, KIST School, University of Science and Technology, Seoul 02792, Republic of Korea; Doping Control Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Hophil Min
- Doping Control Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Junghyun Son
- Doping Control Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Hyung-Seop Han
- Division of Bio-Medical Science & Technology, KIST School, University of Science and Technology, Seoul 02792, Republic of Korea; Center for Biomaterials, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Min-Jung Kang
- Division of Bio-Medical Science & Technology, KIST School, University of Science and Technology, Seoul 02792, Republic of Korea; Center for Advanced Biomolecular Recognition, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Oh-Seung Kwon
- Division of Bio-Medical Science & Technology, KIST School, University of Science and Technology, Seoul 02792, Republic of Korea; Doping Control Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea.
| |
Collapse
|
3
|
González-López NM, Guerra-Acero-Turizo LM, Blanco-Medina I, Barragán-Cárdenas AC, Ramírez-Celis DA, Martínez-Ramírez JA, Fierro-Medina R, García-Castañeda JE, Rivera-Monroy ZJ. In-house standards derived from doping peptides: Enzymatic and serum stability and degradation profile of GHRP and GHRH-related peptides. Biomed Chromatogr 2023; 37:e5741. [PMID: 37688464 DOI: 10.1002/bmc.5741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/15/2023] [Accepted: 08/23/2023] [Indexed: 09/11/2023]
Abstract
Matrix effect and sample pretreatment significantly affect the percentage recovery of peptides in biological matrices, affecting the method robustness and accuracy. To counteract this effect, an internal standard (IS) is used; however, in most cases this is not available, which limits the analytical method. It is important to identify short peptides that can be used as ISs in the quantification of peptides in biological matrices. In this study, doping peptides GHRP-4, GHRP-5, GHRP-6, Sermorelin (1-11), Sermorelin (13-20) and Sermorelin (22-29) were synthesized using solid-phase peptide synthesis. Treatment with human blood, trypsin and chymotrypsin was used to determine the stability of the peptides. Products were evaluated using the high-performance liquid chromatography-diode array detector (HPLC-DAD) method. The analytical methodology and sample pretreatment were effective for the analysis of these molecules. A unique profile related to protein binding and enzymatic stability of each peptide was established. GHRP-4, GHRP-6 and Sermorelin (22-29) can be considered as in-house ISs as they were stable to enzyme and blood treatment and can be used for the quantification of peptides in biological samples. Peptides GHRP-6 and Sermorelin (22-29) were used to analyse a dimeric peptide (26 [F] LfcinB (20-30)2 ) in four different matrices to test these peptides as in-house IS.
Collapse
|
4
|
Rahaman KA, Muresan AR, Hasan ML, Joung YK, Min H, Son J, Kang MJ, Kwon OS. Detection and quantification of the metabolite Ac-Tβ 1-14 in in vitro experiments and urine of rats treated with Ac-Tβ4: A potential biomarker of Ac-Tβ4 for doping tests. Drug Test Anal 2023; 15:1454-1467. [PMID: 37515313 DOI: 10.1002/dta.3552] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/04/2023] [Accepted: 07/05/2023] [Indexed: 07/30/2023]
Abstract
Thymosin β4 (Tβ4) was reported to exert various beneficial bioactivities such as tissue repair, anti-inflammation, and reduced scar formation, and it is listed on the prohibited substances in sports by the World Anti-Doping Agency. However, no metabolism studies of Tβ4 were reported yet. Previously, our lab reported in in vitro experiment that a total of 13 metabolites were found by using multiple enzymes, and six metabolites (Ac-Tβ31-43 , Ac-Tβ17-43 , Ac-Tβ1-11 , Ac-Tβ1-14 , Ac-Tβ1-15 , and Ac-Tβ1-17 ) were confirmed by comparing with the synthetic standards. This study was aimed at identifying new metabolites of Tβ4 leucine aminopeptidase (LAP), human kidney microsomes (HKM), cultured huvec cells, and rats after administration of Tβ4 protein to develop biomarkers for detecting doping drugs in sports. A method for detecting and quantifying Ac-Tβ1-14 was developed and validated using Q-Exactive orbitrap mass spectrometry. The limit of detection (LOD) and limit of quantification (LOQ) of the Ac-Tβ1-14 were 0.19 and 0.58 ng/mL, respectively, and showed a good linearity (r2 = 0.9998). As a result, among the six metabolites above, Ac-Tβ1-14 , as a common metabolite, was found in LAP, HKM, huvec cells exposed to Tβ4, and the urine of rats intraperitoneally treated with 20-mg/kg Tβ4. And the metabolite Ac-Tβ1-14 was quantitatively determined by 48 h in rats, with the highest concentration occurring between 0 and 6 h. Ac-Tβ1-14 was not detected in non-treated control groups, including human blank urine. These results suggest that Ac-Tβ1-14 in urine is a potential biomarker for screening the parent Tβ4 in doping tests.
Collapse
Affiliation(s)
- Khandoker Asiqur Rahaman
- Division of Bio-Medical Science & Technology, KIST School, University of Science and Technology, Seoul, South Korea
- Doping Control Center, Korea Institute of Science and Technology, Seoul, South Korea
| | - Anca Raluca Muresan
- Division of Bio-Medical Science & Technology, KIST School, University of Science and Technology, Seoul, South Korea
- Doping Control Center, Korea Institute of Science and Technology, Seoul, South Korea
| | - Md Lemon Hasan
- Division of Bio-Medical Science & Technology, KIST School, University of Science and Technology, Seoul, South Korea
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, South Korea
| | - Yoon Ki Joung
- Division of Bio-Medical Science & Technology, KIST School, University of Science and Technology, Seoul, South Korea
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, South Korea
| | - Hophil Min
- Doping Control Center, Korea Institute of Science and Technology, Seoul, South Korea
| | - Junghyun Son
- Doping Control Center, Korea Institute of Science and Technology, Seoul, South Korea
| | - Min-Jung Kang
- Division of Bio-Medical Science & Technology, KIST School, University of Science and Technology, Seoul, South Korea
- Center for Advanced Biomolecular Recognition, Korea Institute of Science and Technology, Seoul, South Korea
| | - Oh-Seung Kwon
- Division of Bio-Medical Science & Technology, KIST School, University of Science and Technology, Seoul, South Korea
- Doping Control Center, Korea Institute of Science and Technology, Seoul, South Korea
| |
Collapse
|
5
|
Oda FB, Carvalho FA, Yamamoto PA, de Oliveira JA, Peccinini RG, Zocolo GJ, Ribeiro PRV, de Moraes NV, Dos Santos AG. Metabolism Characterization and Chemical and Plasma Stability of Casearin B and Caseargrewiin F. PLANTA MEDICA 2023; 89:1097-1105. [PMID: 37084791 DOI: 10.1055/a-2078-5920] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Oral preparations of Casearia sylvestris (guacatonga) are used as antacid, analgesic, anti-inflammatory, and antiulcerogenic medicines. The clerodane diterpenes casearin B and caseargrewiin F are major active compounds in vitro and in vivo. The oral bioavailability and metabolism of casearin B and caseargrewiin F were not previously investigated. We aimed to assess the stability of casearin B and caseargrewiin F in physiological conditions and their metabolism in human liver microsomes. The compounds were identified by UHPLC-QTOF-MS/MS and quantified by validated LC-MS methods. The stability of casearin B and caseargrewiin F in physiological conditions was assessed in vitro. Both diterpenes showed a fast degradation (p < 0.05) in simulated gastric fluid. Their metabolism was not mediated by cytochrome P-450 enzymes, but the depletion was inhibited by the esterase inhibitor NaF. Both diterpenes and their dialdehydes showed a octanol/water partition coefficient in the range of 3.6 to 4.0, suggesting high permeability. Metabolism kinetic data were fitted to the Michaelis-Menten profile with KM values of 61.4 and 66.4 µM and Vmax values of 327 and 648 nmol/min/mg of protein for casearin B and caseargrewiin F, respectively. Metabolism parameters in human liver microsomes were extrapolated to predict human hepatic clearance, and suggest that caseargrewiin F and casearin B have a high hepatic extraction ratio. In conclusion, our data suggest that caseargrewiin F and casearin B present low oral bioavailability due to extensive gastric degradation and high hepatic extraction.
Collapse
Affiliation(s)
- Fernando Bombarda Oda
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, São Paulo State University (Unesp), Araraquara, SP, Brazil
| | - Flávio Alexandre Carvalho
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, São Paulo State University (Unesp), Araraquara, SP, Brazil
| | - Priscila Akemi Yamamoto
- Center of Pharmacometrics & Systems Pharmacology, Department of Pharmaceutics, College of Pharmacy, University of Florida, Orlando, FL, USA
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Palo (USP), Ribeirão Preto, SP, Brazil
| | - Jonata Augusto de Oliveira
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, São Paulo State University (Unesp), Araraquara, SP, Brazil
| | - Rosângela Gonçalves Peccinini
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, São Paulo State University (Unesp), Araraquara, SP, Brazil
| | - Guilherme Julião Zocolo
- Embrapa Agroindústria Tropical, Empresa Brasileira de Pesquisa Agropecuária (Embrapa), Fortaleza, CE, Brazil
| | | | - Natália Valadares de Moraes
- Center of Pharmacometrics & Systems Pharmacology, Department of Pharmaceutics, College of Pharmacy, University of Florida, Orlando, FL, USA
| | - André Gonzaga Dos Santos
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, São Paulo State University (Unesp), Araraquara, SP, Brazil
| |
Collapse
|
6
|
Gómez-Guerrero N, González-López N, Zapata-Velásquez JD, Martínez-Ramírez JA, Rivera-Monroy ZJ, García-Castañeda JE. Synthetic Peptides in Doping Control: A Powerful Tool for an Analytical Challenge. ACS OMEGA 2022; 7:38193-38206. [PMID: 36340120 PMCID: PMC9631397 DOI: 10.1021/acsomega.2c05296] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
Peptides are very diverse molecules that can participate in a wide variety of biological processes. In this way, peptides are attractive for doping, since these molecules can activate or trigger biological processes that can improve the sports performance of athletes. Peptide molecules are found in the official World Anti-Doping Agency lists, mainly in sections S2, S4, and S5. In most cases, these molecules have a very short half-life in the body and/or are identical to natural molecules in the body, making it difficult to analyze them as performance-enhancing drugs. This article reviews the role of peptides in doping, with special emphasis on the peptides used as reference materials, the pretreatment of samples in biological matrices, the instrumentation, and the validation of analytical methodologies for the analysis of peptides used in doping. The growing need to characterize and quantify these molecules, especially in complex biological matrices, has generated the need to search for robust strategies that allow for obtaining sensitive and conclusive results. In this sense, strategies such as solid phase peptide synthesis (SPPS), seeking to obtain specific peptides, metabolites, or isotopically labeled analogs, is a key tool for adequate quantification of different peptide molecules in biological matrices. This, together with the use of optimal methodologies for sample pretreatment (e.g., SPE or protein precipitation), and for subsequent analysis by high-resolution techniques (mainly hyphenated LC-HRMS techniques), have become the preferred instrumentation to meet the analytical challenge involved in the analysis of peptides in complex matrices.
Collapse
Affiliation(s)
- Néstor
Alejandro Gómez-Guerrero
- Chemistry
Department, Universidad Nacional de Colombia, Bogotá, Carrera 45 No 26-85,
Building 451, 11321 Bogotá, Colombia
- Doping
Control Laboratory, Ministerio del Deporte,
Bogotá, Carrera
68 No 55-65, 111071 Bogotá, Colombia
| | - Nicolás
Mateo González-López
- Pharmacy
Department, Universidad Nacional de Colombia, Bogotá, Carrera 45 No 26-85,
Building 450, 11321 Bogotá, Colombia
| | - Juan Diego Zapata-Velásquez
- Pharmacy
Department, Universidad Nacional de Colombia, Bogotá, Carrera 45 No 26-85,
Building 450, 11321 Bogotá, Colombia
| | - Jorge Ariel Martínez-Ramírez
- Pharmacy
Department, Universidad Nacional de Colombia, Bogotá, Carrera 45 No 26-85,
Building 450, 11321 Bogotá, Colombia
| | - Zuly Jenny Rivera-Monroy
- Chemistry
Department, Universidad Nacional de Colombia, Bogotá, Carrera 45 No 26-85,
Building 451, 11321 Bogotá, Colombia
| | | |
Collapse
|
7
|
An approach for identifying in silico peptides against authentic metabolites: in vitro characterization of thymosin β4 metabolites. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2022. [DOI: 10.1007/s40005-022-00581-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
8
|
Alonso-Jauregui M, González-Peñas E, López de Cerain A, Vettorazzi A. Genotoxicity of 12 Mycotoxins by the SOS/umu Test: Comparison of Liver and Kidney S9 Fraction. Toxins (Basel) 2022; 14:400. [PMID: 35737061 PMCID: PMC9228656 DOI: 10.3390/toxins14060400] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/02/2022] [Accepted: 06/07/2022] [Indexed: 12/10/2022] Open
Abstract
Liver S9 fraction is usually employed in mutagenicity/genotoxicity in vitro assays, but some genotoxic compounds may need another type of bioactivation. In the present work, an alternative S9 fraction from the kidneys was used for the genotoxicity assessment of 12 mycotoxins with the SOS/umu test. The results were compared with liver S9 fraction, and 2-4 independent experiments were performed with each mycotoxin. The expected results were obtained with positive controls (4-nitroquinoline-N-oxide and 2-aminoanthracene) without metabolic activation or with liver S9, but a potent dose-dependent effect with 4-nitroquinoline-N-oxide and no activity of 2-aminoanthracene with kidney S9 were noticed. Aflatoxin B1 was genotoxic with metabolic activation, the effect being greater with liver S9. Sterigmatocystin was clearly genotoxic with liver S9 but equivocal with kidney S9. Ochratoxin A, zearalenone and fumonisin B1 were negative in all conditions. Trichothecenes were negative, except for nivalenol, 3-acetyldeoxynivalenol, 15-acetyldeoxynivalenol, T-2 and HT-2 toxins, which showed equivocal results with kidney S9 because a clear dose-response effect was not observed. Most of the mycotoxins have been assessed with kidney S9 and the SOS/umu test for the first time here. The results with the positive controls and the mycotoxins confirm that the organ used for the S9 fraction preparation has an influence on the genotoxic activity of some compounds.
Collapse
Affiliation(s)
- Maria Alonso-Jauregui
- MITOX Research Group, Department of Pharmacology and Toxicology, School of Pharmacy and Nutrition, Universidad de Navarra, 31008 Pamplona, Spain; (M.A.-J.); (A.L.d.C.)
| | - Elena González-Peñas
- MITOX Research Group, Department of Pharmaceutical Technology and Chemistry, School of Pharmacy and Nutrition, Universidad de Navarra, 31008 Pamplona, Spain;
| | - Adela López de Cerain
- MITOX Research Group, Department of Pharmacology and Toxicology, School of Pharmacy and Nutrition, Universidad de Navarra, 31008 Pamplona, Spain; (M.A.-J.); (A.L.d.C.)
| | - Ariane Vettorazzi
- MITOX Research Group, Department of Pharmacology and Toxicology, School of Pharmacy and Nutrition, Universidad de Navarra, 31008 Pamplona, Spain; (M.A.-J.); (A.L.d.C.)
| |
Collapse
|
9
|
Investigations into the In Vitro Metabolism of hGH and IGF-I Employing Stable-Isotope-Labelled Drugs and Monitoring Diagnostic Immonium Ions by High-Resolution/High-Accuracy Mass Spectrometry. Metabolites 2022; 12:metabo12020146. [PMID: 35208220 PMCID: PMC8877552 DOI: 10.3390/metabo12020146] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 01/28/2022] [Accepted: 01/30/2022] [Indexed: 12/04/2022] Open
Abstract
Studying the metabolism of prohibited substances is an essential element in anti-doping research in order to facilitate and improve detectability. Whilst pharmacokinetic studies on healthy volunteers are valuable, they are often difficult, not least due to safety reasons and ethical constraints, especially concerning peptidic substances, which must be administered parenterally. Hence, there is a growing need for suitable in vitro models and sophisticated analytical strategies to investigate the metabolism of protein- and peptide-derived drugs. These include human growth hormone (hGH) and its main mediator insulin-like growth factor-I (IGF-I), both prohibited in professional sports for their anabolic and lipolytic effects, while challenging in their detection, as they occur naturally in the human body.Within this study, the in vitro metabolism of hGH and IGF-I was investigated using a stable-isotope-labelled reporter ion screening strategy (IRIS). A combination of liquid chromatography, high-resolution mass spectrometry, and characteristic immonium ions generated by internal dissociation of the stable-isotope-labelled peptidic metabolites enabled the detection of specific fragments. Several degradation products for hGH and IGF-I were identified within this study. These metabolites, potentially even indicative for subcutaneous administration of the drugs, could serve as promising targets for the detection of hGH and IGF-I misuse in future anti-doping applications.
Collapse
|
10
|
Thevis M, Piper T, Thomas A. Recent advances in identifying and utilizing metabolites of selected doping agents in human sports drug testing. J Pharm Biomed Anal 2021; 205:114312. [PMID: 34391136 DOI: 10.1016/j.jpba.2021.114312] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 08/03/2021] [Accepted: 08/05/2021] [Indexed: 12/29/2022]
Abstract
Probing for evidence of the administration of prohibited therapeutics, drugs and/or drug candidates as well as the use of methods of doping in doping control samples is a central assignment of anti-doping laboratories. In order to accomplish the desired analytical sensitivity, retrospectivity, and comprehensiveness, a considerable portion of anti-doping research has been invested into studying metabolic biotransformation and elimination profiles of doping agents. As these doping agents include lower molecular mass drugs such as e.g. stimulants and anabolic androgenic steroids, some of which further necessitate the differentiation of their natural/endogenous or xenobiotic origin, but also higher molecular mass substances such as e.g. insulins, growth hormone, or siRNA/anti-sense oligonucleotides, a variety of different strategies towards the identification of employable and informative metabolites have been developed. In this review, approaches supporting the identification, characterization, and implementation of metabolites exemplified by means of selected doping agents into routine doping controls are presented, and challenges as well as solutions reported and published between 2010 and 2020 are discussed.
Collapse
Affiliation(s)
- Mario Thevis
- Center for Preventive Doping Research - Institute of Biochemistry, German Sport University Cologne, Am Sportpark Müngersdorf 6, 50933, Cologne, Germany; European Monitoring Center for Emerging Doping Agents (EuMoCEDA), Cologne, Bonn, Germany.
| | - Thomas Piper
- Center for Preventive Doping Research - Institute of Biochemistry, German Sport University Cologne, Am Sportpark Müngersdorf 6, 50933, Cologne, Germany
| | - Andreas Thomas
- Center for Preventive Doping Research - Institute of Biochemistry, German Sport University Cologne, Am Sportpark Müngersdorf 6, 50933, Cologne, Germany
| |
Collapse
|
11
|
Parajuli P, Sable R, Shrestha L, Dahal A, Gauthier T, Taneja V, Jois S. Modulation of co-stimulatory signal from CD2-CD58 proteins by a grafted peptide. Chem Biol Drug Des 2021; 97:607-627. [PMID: 32946175 PMCID: PMC8717467 DOI: 10.1111/cbdd.13797] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 06/23/2020] [Accepted: 09/09/2020] [Indexed: 12/12/2022]
Abstract
Peptides were designed to inhibit the protein-protein interaction of CD2 and CD58 to modulate the immune response. This work involved the design and synthesis of eight different peptides by replacing each amino acid residue in peptide 6 with alanine as well as grafting the peptide to the sunflower trypsin-inhibitor framework. From the alanine scanning studies, mutation at position 2 of the peptide was shown to result in increased potency to inhibit cell adhesion interactions. The most potent peptide from the alanine scanning was further studied for its detailed three-dimensional structure and binding to CD58 protein using surface plasmon resonance and flow cytometry. This peptide was used to graft to the sunflower trypsin inhibitor to improve the stability of the peptide. The grafted peptide, SFTI-a1, was further studied for its potency as well as its thermal, chemical, and enzymatic stability. The grafted peptide exhibited improved activity compared to our previously grafted peptide and was stable against thermal and enzymatic degradation.
Collapse
Affiliation(s)
- Pravin Parajuli
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe LA 71201 USA
| | - Rushikesh Sable
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe LA 71201 USA
| | - Leeza Shrestha
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe LA 71201 USA
| | - Achyut Dahal
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe LA 71201 USA
| | - Ted Gauthier
- Biotechnology Laboratory, LSU AgCenter, Louisiana State University, Baton Rouge, LA 70803 USA
| | - Veena Taneja
- Department of Immunology, Mayo Clinic, Rochester, Minnesota 55905, USA
| | - Seetharama Jois
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe LA 71201 USA
| |
Collapse
|
12
|
Mongongu C, Coudoré F, Domergue V, Ericsson M, Buisson C, Marchand A. Detection of LongR 3 -IGF-I, Des(1-3)-IGF-I, and R 3 -IGF-I using immunopurification and high resolution mass spectrometry for antidoping purposes. Drug Test Anal 2021; 13:1256-1269. [PMID: 33587816 DOI: 10.1002/dta.3016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/09/2021] [Accepted: 02/10/2021] [Indexed: 12/21/2022]
Abstract
Insulin-like growth factor-I (IGF-I) and its analogs LongR3 -IGF-I, Des(1-3)-IGF-I, and R3 -IGF-I are prohibited substances in sport. Although they were never approved for use in humans, they are readily available as black market products for bodybuilding and can be used to enhance physical performance. This study's aims were to validate a fast and sensitive detection method for IGF-I analogs and to evaluate their detectability after intramuscular administration in rats. The sample preparation consisted of an immunopurification on MSIA™ microcolumns using a polyclonal anti-human-IGF-I antibody. The target substances were then directly analyzed by nano-liquid chromatography coupled with high-resolution mass spectrometry. Abundant signs of lower quality, oxidized peptide forms were found in black market products, justifying the need to monitor at least both the native and mono-oxidized forms. The analytical performance of this method (linearity, carry over, detection limits, precision, specificity, recovery, and matrix effect) was studied by spiking the analogs into human serum. Following a single intramuscular administration (100 μg/kg) in rats, detection was evaluated up to 36 h after injection. While unchanged Des(1-3)-IGF-I and R3 -IGF-I were detected until 24 h after administration, LongR3 -IGF-I disappeared rapidly after 4 h. Des(1)-LongR3 -IGF-I, a new N-terminal Long-R3 -IGF-I degradation product, was detected in addition to Des(1-10)-LongR3 -IGF-I and Des(1-11)-LongR3- IGF-I: the latter was detected up to 16 h. The same products were found after in vitro incubation of the analogs in human whole blood, suggesting that observations in rats may be extrapolated to humans and that the validated method may be applicable to antidoping testing.
Collapse
Affiliation(s)
- Cynthia Mongongu
- AFLD-Agence Française de Lutte contre le Dopage, Département des Analyses, Châtenay-Malabry, France
| | - François Coudoré
- Laboratoire de Neuropharmacologie, INSERM UMRS 1178, Université Paris-Saclay, Châtenay-Malabry, France
| | - Valérie Domergue
- AnimEx Châtenay-Malabry, Plateforme AnimEx IPSIT, Faculté de Pharmacie-Université Paris-Saclay, Châtenay-Malabry, France
| | - Magnus Ericsson
- AFLD-Agence Française de Lutte contre le Dopage, Département des Analyses, Châtenay-Malabry, France
| | - Corinne Buisson
- AFLD-Agence Française de Lutte contre le Dopage, Département des Analyses, Châtenay-Malabry, France
| | - Alexandre Marchand
- AFLD-Agence Française de Lutte contre le Dopage, Département des Analyses, Châtenay-Malabry, France
| |
Collapse
|
13
|
Lange T, Thomas A, Görgens C, Bidlingmaier M, Schilbach K, Fichant E, Delahaut P, Thevis M. Comprehensive insights into the formation of metabolites of the ghrelin mimetics capromorelin, macimorelin and tabimorelin as potential markers for doping control purposes. Biomed Chromatogr 2021; 35:e5075. [PMID: 33458843 DOI: 10.1002/bmc.5075] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 01/11/2021] [Accepted: 01/14/2021] [Indexed: 12/25/2022]
Abstract
Analytical methods to determine the potential misuse of the ghrelin mimetics capromorelin (CP-424,391), macimorelin (macrilen, EP-01572) and tabimorelin (NN703) in sports were developed. Therefore, different extraction strategies, i.e. solid-phase extraction, protein precipitation, as well as a "dilute-and-inject" approach, from urine and EDTA-plasma were assessed and comprehensive in vitro/in vivo experiments were conducted, enabling the identification of reliable target analytes by means of high resolution mass spectrometry. The drugs' biotransformation led to the preliminary identification of 51 metabolites of capromorelin, 12 metabolites of macimorelin and 13 metabolites of tabimorelin. Seven major metabolites detected in rat urine samples collected post-administration of 0.5-1.0 mg of a single oral dose underwent in-depth characterization, facilitating their implementation into future confirmatory test methods. In particular, two macimorelin metabolites exhibiting considerable abundances in post-administration rat urine samples were detected, which might contribute to an improved sensitivity, specificity, and detection window in case of human sports drug testing programs. Further, the intact drugs were implemented into World Anti-Doping Agency-compliant initial testing (limits of detection 0.02-0.60 ng/ml) and confirmation procedures (limits of identification 0.18-0.89 ng/ml) for human urine and blood matrices. The obtained results allow extension of the test spectrum of doping agents in multitarget screening assays for growth hormone-releasing factors from human urine.
Collapse
Affiliation(s)
- Tobias Lange
- Center for Preventive Doping Research/Institute of Biochemistry, German Sport University Cologne, Am Sportpark Müngersdorf 6, Cologne, 50933, Germany
| | - Andreas Thomas
- Center for Preventive Doping Research/Institute of Biochemistry, German Sport University Cologne, Am Sportpark Müngersdorf 6, Cologne, 50933, Germany
| | - Christian Görgens
- Center for Preventive Doping Research/Institute of Biochemistry, German Sport University Cologne, Am Sportpark Müngersdorf 6, Cologne, 50933, Germany
| | - Martin Bidlingmaier
- Endocrine Laboratory, Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Ziemssenstraße 1, Munich, 80336, Germany
| | - Katharina Schilbach
- Endocrine Laboratory, Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Ziemssenstraße 1, Munich, 80336, Germany
| | - Eric Fichant
- Département Santé, CER Groupe, Rue du Point du Jour 8, Marloie, 6900, Belgium
| | - Philippe Delahaut
- Département Santé, CER Groupe, Rue du Point du Jour 8, Marloie, 6900, Belgium
| | - Mario Thevis
- Center for Preventive Doping Research/Institute of Biochemistry, German Sport University Cologne, Am Sportpark Müngersdorf 6, Cologne, 50933, Germany.,European Monitoring Center for Emerging Doping Agents, Am Sportpark Müngersdorf 6, Cologne, 50933, Germany
| |
Collapse
|
14
|
Jyrkäs J, Tolonen A. Hepatic in vitro metabolism of peptides; Comparison of human liver S9, hepatocytes and Upcyte hepatocytes with cyclosporine A, leuprorelin, desmopressin and cetrorelix as model compounds. J Pharm Biomed Anal 2021; 196:113921. [PMID: 33548873 DOI: 10.1016/j.jpba.2021.113921] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 01/18/2021] [Accepted: 01/19/2021] [Indexed: 11/25/2022]
Abstract
The number of approved peptide therapeutics has increased significantly in recent years. Peptide therapeutics have many advances over small molecule drugs, such as higher affinity to target and lower toxicity profiles. Although peptide-like drugs are mainly metabolized/catabolized in the body for smaller peptides and amino acids, metabolite identification still has an essential part of in their development, especially if their structure contains modified amino acids, and also to identify the metabolic soft spots enabling modification to more stable sequence. The use of human derived in vitro systems is an important tool when investigating metabolism of peptide drugs, and comparison of results by various hepatic systems was investigated here. Peptides were incubated in several different in vitro human liver-derived subcellular and cellular incubation systems, i.e. liver S9 fraction, suspended cryo-preserved human primary hepatocytes and plated Upcyte hepatocytes. Samples were collected at different time points and analysed by UPLC/HR-MS-method developed for the purpose. Both substrate disappearance and metabolite formation were monitored, and the systems were compared. S9 fraction formed the highest number of metabolites for leuprorelin and cetrorelix, while for desmopressin and cyclosporin, primary hepatocytes and liver S9 produced similar metabolite profiles. Interestingly, not only cyclosporin, but also leuprorelin and cetrorelix showed metabolites whose formation was CYP (NADPH) dependent in liver S9. For leuprorelin and cetrorelix, the metabolites that showed NADPH dependency with liver S9, were not detected with hepatocytes, even though for leuprorelin these reactions played a major role in liver S9. The hydrolytic metabolic reactions were very similar between liver S9 and hepatocytes, i.e. the metabolite profiles in hepatocytes matched better with liver S9 profiles without NADPH, which may be caused by cell uptake rate limitation with hepatocytes, or then hydrolytic processes are more stressed in peptide metabolism with hepatocytes, in comparison to CYP-mediated processes.
Collapse
Affiliation(s)
- Juha Jyrkäs
- Admescope Ltd, Typpitie 1, 90620, Oulu, Finland; Research Unit of Sustainable Chemistry, Faculty of Technology, University of Oulu, P.O. Box 3000, 90014, Oulu, Finland.
| | - Ari Tolonen
- Admescope Ltd, Typpitie 1, 90620, Oulu, Finland
| |
Collapse
|
15
|
Judák P, Esposito S, Coppieters G, Van Eenoo P, Deventer K. Doping control analysis of small peptides: A decade of progress. J Chromatogr B Analyt Technol Biomed Life Sci 2021; 1173:122551. [PMID: 33848801 DOI: 10.1016/j.jchromb.2021.122551] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 01/08/2021] [Accepted: 01/10/2021] [Indexed: 02/06/2023]
Abstract
Small peptides are handled in the field of sports drug testing analysis as a separate group doping substances. It is a diverse group, which includes but is not limited to growth hormone releasing-factors and gonadotropin-releasing hormone analogues. Significant progress has been achieved during the past decade in the doping control analysis of these peptides. In this article, achievements in the application of liquid chromatography-mass spectrometry-based methodologies are reviewed. To meet the augmenting demands for analyzing an increasing number of samples for the presence of an increasing number of prohibited small peptides, testing methods have been drastically simplified, whilst their performance level remained constant. High-resolution mass spectrometers have been installed in routine laboratories and became the preferred detection technique. The discovery and implementation of metabolites/catabolites in testing methods led to extended detection windows of some peptides, thus, contributed to more efficient testing in the anti-doping community.
Collapse
Affiliation(s)
- Péter Judák
- Department of Diagnostic Sciences, Doping Control Laboratory, Ghent University, Zwijnaarde, Belgium.
| | - Simone Esposito
- ADME/DMPK Department, Drug Discovery Division, IRBM S.p.A, Pomezia, Rome, Italy
| | - Gilles Coppieters
- Department of Diagnostic Sciences, Doping Control Laboratory, Ghent University, Zwijnaarde, Belgium
| | - Peter Van Eenoo
- Department of Diagnostic Sciences, Doping Control Laboratory, Ghent University, Zwijnaarde, Belgium
| | - Koen Deventer
- Department of Diagnostic Sciences, Doping Control Laboratory, Ghent University, Zwijnaarde, Belgium
| |
Collapse
|
16
|
Shrestha L, Singh SS, Parajuli P, Dahal A, Mattheolabakis G, Meyer S, Bhattacharjee J, Jois SD. In vivo studies of a peptidomimetic that targets EGFR dimerization in NSCLC. J Cancer 2020; 11:5982-5999. [PMID: 32922539 PMCID: PMC7477407 DOI: 10.7150/jca.46320] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 07/17/2020] [Indexed: 12/25/2022] Open
Abstract
Studies related to lung cancer have shown a link between human epidermal growth factor receptor-2 (HER2) expression and poor prognosis in patients with non-small cell lung cancer (NSCLC). HER2 overexpression has been observed in 3-38% of NSCLC, while strong HER2 protein overexpression is found in 2.5% of NSCLC. However, HER2 dimerization is important in lung cancer, including EGFR mutated NSCLC. Since HER2 dimerization leads to cell proliferation, targeting the dimerization of HER2 will have a significant impact on cancer therapies. A peptidomimetic has been designed that can be used as a therapeutic agent for a subset of NSCLC patients overexpressing HER2 or possessing HER2 as well as EGFR mutation. A cyclic peptidomimetic (18) has been designed to inhibit protein-protein interactions of HER2 with its dimerization partners EGFR and HER3. Compound 18 exhibited antiproliferative activity in HER2-positive NSCLC cell lines at nanomolar concentrations. Western blot analysis showed that 18 inhibited phosphorylation of HER2 and Akt in vitro and in vivo. Stability studies of 18 at various temperature and pH (pH 1 and pH 7.6), and in the presence of liver microsomes indicated that 18 was stable against thermal and chemical degradation. Pharmacokinetic parameters were evaluated in nude mice by administrating single doses of 4 mg/kg and 6 mg/kg of 18 via IV. The anticancer activity of 18 was evaluated using an experimental metastasis lung cancer model in mice. Compound 18 suppressed the tumor growth in mice when compared to control. A proximity ligation assay further proved that 18 inhibits HER2:HER3 and EGFR: HER2 dimerization. Overall, these results suggest that 18 can be a potential treatment for HER2-dimerization related NSCLC.
Collapse
Affiliation(s)
- Leeza Shrestha
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA 71201
| | - Sitanshu S. Singh
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA 71201
| | - Pravin Parajuli
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA 71201
| | - Achyut Dahal
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA 71201
| | - George Mattheolabakis
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA 71201
| | - Sharon Meyer
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA 71201
| | - Joydeep Bhattacharjee
- Biology Program, School of Sciences, University of Louisiana, Monroe, Monroe, LA 71029
| | - Seetharama D. Jois
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA 71201
| |
Collapse
|
17
|
Yu X, Fridman A, Bagchi A, Xu S, Kwasnjuk KA, Lu P, Cancilla MT. Metabolite Identification of Therapeutic Peptides and Proteins by Top-down Differential Mass Spectrometry and Metabolite Database Matching. Anal Chem 2020; 92:8298-8305. [PMID: 32402188 DOI: 10.1021/acs.analchem.0c00652] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
As metabolism impacts the efficacy and safety of therapeutic peptides and proteins (TPPs), understanding of the metabolic fate of TPPs is critical for their preclinical and clinical development. Despite the continued increase of new TPPs entering clinical trials, the metabolite identification (MetID) of these emerging modalities remains challenging. In the present study, we report an analytical workflow for MetID of TPPs. Using insulin detemir as an example, we demonstrated that top-down differential mass spectrometry (dMS) was able to distinguish and discover metabolites from complex biological matrices. For structural interpretation, we developed an algorithm to generate a complete and nonredundant theoretical metabolite database for a TPP of any topology (e.g., branched, multicyclic, etc.). Candidate structures of a metabolite were obtained by matching the monoisotopic mass of a dMS feature to the theoretical metabolite database. Finally, the MS/MS sequence tags enabled unambiguous characterization of metabolite structures when isobaric/isomeric candidates were present. This platform is widely applicable to TPPs with complex structures and will ultimately guide the structural optimization of TPPs in pharmaceutical development.
Collapse
|
18
|
Lange T, Thomas A, Walpurgis K, Thevis M. Fully automated dried blood spot sample preparation enables the detection of lower molecular mass peptide and non-peptide doping agents by means of LC-HRMS. Anal Bioanal Chem 2020; 412:3765-3777. [PMID: 32300840 PMCID: PMC7220872 DOI: 10.1007/s00216-020-02634-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 03/26/2020] [Accepted: 03/31/2020] [Indexed: 12/19/2022]
Abstract
The added value of dried blood spot (DBS) samples complementing the information obtained from commonly routine doping control matrices is continuously increasing in sports drug testing. In this project, a robotic-assisted non-destructive hematocrit measurement from dried blood spots by near-infrared spectroscopy followed by a fully automated sample preparation including strong cation exchange solid-phase extraction and evaporation enabled the detection of 46 lower molecular mass (< 2 kDa) peptide and non-peptide drugs and drug candidates by means of LC-HRMS. The target analytes included, amongst others, agonists of the gonadotropin-releasing hormone receptor, the ghrelin receptor, the human growth hormone receptor, and the antidiuretic hormone receptor. Furthermore, several glycine derivatives of growth hormone–releasing peptides (GHRPs), arguably designed to undermine current anti-doping testing approaches, were implemented to the presented detection method. The initial testing assay was validated according to the World Anti-Doping Agency guidelines with estimated LODs between 0.5 and 20 ng/mL. As a proof of concept, authentic post-administration specimens containing GHRP-2 and GHRP-6 were successfully analyzed. Furthermore, DBS obtained from a sampling device operating with microneedles for blood collection from the upper arm were analyzed and the matrix was cross-validated for selected parameters. The introduction of the hematocrit measurement method can be of great value for doping analysis as it allows for quantitative DBS applications by managing the well-recognized “hematocrit effect.” Graphical abstract ![]()
Collapse
Affiliation(s)
- Tobias Lange
- Center for Preventive Doping Research - Institute of Biochemistry, German Sport University Cologne, Am Sportpark Müngersdorf 6, 50933, Cologne, Germany
| | - Andreas Thomas
- Center for Preventive Doping Research - Institute of Biochemistry, German Sport University Cologne, Am Sportpark Müngersdorf 6, 50933, Cologne, Germany
| | - Katja Walpurgis
- Center for Preventive Doping Research - Institute of Biochemistry, German Sport University Cologne, Am Sportpark Müngersdorf 6, 50933, Cologne, Germany
| | - Mario Thevis
- Center for Preventive Doping Research - Institute of Biochemistry, German Sport University Cologne, Am Sportpark Müngersdorf 6, 50933, Cologne, Germany.
- European Monitoring Center for Emerging Doping Agents (EuMoCEDA), Cologne/Bonn, Germany.
| |
Collapse
|
19
|
Bechaux J, Gatellier P, Le Page JF, Drillet Y, Sante-Lhoutellier V. A comprehensive review of bioactive peptides obtained from animal byproducts and their applications. Food Funct 2020; 10:6244-6266. [PMID: 31577308 DOI: 10.1039/c9fo01546a] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Livestock generates high quantities of residues, which has become a major socioeconomic issue for the meat industry. This review focuses on the identification of bioactive peptides (BPs) in animal byproducts and meat wastes. Firstly, the main bioactivities that peptides can have will be described and the methods for their evaluation will be discussed. Secondly, the various origins of these BPs will be studied. Then, the techniques and tools for the generation of BPs will be detailed in order to discuss, in the final part, how peptides could be used and assimilated. BPs possess diverse biological activities and can be strategic candidates for substituting synthetic molecules. In silico potentiality studies are a helpful tool to understand and predict BPs released from proteins and their potential activities. However, in vitro validation is often required. Although BP use is compelled by strict regulations in relation to the field of application, they are also limited by their low bioavailability and bioaccessibility. Therefore, it is important to test peptide stability during gastrointestinal digestion. Protective strategies have been discussed since their use could improve the stability and effectiveness of BPs.
Collapse
Affiliation(s)
- Julia Bechaux
- INRA, UR 370, Qualité des Produits Animaux (QuaPA), Site de Theix, 63122, Saint-Genès Champanelle, France.
| | | | | | | | | |
Collapse
|
20
|
Bollenbach A, Gambaryan S, Mindukshev I, Pich A, Tsikas D. GC-MS and LC-MS/MS pilot studies on the guanidine (N G)-dimethylation in native, asymmetrically and symmetrically N G-dimethylated arginine-vasopressin peptides and proteins in human red blood cells. J Chromatogr B Analyt Technol Biomed Life Sci 2020; 1141:122024. [PMID: 32062367 DOI: 10.1016/j.jchromb.2020.122024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 02/05/2020] [Accepted: 02/06/2020] [Indexed: 12/16/2022]
Abstract
Protein-arginine methyltransferases catalyze the methylation of the guanidine (NG) group of proteinic L-arginine (Arg) to produce monomethyl and dimethylarginine proteins. Their proteolysis releases the free amino acids monomethylarginine (MMA), symmetric dimethylarginine (SDMA) and asymmetric dimethylarginine (ADMA), respectively. MMA, SDMA and ADMA are inhibitors of the nitric oxide synthase (NOS) activity. High circulating and low urinary concentrations of ADMA and SDMA are considered risk factors in the cardiovascular and renal systems, mainly due to their inhibitory action on NOS activity. Identity, biological activity and concentration of NG-methylated proteins are largely unknown. The present study addressed these issues by using GC-MS and LC-MS/MS approaches. GC-MS was used to quantify free ADMA released by classical HCl-catalyzed hydrolysis of three synthetic Arg-vasopressin (V) peptides and of unknown endogenous NG-dimethylated proteins. The cyclic (c) disulfide forms of Arg-vasopressin analogs, i.e., Arg-vasopressin (cV-Arg-Gly-NH2), asymmetrically NG-dimethylated vasopressin (cV-ADMA-Gly-NH2) and symmetrically NG-dimethylated vasopressin (cV-SDMA-Gly-NH2) were used as model peptides in quantitative GC-MS analyses of ADMA, SDMA and other expected amino acids from the hydrolyzed Arg-vasopressin analogs. cV-ADMA-Gly-NH2 and cV-SDMA-Gly-NH2 were discriminated from cV-Arg-Gly-NH2 by LC-MS and LC-MS/MS, yet they were indistinguishable from each other. The same applies to the respective open (o) reduced and di-S-acetamide forms of oV-ADMA-Gly-NH2, oV-SDMA-Gly-NH2 and oV-Arg-Gly-NH2. Our LC-MS and LC-MS/MS studies suggest that the Arg-vasopressin analogs form [(M-H)]+ and [(M-H)+H]+ in the positive ESI mode and undergo in part conversion of their terminal Gly-NH2 (NH2, 16 Da) group to Gly-OH (OH, 17 Da). The product ion mass spectra of the di-S-acetamide forms are complex and contain several intense mass fragments differing by 1 Da. cV-ADMA-Gly-NH2 and cV-SDMA-Gly-NH2 induced platelet aggregation in platelet-rich human plasma with moderately different initial velocity and maximal aggregation rates compared to cV-Arg-Gly-NH2. Previous studies showed that human red blood cells are rich in large (>50 kDa) ADMA-containing proteins of unknown identity. Our LC-MS/MS proteomic study identified several membrane and cytosolic erythrocytic NG-dimethylated proteins, including spectrin-α (280 kDa), spectrin-β (247 kDa) and protein 4.1 (80 kDa). Being responsible for the stability of the erythrocyte membrane, the newly identified main targets for NG-dimethylation in human erythrocytes should be given a closer look in erythrocytic diseases like hereditary spherocytosis.
Collapse
Affiliation(s)
- Alexander Bollenbach
- Institute of Toxicology and Core Unit Proteomics, Hannover Medical School, 30623 Hannover, Germany
| | - Stepan Gambaryan
- Sechenov Institute of Evolutionary Physiology and Biochemistry Russian Academy of Sciences, St. Petersburg 194223, Russia
| | - Igor Mindukshev
- Sechenov Institute of Evolutionary Physiology and Biochemistry Russian Academy of Sciences, St. Petersburg 194223, Russia
| | - Andreas Pich
- Institute of Toxicology and Core Unit Proteomics, Hannover Medical School, 30623 Hannover, Germany
| | - Dimitrios Tsikas
- Institute of Toxicology and Core Unit Proteomics, Hannover Medical School, 30623 Hannover, Germany.
| |
Collapse
|
21
|
Thevis M, Walpurgis K, Thomas A. Analytical Approaches in Human Sports Drug Testing: Recent Advances, Challenges, and Solutions. Anal Chem 2019; 92:506-523. [DOI: 10.1021/acs.analchem.9b04639] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Mario Thevis
- Center for Preventive Doping Research, Institute of Biochemistry, German Sport University Cologne, Am Sportpark Müngersdorf 6, Cologne 50933, Germany
- European Monitoring Center for Emerging Doping Agents (EuMoCEDA), Cologne 50933, Germany
| | - Katja Walpurgis
- Center for Preventive Doping Research, Institute of Biochemistry, German Sport University Cologne, Am Sportpark Müngersdorf 6, Cologne 50933, Germany
| | - Andreas Thomas
- Center for Preventive Doping Research, Institute of Biochemistry, German Sport University Cologne, Am Sportpark Müngersdorf 6, Cologne 50933, Germany
| |
Collapse
|
22
|
The In Vitro Biotransformation of the Fusion Protein Tetranectin-Apolipoprotein A1. Sci Rep 2019; 9:4074. [PMID: 30858459 PMCID: PMC6411889 DOI: 10.1038/s41598-019-40542-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 02/19/2019] [Indexed: 01/06/2023] Open
Abstract
As more and more protein biotherapeutics enter the drug discovery pipelines, there is an increasing interest in tools for mechanistic drug metabolism investigations of biologics in order to identify and prioritize the most promising candidates. Understanding or even predicting the in vivo clearance of biologics and to support translational pharmacokinetic modeling activities is essential, however there is a lack of effective and validated in vitro cellular tools. Although different mechanisms have to be adressed in the context of biologics disposition, the scope is not comparable to the nowadays widely established tools for early characterization of small molecule disposition. Here, we describe a biotransformation study of the fusion protein tetranectin apolipoprotein A1 by cellular systems. The in vivo biotransformation of tetranectin apolipoprotein A1 has been described previously, and the same major biotransformation product could also be detected in vitro, by a targeted and highly sensitive detection method based on chymotrypsin digest. In addition, the protease responsible for the formation of this biotransformation product could be elucidated to be DPP4. To our knowledge, this is one of the first reports of an in vitro biotransformation study by cells of a therapeutic protein.
Collapse
|
23
|
Dai G, Wang D, Dong H. Effects of recombinant human growth hormone on protein malnutrition and IGF-1 and IL-2 gene expression levels in chronic nephrotic syndrome. Exp Ther Med 2018; 15:4167-4172. [PMID: 29725365 PMCID: PMC5920232 DOI: 10.3892/etm.2018.5953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 12/11/2017] [Indexed: 11/05/2022] Open
Abstract
The aim of the study was to investigate the effects of recombinant human growth hormone on protein malnutrition and insulin-like growth factor-1 (IGF-1) and interleukin-2 (IL-2) gene expressions in chronic nephrotic syndrome. Eighty patients with chronic nephrotic syndrome were admitted to our hospital. The patients were included in the study period from January 2015 to December 2016 and were divided into two groups (40 cases in each group) according to the random number method. All the patients enrolled received symptomatic and supportive treatment. The observation group was injected subcutaneously with recombinant human growth hormone, while the control group was treated with Shenyankangfu tablets. The recovery time of the clinical symptoms, change in serum protein, caloric intake and protein metabolism after intervention were compared between the two groups. Changes in serum cystatin C, IGF-1 and IL-2 before intervention, and at 1 week, 1 month and 3 months after intervention were detected, and the adverse reactions in the two groups were observed during the treatment. After intervention, the improvement time of proteinuria, hypoproteinemia, edema and hyperlipidemia in the observation group was significantly shorter than that in the control group (P<0.05). The expression of transferrin, pre-albumin, albumin and total protein in the observation group was significantly superior increased compared to those in the observation group prior to intervention and the control group after intervention (P<0.05). In addition the caloric intake, protein intake and urea nitrogen survival rate in the observation group were significantly superior to those in the observation group prior to intervention and the control group after intervention (P<0.05). At 1 week, 1 month and 3 months after intervention, the levels of serum cystatin C, IGF-1 and IL-2 in the observation group were markedly obviously lower than those in the control group during the same period (P<0.05). The total proportion of allergy, systemic pruritus, nausea and vomiting, abdominal distension and abdominal pain in the observation group was obviously lower than that in the control group (P<0.05). Compared with the traditional Chinese medicine Shenyankangfu tablets applied in the control group, the recombinant human growth hormone used for patients with chronic nephrotic syndrome can improve the clinical symptoms more quickly, regulate the protein metabolism and reduce the inflammatory response in the body, which also has fewer adverse reactions and higher safety.
Collapse
Affiliation(s)
- Guang Dai
- Department of Nephrology, Zhumadian Central Hospital, Zhumadian, Henan 463000, P.R. China
| | - Donghai Wang
- Department of Nephrology, Zhumadian Central Hospital, Zhumadian, Henan 463000, P.R. China
| | - Hua Dong
- Department of Nephrology, The Affiliated Hospital of Binzhou Medical College, Binzhou, Shandong 256603, P.R. China
| |
Collapse
|
24
|
Introduction to the HUPO 2015 Special Issue. J Proteomics 2018; 149:1-2. [PMID: 27776693 DOI: 10.1016/j.jprot.2016.09.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
25
|
Thevis M, Kuuranne T, Geyer H. Annual banned-substance review: Analytical approaches in human sports drug testing. Drug Test Anal 2017; 10:9-27. [DOI: 10.1002/dta.2336] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 10/30/2017] [Indexed: 12/17/2022]
Affiliation(s)
- Mario Thevis
- Center for Preventive Doping Research - Institute of Biochemistry; German Sport University Cologne; Germany
- European Monitoring Center for Emerging Doping Agents; Cologne Germany
| | - Tiia Kuuranne
- Swiss Laboratory for Doping Analyses; University Center of Legal Medicine, Genève and Lausanne, Centre Hospitalier Universitaire Vaudois and University of Lausanne; Epalinges Switzerland
| | - Hans Geyer
- Center for Preventive Doping Research - Institute of Biochemistry; German Sport University Cologne; Germany
- European Monitoring Center for Emerging Doping Agents; Cologne Germany
| |
Collapse
|
26
|
Thomas A, Knoop A, Schänzer W, Thevis M. Characterization of
in vitro
generated metabolites of selected peptides <2 kDa prohibited in sports. Drug Test Anal 2017; 9:1799-1803. [DOI: 10.1002/dta.2306] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 08/07/2017] [Accepted: 09/14/2017] [Indexed: 12/19/2022]
Affiliation(s)
- Andreas Thomas
- Institute of Biochemistry / Center for Preventive Doping ResearchGerman Sport University Cologne Am Sportpark Müngersdorf 50933 Cologne Germany
| | - Andre Knoop
- Institute of Biochemistry / Center for Preventive Doping ResearchGerman Sport University Cologne Am Sportpark Müngersdorf 50933 Cologne Germany
| | - Wilhelm Schänzer
- Institute of Biochemistry / Center for Preventive Doping ResearchGerman Sport University Cologne Am Sportpark Müngersdorf 50933 Cologne Germany
| | - Mario Thevis
- Institute of Biochemistry / Center for Preventive Doping ResearchGerman Sport University Cologne Am Sportpark Müngersdorf 50933 Cologne Germany
| |
Collapse
|
27
|
Zvereva I, Dudko G, Dikunets M. Determination of GnRH and its synthetic analogues' abuse in doping control: Small bioactive peptide UPLC-MS/MS method extension by addition of in vitro and in vivo metabolism data; evaluation of LH and steroid profile parameter fluctuations as suitable bi. Drug Test Anal 2017; 10:711-722. [DOI: 10.1002/dta.2256] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 07/03/2017] [Accepted: 08/01/2017] [Indexed: 12/17/2022]
|
28
|
Identification of metabolites of vindoline in rats using ultra-high performance liquid chromatography/quadrupole time-of-flight mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2017; 1060:126-137. [DOI: 10.1016/j.jchromb.2017.05.038] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Revised: 05/27/2017] [Accepted: 05/30/2017] [Indexed: 11/17/2022]
|