1
|
Monteiro R, Silva E, Pereira MO, Sousa AM. Mechanistic Insights into Succinic Acid as an Adjuvant for Ciprofloxacin in Treating Pseudomonas aeruginosa Growing Within Cystic Fibrosis Airway Mucus. Microorganisms 2024; 12:2538. [PMID: 39770741 PMCID: PMC11678660 DOI: 10.3390/microorganisms12122538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/27/2024] [Accepted: 12/03/2024] [Indexed: 01/11/2025] Open
Abstract
Pseudomonas aeruginosa is a major cause of chronic respiratory infections in patients with cystic fibrosis (CF), with biofilm formation contributing to its persistence and antibiotic resistance. This study aimed to gain insights into the mechanistic action of succinic acid as a ciprofloxacin adjuvant against clinically relevant CF isolates, including small colony variants and mucoid strains, and a ciprofloxacin-resistant strain grown within CF dense mucus. Time-kill assays in artificial CF mucus, along with planktonic and surface-attached biofilm experiments, were used to assess the activity of succinic acid alone and in combination with sublethal ciprofloxacin concentrations. Succinic acid demonstrated an adjuvant effect of ciprofloxacin against P. aeruginosa grown within CF mucus at pH levels below pKa1 during the early bacterial growth stages. In examining planktonic growth and biofilms under these conditions, we found that succinic acid demonstrated strong antibacterial and antibiofilm properties. Conversely, succinic acid activity decreased at later growth stages, though it enhanced the ciprofloxacin effect, especially against mucoid biofilms. Moreover, we noted that, in dense CF mucus, succinic acid activity was attenuated compared to a non-CF environment, indicating diffusion challenges. These findings underscore the potential of succinic acid as a therapeutic adjuvant for improving antibiotic treatment outcomes and overcoming biofilm-associated resistance in CF.
Collapse
Affiliation(s)
- Rosana Monteiro
- Centre of Biological Engineering, LIBRO—Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (R.M.); (E.S.); (M.O.P.)
| | - Eduarda Silva
- Centre of Biological Engineering, LIBRO—Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (R.M.); (E.S.); (M.O.P.)
| | - Maria Olivia Pereira
- Centre of Biological Engineering, LIBRO—Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (R.M.); (E.S.); (M.O.P.)
- LABBELS—Associate Laboratory, Braga/Guimarães, Portugal
| | - Ana Margarida Sousa
- Centre of Biological Engineering, LIBRO—Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (R.M.); (E.S.); (M.O.P.)
- LABBELS—Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
2
|
Wu J, Thompson TP, O'Connell NH, McCracken K, Powell J, Gilmore BF, Dunne CP, Kelly SA. More than just the gene: investigating expression using a non-native plasmid and host and its impact on resistance conferred by β-lactamase OXA-58 isolated from a hospital wastewater microbiome. Lett Appl Microbiol 2024; 77:ovae097. [PMID: 39375834 DOI: 10.1093/lambio/ovae097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 10/01/2024] [Accepted: 10/04/2024] [Indexed: 10/09/2024]
Abstract
With the escalation of hospital-acquired infections by multidrug resistant bacteria, understanding antibiotic resistance is of paramount importance. This study focuses on the β-lactamase gene, blaOXA-58, an important resistance determinant identified in a patient-facing hospital wastewater system. This study aimed to characterize the behaviour of the OXA-58 enzyme when expressed using a non-native plasmid and expression host. blaOXA-58 was cloned using a pET28a(+)/Escherichia coli BL21(DE3) expression system. Nitrocefin hydrolysis and antimicrobial susceptibility of OXA-58-producing cells were assessed against penicillin G, ampicillin, meropenem, and amoxicillin. blaOXA-58 conferred resistance to amoxicillin, penicillin G, and ampicillin, but not to meropenem. This was unexpected given OXA-58's annotation as a carbapenemase. The presence of meropenem also reduced nitrocefin hydrolysis, suggesting it acts as a competitive inhibitor of the OXA-58 enzyme. This study elucidates the phenotypic resistance conferred by an antimicrobial resistance gene (ARG) obtained from a clinically relevant setting and reveals that successful functional expression of ARGs is multifaceted. This study challenges the reliability of predicting antimicrobial resistance based solely on gene sequence alone, and serves as a reminder of the intricate interplay between genetics and structural factors in understanding resistance profiles across different host environments.
Collapse
Affiliation(s)
- J Wu
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, United Kingdom
| | - T P Thompson
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, United Kingdom
| | - N H O'Connell
- Microbiology Department, University Hospital Limerick, Limerick, V94 F858, Ireland
- School of Medicine and Centre for Interventions in Infection, Inflammation, and Immunity (4i), University of Limerick, Limerick, V94 T9PX, Ireland
| | - K McCracken
- Keith McCracken Consulting Limited, The Manor House, Greencastle, Co. Donegal, F93 R9Y0, Ireland
| | - J Powell
- Microbiology Department, University Hospital Limerick, Limerick, V94 F858, Ireland
- School of Medicine and Centre for Interventions in Infection, Inflammation, and Immunity (4i), University of Limerick, Limerick, V94 T9PX, Ireland
| | - B F Gilmore
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, United Kingdom
- School of Medicine and Centre for Interventions in Infection, Inflammation, and Immunity (4i), University of Limerick, Limerick, V94 T9PX, Ireland
| | - C P Dunne
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, United Kingdom
- School of Medicine and Centre for Interventions in Infection, Inflammation, and Immunity (4i), University of Limerick, Limerick, V94 T9PX, Ireland
| | - S A Kelly
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, United Kingdom
- School of Medicine and Centre for Interventions in Infection, Inflammation, and Immunity (4i), University of Limerick, Limerick, V94 T9PX, Ireland
| |
Collapse
|
3
|
Lindon S, Shah S, Gifford DR, Lood C, Gomis Font MA, Kaur D, Oliver A, MacLean RC, Wheatley RM. Antibiotic resistance alters the ability of Pseudomonas aeruginosa to invade bacteria from the respiratory microbiome. Evol Lett 2024; 8:735-747. [PMID: 39328287 PMCID: PMC11424078 DOI: 10.1093/evlett/qrae030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 06/06/2024] [Accepted: 06/14/2024] [Indexed: 09/28/2024] Open
Abstract
The emergence and spread of antibiotic resistance in bacterial pathogens is a global health threat. One important unanswered question is how antibiotic resistance influences the ability of a pathogen to invade the host-associated microbiome. Here we investigate how antibiotic resistance impacts the ability of a bacterial pathogen to invade bacteria from the microbiome, using the opportunistic bacterial pathogen Pseudomonas aeruginosa and the respiratory microbiome as our model system. We measure the ability of P. aeruginosa spontaneous antibiotic-resistant mutants to invade pre-established cultures of commensal respiratory microbes in an assay that allows us to link specific resistance mutations with changes in invasion ability. While commensal respiratory microbes tend to provide some degree of resistance to P. aeruginosa invasion, antibiotic resistance is a double-edged sword that can either help or hinder the ability of P. aeruginosa to invade. The directionality of this help or hindrance depends on both P. aeruginosa genotype and respiratory microbe identity. Specific resistance mutations in genes involved in multidrug efflux pump regulation are shown to facilitate the invasion of P. aeruginosa into Staphylococcus lugdunensis, yet impair invasion into Rothia mucilaginosa and Staphylococcus epidermidis. Streptococcus species provide the strongest resistance to P. aeruginosa invasion, and this is maintained regardless of antibiotic resistance genotype. Our study demonstrates how the cost of mutations that provide enhanced antibiotic resistance in P. aeruginosa can crucially depend on community context. We suggest that attempts to manipulate the microbiome should focus on promoting the growth of commensals that can increase the fitness costs associated with antibiotic resistance and provide robust inhibition of both wildtype and antibiotic-resistant pathogen strains.
Collapse
Affiliation(s)
- Selina Lindon
- Department of Biology, University of Oxford, Oxford, United Kingdom
| | - Sarah Shah
- Department of Biology, University of Oxford, Oxford, United Kingdom
| | - Danna R Gifford
- Division of Evolution, Infection and Genomics, School of Biological Sciences, The University of Manchester, Manchester, United Kingdom
| | - Cédric Lood
- Department of Biology, University of Oxford, Oxford, United Kingdom
| | - Maria A Gomis Font
- Servicio de Microbiología, Hospital Universitari Son Espases, Instituto de Investigación Sanitaria Illes Balears (IdISBa), CIBERINFEC, Palma de Mallorca, Spain
| | - Divjot Kaur
- Department of Biology, University of Oxford, Oxford, United Kingdom
| | - Antonio Oliver
- Servicio de Microbiología, Hospital Universitari Son Espases, Instituto de Investigación Sanitaria Illes Balears (IdISBa), CIBERINFEC, Palma de Mallorca, Spain
| | - R Craig MacLean
- Department of Biology, University of Oxford, Oxford, United Kingdom
| | - Rachel M Wheatley
- Department of Biology, University of Oxford, Oxford, United Kingdom
- School of Biological Sciences, Queen's University Belfast, Belfast, United Kingdom
| |
Collapse
|
4
|
Su YB, Tang XK, Zhu LP, Yang KX, Pan L, Li H, Chen ZG. Enhanced Biosynthesis of Fatty Acids Contributes to Ciprofloxacin Resistance in Pseudomonas aeruginosa. Front Microbiol 2022; 13:845173. [PMID: 35547113 PMCID: PMC9083408 DOI: 10.3389/fmicb.2022.845173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 03/14/2022] [Indexed: 11/13/2022] Open
Abstract
Antibiotic-resistant Pseudomonas aeruginosa is insensitive to antibiotics and difficult to deal with. An understanding of the resistance mechanisms is required for the control of the pathogen. In this study, gas chromatography-mass spectrometer (GC-MS)-based metabolomics was performed to identify differential metabolomes in ciprofloxacin (CIP)-resistant P. aeruginosa strains that originated from P. aeruginosa ATCC 27853 and had minimum inhibitory concentrations (MICs) that were 16-, 64-, and 128-fold (PA-R16CIP, PA-R64CIP, and PA-R128CIP, respectively) higher than the original value, compared to CIP-sensitive P. aeruginosa (PA-S). Upregulation of fatty acid biosynthesis forms a characteristic feature of the CIP-resistant metabolomes and fatty acid metabolome, which was supported by elevated gene expression and enzymatic activity in the metabolic pathway. The fatty acid synthase inhibitor triclosan potentiates CIP to kill PA-R128CIP and clinically multidrug-resistant P. aeruginosa strains. The potentiated killing was companied with reduced gene expression and enzymatic activity and the returned abundance of fatty acids in the metabolic pathway. Consistently, membrane permeability was reduced in the PA-R and clinically multidrug-resistant P. aeruginosa strains, which were reverted by triclosan. Triclosan also stimulated the uptake of CIP. These findings highlight the importance of the elevated biosynthesis of fatty acids in the CIP resistance of P. aeruginosa and provide a target pathway for combating CIP-resistant P. aeruginosa.
Collapse
Affiliation(s)
- Yu-Bin Su
- Department of Pediatrics and Department of Allergy, The Third Affiliated Hospital, State Key Laboratory of Bio-Control, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, China.,Department of Cell Biology, Ministry of Education Key Laboratory of Tumor Molecular Biology, Guangdong Provincial Key Laboratory of Bioengineering Medicine, Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Xi-Kang Tang
- Department of Pediatrics and Department of Allergy, The Third Affiliated Hospital, State Key Laboratory of Bio-Control, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, China
| | - Ling-Ping Zhu
- Department of Pediatrics and Department of Allergy, The Third Affiliated Hospital, State Key Laboratory of Bio-Control, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, China
| | - Ke-Xin Yang
- Department of Pediatrics and Department of Allergy, The Third Affiliated Hospital, State Key Laboratory of Bio-Control, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, China
| | - Li Pan
- Department of Pediatrics and Department of Allergy, The Third Affiliated Hospital, State Key Laboratory of Bio-Control, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, China
| | - Hui Li
- Department of Pediatrics and Department of Allergy, The Third Affiliated Hospital, State Key Laboratory of Bio-Control, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, China
| | - Zhuang-Gui Chen
- Department of Pediatrics and Department of Allergy, The Third Affiliated Hospital, State Key Laboratory of Bio-Control, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
5
|
Zhao H, Wang M, Cui Y, Zhang C. Can We Arrest the Evolution of Antibiotic Resistance? The Differences between the Effects of Silver Nanoparticles and Silver Ions. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:5090-5101. [PMID: 35344362 DOI: 10.1021/acs.est.2c00116] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Silver nanoparticles (AgNPs) are effective antimicrobial substances that show promise in combatting multidrug resistance. The potential application and release of AgNPs into the environment may neutralize the selective advantage of antibiotic resistance. Systemic knowledge regarding the effect of NPs on the evolution of antibiotic resistance is lacking. Our results showed that bacteria slowly developed adaptive tolerance to ciprofloxacin (CIP) under cyclic CIP and silver ion (Ag+) cotreatment, and no resistance/tolerance was discernible when CIP and AgNP exposure was alternated. In contrast, rapid CIP resistance was induced under continuous selection by treatment with only CIP. To combat the effects of CIP and Ag+, bacteria developed convergent evolutionary strategies with similar adaptive mechanisms, including anaerobic respiration transitioning (to reduce oxidative stress) and stringent response (to survive harsh environments). Alternating AgNP exposure impeded evolutionary resistance by accelerating B12-dependent folate and methionine cycles, which reestablished DNA synthesis and partially offset high oxidative stress levels, in contrast with the effect of CIP-directed evolutionary pressure. Nevertheless, CIP/AgNP treatment was ineffective in attenuating virulence, and CIP/Ag+ exposure even induced the virulence-critical type III secretion system. Our results increase the basic understanding of the impacts of NPs on evolutionary biology and suggest prospective nanotechnology applications for arresting evolutionary antibiotic resistance.
Collapse
Affiliation(s)
- Huiru Zhao
- School of Environment, Beijing Normal University, Beijing 100875, China
- College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Meiling Wang
- College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yueting Cui
- School of Environment, Beijing Normal University, Beijing 100875, China
| | - Chengdong Zhang
- School of Environment, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
6
|
Nutrient Sensing and Biofilm Modulation: The Example of L-arginine in Pseudomonas. Int J Mol Sci 2022; 23:ijms23084386. [PMID: 35457206 PMCID: PMC9028604 DOI: 10.3390/ijms23084386] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/12/2022] [Accepted: 04/13/2022] [Indexed: 12/01/2022] Open
Abstract
Bacterial biofilm represents a multicellular community embedded within an extracellular matrix attached to a surface. This lifestyle confers to bacterial cells protection against hostile environments, such as antibiotic treatment and host immune response in case of infections. The Pseudomonas genus is characterised by species producing strong biofilms difficult to be eradicated and by an extraordinary metabolic versatility which may support energy and carbon/nitrogen assimilation under multiple environmental conditions. Nutrient availability can be perceived by a Pseudomonas biofilm which, in turn, readapts its metabolism to finally tune its own formation and dispersion. A growing number of papers is now focusing on the mechanism of nutrient perception as a possible strategy to weaken the biofilm barrier by environmental cues. One of the most important nutrients is amino acid L-arginine, a crucial metabolite sustaining bacterial growth both as a carbon and a nitrogen source. Under low-oxygen conditions, L-arginine may also serve for ATP production, thus allowing bacteria to survive in anaerobic environments. L-arginine has been associated with biofilms, virulence, and antibiotic resistance. L-arginine is also a key precursor of regulatory molecules such as polyamines, whose involvement in biofilm homeostasis is reported. Given the biomedical and biotechnological relevance of biofilm control, the state of the art on the effects mediated by the L-arginine nutrient on biofilm modulation is presented, with a special focus on the Pseudomonas biofilm. Possible biotechnological and biomedical applications are also discussed.
Collapse
|
7
|
Sulaima JE, Lam H. Proteomics in antibiotic resistance and tolerance research: Mapping the resistome and the tolerome of bacterial pathogens. Proteomics 2022; 22:e2100409. [PMID: 35143120 DOI: 10.1002/pmic.202100409] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/31/2022] [Accepted: 01/31/2022] [Indexed: 11/12/2022]
Abstract
Antibiotic resistance, the ability of a microbial pathogen to evade the effects of antibiotics thereby allowing them to grow under elevated drug concentrations, is an alarming health problem worldwide and has attracted the attention of scientists for decades. On the other hand, the clinical importance of persistence and tolerance as alternative mechanisms for pathogens to survive prolonged lethal antibiotic doses has recently become increasingly appreciated. Persisters and high-tolerance populations are thought to cause the relapse of infectious diseases, and provide opportunities for the pathogens to evolve resistance during the course of antibiotic therapy. Although proteomics and other omics methodology have long been employed to study resistance, its applications in studying persistence and tolerance are still limited. However, due to the growing interest in the topic and recent progress in method developments to study them, there have been some proteomic studies that yield fresh insights into the phenomenon of persistence and tolerance. Combined with the studies on resistance, these collectively guide us to novel molecular targets for the potential drugs for the control of these dangerous pathogens. In this review, we surveyed previous proteomic studies to investigate resistance, persistence, and tolerance mechanisms, and discussed emerging experimental strategies for studying these phenotypes with a combination of adaptive laboratory evolution and high-throughput proteomics. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Jordy Evan Sulaima
- Department of Chemical and Biological Engineering, The Hong Kong University of Science & Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Henry Lam
- Department of Chemical and Biological Engineering, The Hong Kong University of Science & Technology, Clear Water Bay, Kowloon, Hong Kong
| |
Collapse
|
8
|
Novel Antibacterial Modification of Polycarbonate for Increment Prototyping in Medicine. MATERIALS 2021; 14:ma14164725. [PMID: 34443247 PMCID: PMC8400390 DOI: 10.3390/ma14164725] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/12/2021] [Accepted: 08/18/2021] [Indexed: 12/13/2022]
Abstract
In the era of modern medicine, the number of invasive treatments increases. Artificial devices used in medicine are associated with an increased risk of secondary infections. Bacterial biofilm development observed on the implanted surface is challenging to treat, primarily due to low antibiotics penetration. In our study, the preparation of a new polycarbonate composite, filled with nanosilver, nanosilica and rhodamine B derivative, suitable for three-dimensional printing, is described. Polymer materials with antimicrobial properties are known. However, in most cases, protection is limited to the outer layers only. The newly developed materials are protected in their entire volume. Moreover, the antibacterial properties are retained after multiple high-temperature processing were performed, allowing them to be used in 3D printing. Bacterial population reduction was observed, which gives an assumption for those materials to be clinically tested in the production of various medical devices and for the reduction of morbidity and mortality caused by multidrug-resistant bacteria.
Collapse
|
9
|
Trinh KV, Ruoff KL, Rees CA, Ponukumati AS, Martin IW, O'Toole GA, Saunders JE. Characterization of Ciprofloxacin Resistance Levels: Implications for Ototopical Therapy. Otol Neurotol 2021; 42:e887-e893. [PMID: 33710149 DOI: 10.1097/mao.0000000000003113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
HYPOTHESIS Ciprofloxacin-resistant pathogens are inhibited by high concentrations of ciprofloxacin found in commercially-available ototopical solutions. BACKGROUND Ciprofloxacin-resistant pathogens in otitis media are currently treated with ototopical ciprofloxacin suspensions. This is done irrespective of laboratory-reported ciprofloxacin susceptibility, under the assumption that the high concentration of ciprofloxacin applied topically is sufficient to overcome antimicrobial resistance. METHODS We evaluated 34 ciprofloxacin-resistant isolates consisting of Staphylococcus aureus, Pseudomonas aeruginosa, Corynebacterium spp., and Turicella otitidis. Ciprofloxacin minimum inhibitory concentration (MIC) assays and clinical ototopical solution minimum bactericidal concentration (CMBC) assays were performed. RESULTS Amongst the ciprofloxacin-resistant isolates, ciprofloxacin MICs ranged from 8 to 256 mcg/ml (mean: 87.1 mcg/ml) and CMBCs ranged from 23.4 to 1500 mcg/ml (mean: 237.0 mcg/ml). There were no significant differences with respect to MIC in comparing P. aeruginosa versus Corynebacterium spp. (mean: 53.3 versus 55.2, p = 0.86), S. aureus versus P. aeruginosa (mean: 128.0 versus 53.3, p = 0.34), and S. aureus versus Corynebacterium spp. (mean: 128.0 versus 55.2, p = 0.09). The correlation between ciprofloxacin MIC and CMBC was poor (Pearson's r = -0.08, p = 0.75). CONCLUSIONS Ciprofloxacin-resistant pathogens commonly recovered from otitis media exhibit highly variable ciprofloxacin MIC and CMBC levels. Ciprofloxacin was able to inhibit growth in all isolates tested at MIC levels less than or equal to 256 mcg/ml; however, CMBC's up to 1500 mcg/ml were observed within that same group. The clinical relevance of these in vitro MICs is unclear due in part to higher bactericidal concentrations (CMBC) in several strains. Our results suggest that treatment failures may be due to a combination of factors rather than high-level resistance alone.
Collapse
Affiliation(s)
| | - Kathryn L Ruoff
- Geisel School of Medicine at Dartmouth, Hanover, New Hampshire
| | | | | | | | | | | |
Collapse
|
10
|
Hosseinkhan N, Allahverdi A, Abdolmaleki F. The novel potential multidrug-resistance biomarkers for Pseudomonas aeruginosa lung infections using transcriptomics data analysis. INFORMATICS IN MEDICINE UNLOCKED 2021. [DOI: 10.1016/j.imu.2020.100509] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
11
|
Silva DM, Liu R, Gonçalves AF, da Costa A, Castro Gomes A, Machado R, Vongsvivut J, J Tobin M, Sencadas V. Design of polymeric core-shell carriers for combination therapies. J Colloid Interface Sci 2020; 587:499-509. [PMID: 33388652 DOI: 10.1016/j.jcis.2020.12.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 11/30/2020] [Accepted: 12/01/2020] [Indexed: 12/28/2022]
Abstract
Particle engineering for co-delivery of drugs has the potential to combine multiple drugs with different pharmaceutical mechanisms within the same carrier, increasing the therapeutic efficiency while improving patient compliance. This work proposes a novel approach for producing polymer-polymer core-shell microparticles by multi-step processing of emulsion and spray drying. The particle core was obtained by an oil-in-water emulsion of poly(ε-caprolactone) (PCL) loaded with curcumin (CM), followed by the resuspension in poly(vinyl alcohol) (PVA) containing ciprofloxacin (CPx) forming the shell layer by spray-drying. The obtained core-shell particles showed an average size of 3.8 ± 1.2 μm, which is a suitable size for inhalation therapies. The spatial distribution of the drugs was studied using synchrotron-based macro attenuated total reflection Fourier transform infrared (macro ATR-FTIR) microspectroscopy to map the chemical distribution of the components within the particles and supported the presence of CM and CPx in the core and shell layers, respectively. The formation of the core-shell structure was further supported by the differences in the release profile of CM from these particles, when compared to the release profile observed for the single particle structure (PCL-CM). Both empty and drug-loaded carriers (up to 100 μg.mL-1) showed no cytotoxic effects on A549 cells while exhibiting the antibacterial activity of CPx against Gram-positive and Gram-negative bacteria. These polymer core-shell microparticles provide a promising route for the combination and sequential drug release therapies, with the potential to be used in inhalation therapies.
Collapse
Affiliation(s)
- Dina M Silva
- School of Mechanical, Materials, Mechatronic and Biomedical Engineering, University of Wollongong, Wollongong, NSW 2522, Australia.
| | - Ruy Liu
- School of Mechanical, Materials, Mechatronic and Biomedical Engineering, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Anabela F Gonçalves
- CBMA (Centre of Molecular and Environmental Biology), Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - André da Costa
- CBMA (Centre of Molecular and Environmental Biology), Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; IB-S (Institute of Science and Innovation for Sustainability), University of Minho, Campus de Gualtar, Braga 4710-057, Portugal
| | - Andreia Castro Gomes
- CBMA (Centre of Molecular and Environmental Biology), Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; IB-S (Institute of Science and Innovation for Sustainability), University of Minho, Campus de Gualtar, Braga 4710-057, Portugal
| | - Raul Machado
- CBMA (Centre of Molecular and Environmental Biology), Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; IB-S (Institute of Science and Innovation for Sustainability), University of Minho, Campus de Gualtar, Braga 4710-057, Portugal
| | - Jitraporn Vongsvivut
- Infrared Microspectroscopy (IRM) Beamline, Australian Synchrotron (ANSTO), 800 Blackburn Road, Clayton, Victoria 3168, Australia
| | - Mark J Tobin
- Infrared Microspectroscopy (IRM) Beamline, Australian Synchrotron (ANSTO), 800 Blackburn Road, Clayton, Victoria 3168, Australia
| | - Vitor Sencadas
- School of Mechanical, Materials, Mechatronic and Biomedical Engineering, University of Wollongong, Wollongong, NSW 2522, Australia; Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia.
| |
Collapse
|
12
|
Sit bath systems: A new source of Legionella infection. PLoS One 2020; 15:e0241756. [PMID: 33147266 PMCID: PMC7641379 DOI: 10.1371/journal.pone.0241756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 10/21/2020] [Indexed: 11/19/2022] Open
Abstract
Sit Bath Systems (SBSs) are the most common hygiene method for patients who are not self-sufficient. Therefore, the water quality of SBSs in the nosocomial environment plays a fundamental role in controlling infections for both patients and health-care workers. A long-term study on Legionella and Pseudomonas aeruginosa (P. aeruginosa) contamination was performed in SBSs (n = 20) of six Health Care Facilities (HCFs). A total of 254 water samples were analyzed following ISO procedures. The samples were positive for P. aeruginosa (46.85%) and Legionella (53.54%), respectively, both over the directive limits. Legionella isolates were identified as: Legionella pneumophila (L. pneumophila) serogroups 1, 3, and 6 and Legionella non-pneumophila species (L. anisa, L. londiniensis, L. rubrilucens, and L. nagelii). Moreover, the contamination found was studied with respect to median temperature measured (42 °C), from which two groups (A and B) could be distinguished. P. aeruginosa was found in both groups (100% of SBSs), while a higher percentage of Legionella positive samples was found in group A (75% of SBSs), compared to group B (50% of SBSs), showing how Legionella control could be carried out by using temperatures above 42 °C. An analysis of SBS water pipelines, maintenance, and disinfection treatments indicates SBSs as a new source of infection risk for both patients and health-care workers.
Collapse
|
13
|
Tsakou F, Jersie-Christensen R, Jenssen H, Mojsoska B. The Role of Proteomics in Bacterial Response to Antibiotics. Pharmaceuticals (Basel) 2020; 13:E214. [PMID: 32867221 PMCID: PMC7559545 DOI: 10.3390/ph13090214] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/24/2020] [Accepted: 08/25/2020] [Indexed: 02/07/2023] Open
Abstract
For many years, we have tried to use antibiotics to eliminate the persistence of pathogenic bacteria. However, these infectious agents can recover from antibiotic challenges through various mechanisms, including drug resistance and antibiotic tolerance, and continue to pose a global threat to human health. To design more efficient treatments against bacterial infections, detailed knowledge about the bacterial response to the commonly used antibiotics is required. Proteomics is a well-suited and powerful tool to study molecular response to antimicrobial compounds. Bacterial response profiling from system-level investigations could increase our understanding of bacterial adaptation, the mechanisms behind antibiotic resistance and tolerance development. In this review, we aim to provide an overview of bacterial response to the most common antibiotics with a focus on the identification of dynamic proteome responses, and through published studies, to elucidate the formation mechanism of resistant and tolerant bacterial phenotypes.
Collapse
Affiliation(s)
| | | | | | - Biljana Mojsoska
- Department of Science and Environment, Roskilde University, 4000 Roskilde, Denmark; (F.T.); (R.J.-C.); (H.J.)
| |
Collapse
|
14
|
Peng J, Russell J, Alexander S. Can proteomics elucidate mechanisms of antimicrobial resistance in Neisseria gonorrhoeae that whole genome sequencing is unable to identify? An analysis of protein expression within the 2016 WHO N. gonorrhoeae reference strains. Sex Transm Infect 2019; 96:330-334. [PMID: 31801897 DOI: 10.1136/sextrans-2019-054220] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 10/03/2019] [Accepted: 11/07/2019] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVES Antimicrobial resistance (AMR) in Neisseria gonorrhoeae is of increasing concern. This study established a quantitative, scalable proteomics method to examine the WHO panel of N. gonorrhoeae isolates with completed closed genomic sequences and well-defined phenotypical and genotypical AMR patterns, to gain a greater understanding of AMR in N. gonorrhoeae. METHODS 14 WHO reference strains were propagated, pooled stable isotope labelled lysates were used as an internal standard (IS). Protein lysates were mixed with IS, digested with trypsin and fractionated before analysis by nano-LC/MS/MS, in triplicate. The susceptible strain WHO F was used as reference to which the proteomic profiles of other strains were compared. Hierarchical clustering and permutation adjusted t-tests were performed to find proteins with significant fold changes. RESULTS Standardised, reproducible protein expression profiles in N. gonorrhoeae reference strains were produced. Strains that have previously been shown to be highly similar using genomics, displayed different proteomic profiles. Several proteins from efflux pumps to stress responses, such as oxidative stress, toxin/antitoxin systems, were found to be altered in AMR strains. LtgE was upregulated in strains which displayed chromosomally mediated resistance to penicillin. MacB (the ATP hydrolysis part of macrolide efflux pump MacA-B), was ~twofold upregulated in WHO V (MIC of azithromycin >256 mg/L) and maybe associated with azithromycin resistance. CONCLUSIONS A robust method was developed to study protein expression in N. gonorrhoeae. The proteome profiles could differentiate genetically similar stains. This study identified complex mechanisms in N. gonorrhoeae which may be associated with AMR.
Collapse
Affiliation(s)
- Jianhe Peng
- National Collection of Type Cultures, Public Health England, London, UK
| | - Julie Russell
- National Collection of Type Cultures, Public Health England, London, UK
| | - Sarah Alexander
- National Collection of Type Cultures, Public Health England, London, UK
| |
Collapse
|
15
|
Peng B, Li H, Peng X. Proteomics approach to understand bacterial antibiotic resistance strategies. Expert Rev Proteomics 2019; 16:829-839. [PMID: 31618606 DOI: 10.1080/14789450.2019.1681978] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Introduction: The understanding of novel antibiotic resistance mechanisms is essential to develop strategies against antibiotic-resistant pathogens, which has become an urgent task due to the worldwide emergence of antibiotic resistance. Areas covered: In this review, the authors summarize the recent progress on antibiotic resistance caused by lab-evolved bacteria and clinical multidrug-resistant bacterial pathogens from the proteomics perspective. Expert opinion: Proteomics provides a new platform for a comprehensive understanding of change in protein pathways that are engaged in antibiotics resistance, which is different from a genetic view that focuses on the role of an individual gene or protein. Further work is required to understand why and how the involved pathways are integrated for surviving antibiotic-mediated killing, to use other OMICs for better comprehension of antibiotic resistance mechanisms, and to develop reprogramming proteomics, which reverts an 'antibiotic resistance proteome' to an 'antibiotic sensitive or antibiotic sensitive-like' proteome, for the control of antibiotic-resistant pathogens.
Collapse
Affiliation(s)
- Bo Peng
- Center for Proteomics and Metabolomics, State Key Laboratory of Bio-Control, School of Life Sciences, Sun Yat-sen University , Guangzhou , People's Republic of China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology , Qingdao , People's Republic of China.,Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai) , Zhuhai , People's Republic of China
| | - Hui Li
- Center for Proteomics and Metabolomics, State Key Laboratory of Bio-Control, School of Life Sciences, Sun Yat-sen University , Guangzhou , People's Republic of China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology , Qingdao , People's Republic of China.,Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai) , Zhuhai , People's Republic of China
| | - Xuanxian Peng
- Center for Proteomics and Metabolomics, State Key Laboratory of Bio-Control, School of Life Sciences, Sun Yat-sen University , Guangzhou , People's Republic of China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology , Qingdao , People's Republic of China.,Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai) , Zhuhai , People's Republic of China
| |
Collapse
|
16
|
Du GF, Zheng YD, Chen J, He QY, Sun X. Novel Mechanistic Insights into Bacterial Fluoroquinolone Resistance. J Proteome Res 2019; 18:3955-3966. [DOI: 10.1021/acs.jproteome.9b00410] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Gao-Fei Du
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Yun-Dan Zheng
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Jing Chen
- Department of Clinical Laboratory, Nanfang Hospital, Southern Medical University, Guangzhou 510632, China
| | - Qing-Yu He
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Xuesong Sun
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| |
Collapse
|
17
|
Lack of the Major Multifunctional Catalase KatA in Pseudomonas aeruginosa Accelerates Evolution of Antibiotic Resistance in Ciprofloxacin-Treated Biofilms. Antimicrob Agents Chemother 2019; 63:AAC.00766-19. [PMID: 31307984 DOI: 10.1128/aac.00766-19] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 06/30/2019] [Indexed: 01/20/2023] Open
Abstract
During chronic biofilm infections, Pseudomonas aeruginosa bacteria are exposed to increased oxidative stress as a result of the inflammatory response. As reactive oxygen species (ROS) are mutagenic, the evolution of resistance to ciprofloxacin (CIP) in biofilms under oxidative stress conditions was investigated. We experimentally evolved six replicate populations of P. aeruginosa lacking the major catalase KatA in colony biofilms and stationary-phase cultures for seven passages in the presence of subinhibitory levels (0.1 mg/liter) of CIP or without CIP (eight replicate lineages for controls) under aerobic conditions. In CIP-evolved biofilms, a larger CIP-resistant subpopulation was isolated in the ΔkatA strain than in the wild-type (WT) PAO1 population, suggesting oxidative stress as a promoter of the development of antibiotic resistance. A higher number of mutations identified by population sequencing were observed in evolved ΔkatA biofilm populations (CIP and control) than in WT PAO1 populations evolved under the same conditions. Genes involved in iron assimilation were found to be exclusively mutated in CIP-evolved ΔkatA biofilm populations, probably as a defense mechanism against ROS formation resulting from Fenton reactions. Furthermore, a hypermutable lineage due to mutL inactivation developed in one CIP-evolved ΔkatA biofilm lineage. In CIP-evolved biofilms of both the ΔkatA strain and WT PAO1, mutations in nfxB, the negative regulator of the MexCD-OprJ efflux pump, were observed while in CIP-evolved planktonic cultures of both the ΔkatA strain and WT PAO1, mutations in mexR and nalD, regulators of the MexAB-OprM efflux pump, were repeatedly found. In conclusion, these results emphasize the role of oxidative stress as an environmental factor that might increase the development of antibiotic resistance in in vivo biofilms.
Collapse
|
18
|
Rinaldo S, Giardina G, Mantoni F, Paone A, Cutruzzolà F. Beyond nitrogen metabolism: nitric oxide, cyclic-di-GMP and bacterial biofilms. FEMS Microbiol Lett 2019; 365:4834012. [PMID: 29401255 DOI: 10.1093/femsle/fny029] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 01/31/2018] [Indexed: 12/18/2022] Open
Abstract
The nitrogen cycle pathways are responsible for the circulation of inorganic and organic N-containing molecules in nature. Among these pathways, those involving amino acids, N-oxides and in particular nitric oxide (NO) play strategic roles in the metabolism of microorganisms in natural environments and in host-pathogen interactions. Beyond their role in the N-cycle, amino acids and NO are also signalling molecules able to influence group behaviour in microorganisms and cell-cell communication in multicellular organisms, including humans. In this minireview, we summarise the role of these compounds in the homeostasis of the bacterial communities called biofilms, commonly found in environmental, industrial and medical settings. Biofilms are difficult to eradicate since they are highly resistant to antimicrobials and to the host immune system. We highlight the effect of amino acids such as glutamate, glutamine and arginine and of NO on the signalling pathways involved in the metabolism of 3',5'-cyclic diguanylic acid (c-di-GMP), a master regulator of motility, attachment and group behaviour in bacteria. The study of the metabolic routes involving these N-containing compounds represents an attractive topic to identify targets for biofilm control in both natural and medical settings.
Collapse
Affiliation(s)
- Serena Rinaldo
- Department of Biochemical Sciences, Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, 00185 Rome, Italy
| | - Giorgio Giardina
- Department of Biochemical Sciences, Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, 00185 Rome, Italy
| | - Federico Mantoni
- Department of Biochemical Sciences, Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, 00185 Rome, Italy
| | - Alessio Paone
- Department of Biochemical Sciences, Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, 00185 Rome, Italy
| | - Francesca Cutruzzolà
- Department of Biochemical Sciences, Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, 00185 Rome, Italy
| |
Collapse
|
19
|
Lin W, Wan K, Zeng J, Li J, Li X, Yu X. Low nutrient levels as drinking water conditions can reduce the fitness cost of efflux pump-mediated ciprofloxacin resistance in Pseudomonas aeruginosa. J Environ Sci (China) 2019; 83:123-132. [PMID: 31221375 DOI: 10.1016/j.jes.2019.03.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 03/26/2019] [Accepted: 03/26/2019] [Indexed: 06/09/2023]
Abstract
The long-term persistence of antibiotic resistance in the environment, especially in drinking water, is a public health concern. Expression of an efflux pump, an important mechanism of resistance to antibiotics, usually confers a fitness cost in bacteria. In this study, we aimed to determine why antibiotic resistance conferred by overexpression of an efflux pump persisted in low-nutrient environments (TOC < 10 mg/L) such as drinking and source water in which antibiotic selective pressure might be very low or even absent. Competition experiments between wild-type Pseudomonas aeruginosa and ciprofloxacin-resistant mutants revealed that the fitness cost of ciprofloxacin resistance significantly decreased (p < 0.05) under low-nutrient (0.5 mg/L total organic carbon (TOC)) relative to high-nutrient (500 mg/L TOC) conditions. Mechanisms underlying this fitness cost were analyzed. The mexD gene expression in resistant bacteria (cip_3 strain) was significantly lower (p < 0.05) in low-nutrient conditions, with 10 mg/L TOC ((8.01 ± 0.82)-fold), than in high-nutrient conditions, with 500 mg/L TOC ((48.89 ± 4.16)-fold). Moreover, rpoS gene expression in resistant bacteria ((1.36 ± 0.13)-fold) was significantly lower (p < 0.05) than that in the wild-type strain ((2.78 ± 0.29)-fold) under low-nutrient conditions (10 mg/L TOC), suggesting a growth advantage. Furthermore, the difference in metabolic activity between the two competing strains was significantly smaller (p < 0.05) in low-nutrient conditions (5 and 0.5 mg/L TOC). These results suggest that nutrient levels are a key factor in determining the persistence of antibiotic resistance conferred by efflux pumps in the natural environment with trace amounts or no antibiotics.
Collapse
Affiliation(s)
- Wenfang Lin
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Kun Wan
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jie Zeng
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jingjing Li
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Xi Li
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xin Yu
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
| |
Collapse
|
20
|
Wu X, Siehnel RJ, Garudathri J, Staudinger BJ, Hisert KB, Ozer EA, Hauser AR, Eng JK, Manoil C, Singh PK, Bruce JE. In Vivo Proteome of Pseudomonas aeruginosa in Airways of Cystic Fibrosis Patients. J Proteome Res 2019; 18:2601-2612. [PMID: 31060355 DOI: 10.1021/acs.jproteome.9b00122] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Chronic airway infection with P. aeruginosa (PA) is a hallmark of cystic fibrosis (CF) disease. The mechanisms producing PA persistence in CF therapies remain poorly understood. To gain insight on PA physiology in patient airways and better understand how in vivo bacterial functioning differs from in vitro conditions, we investigated the in vivo proteomes of PA in 35 sputum samples from 11 CF patients. We developed a novel bacterial-enrichment method that relies on differential centrifugation and detergent treatment to enrich for bacteria to improve identification of PA proteome with CF sputum samples. Using two nonredundant peptides as a cutoff, a total of 1304 PA proteins were identified directly from CF sputum samples. The in vivo PA proteomes were compared with the proteomes of ex vivo-grown PA populations from the same patient sample. Label-free quantitation and proteome comparison revealed the in vivo up-regulation of siderophore TonB-dependent receptors, remodeling in central carbon metabolism including glyoxylate cycle and lactate utilization, and alginate overproduction. Knowledge of these in vivo proteome differences or others derived using the presented methodology could lead to future treatment strategies aimed at altering PA physiology in vivo to compromise infectivity or improve antibiotic efficacy.
Collapse
|
21
|
Hashemi MM, Holden BS, Coburn J, Taylor MF, Weber S, Hilton B, Zaugg AL, McEwan C, Carson R, Andersen JL, Price JC, Deng S, Savage PB. Proteomic Analysis of Resistance of Gram-Negative Bacteria to Chlorhexidine and Impacts on Susceptibility to Colistin, Antimicrobial Peptides, and Ceragenins. Front Microbiol 2019; 10:210. [PMID: 30833936 PMCID: PMC6388577 DOI: 10.3389/fmicb.2019.00210] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 01/24/2019] [Indexed: 12/19/2022] Open
Abstract
Use of chlorhexidine in clinical settings has led to concerns that repeated exposure of bacteria to sub-lethal doses of chlorhexidine might result in chlorhexidine resistance and cross resistance with other cationic antimicrobials including colistin, endogenous antimicrobial peptides (AMPs) and their mimics, ceragenins. We have previously shown that colistin-resistant Gram-negative bacteria remain susceptible to AMPs and ceragenins. Here, we investigated the potential for cross resistance between chlorhexidine, colistin, AMPs and ceragenins by serial exposure of standard strains of Gram-negative bacteria to chlorhexidine to generate resistant populations of organisms. Furthermore, we performed a proteomics study on the chlorhexidine-resistant strains and compared them to the wild-type strains to find the pathways by which bacteria develop resistance to chlorhexidine. Serial exposure of Gram-negative bacteria to chlorhexidine resulted in four- to eight-fold increases in minimum inhibitory concentrations (MICs). Chlorhexidine-resistant organisms showed decreased susceptibility to colistin (8- to 32-fold increases in MICs) despite not being exposed to colistin. In contrast, chlorhexidine-resistant organisms had the same MICs as the original strains when tested with representative AMPs (LL-37 and magainin I) and ceragenins (CSA-44 and CSA-131). These results imply that there may be a connection between the emergence of highly colistin-resistant Gram-negative pathogens and the prevalence of chlorhexidine usage. Yet, use of chlorhexidine may not impact innate immune defenses (e.g., AMPs) and their mimics (e.g., ceragenins). Here, we also show that chlorhexidine resistance is associated with upregulation of proteins involved in the assembly of LPS for outer membrane biogenesis and virulence factors in Pseudomonas aeruginosa. Additionally, resistance to chlorhexidine resulted in elevated expression levels of proteins associated with chaperones, efflux pumps, flagella and cell metabolism. This study provides a comprehensive overview of the evolutionary proteomic changes in P. aeruginosa following exposure to chlorhexidine and colistin. These results have important clinical implications considering the continuous application of chlorhexidine in hospitals that could influence the emergence of colistin-resistant strains.
Collapse
Affiliation(s)
- Marjan M Hashemi
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, United States
| | - Brett S Holden
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, United States
| | - Jordan Coburn
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, United States
| | - Maddison F Taylor
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, United States
| | - Scott Weber
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, United States
| | - Brian Hilton
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, United States
| | - Aaron L Zaugg
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, United States
| | - Colten McEwan
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, United States
| | - Richard Carson
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, United States
| | - Joshua L Andersen
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, United States
| | - John C Price
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, United States
| | - Shenglou Deng
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, United States
| | - Paul B Savage
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, United States
| |
Collapse
|
22
|
Rehman A, Patrick WM, Lamont IL. Mechanisms of ciprofloxacin resistance in Pseudomonas aeruginosa: new approaches to an old problem. J Med Microbiol 2019; 68:1-10. [DOI: 10.1099/jmm.0.000873] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Affiliation(s)
- Attika Rehman
- 1Department of Biochemistry, University of Otago, New Zealand
| | - Wayne M. Patrick
- 1Department of Biochemistry, University of Otago, New Zealand
- 2School of Biological Sciences, Victoria University of Wellington, New Zealand
| | - Iain L. Lamont
- 1Department of Biochemistry, University of Otago, New Zealand
| |
Collapse
|
23
|
Pusic P, Sonnleitner E, Krennmayr B, Heitzinger DA, Wolfinger MT, Resch A, Bläsi U. Harnessing Metabolic Regulation to Increase Hfq-Dependent Antibiotic Susceptibility in Pseudomonas aeruginosa. Front Microbiol 2018; 9:2709. [PMID: 30473687 PMCID: PMC6237836 DOI: 10.3389/fmicb.2018.02709] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 10/23/2018] [Indexed: 01/04/2023] Open
Abstract
The opportunistic human pathogen Pseudomonas aeruginosa is responsible for ~ 10% of hospital-acquired infections worldwide. It is notorious for its high level resistance toward many antibiotics, and the number of multi-drug resistant clinical isolates is steadily increasing. A better understanding of the molecular mechanisms underlying drug resistance is crucial for the development of novel antimicrobials and alternative strategies such as enhanced sensitization of bacteria to antibiotics in use. In P. aeruginosa several uptake channels for amino-acids and carbon sources can serve simultaneously as entry ports for antibiotics. The respective genes are often controlled by carbon catabolite repression (CCR). We have recently shown that Hfq in concert with Crc acts as a translational repressor during CCR. This function is counteracted by the regulatory RNA CrcZ, which functions as a decoy to abrogate Hfq-mediated translational repression of catabolic genes. Here, we report an increased susceptibility of P. aeruginosa hfq deletion strains to different classes of antibiotics. Transcriptome analyses indicated that Hfq impacts on different mechanisms known to be involved in antibiotic susceptibility, viz import and efflux, energy metabolism, cell wall and LPS composition as well as on the c-di-GMP levels. Furthermore, we show that sequestration of Hfq by CrcZ, which was over-produced or induced by non-preferred carbon-sources, enhances the sensitivity toward antibiotics. Thus, controlled synthesis of CrcZ could provide a means to (re)sensitize P. aeruginosa to different classes of antibiotics.
Collapse
Affiliation(s)
- Petra Pusic
- Max F. Perutz Laboratories, Department of Microbiology, Immunobiology and Genetics, Vienna Biocenter, University of Vienna, Vienna, Austria
| | - Elisabeth Sonnleitner
- Max F. Perutz Laboratories, Department of Microbiology, Immunobiology and Genetics, Vienna Biocenter, University of Vienna, Vienna, Austria
| | - Beatrice Krennmayr
- Max F. Perutz Laboratories, Department of Microbiology, Immunobiology and Genetics, Vienna Biocenter, University of Vienna, Vienna, Austria
| | - Dorothea A. Heitzinger
- Max F. Perutz Laboratories, Department of Microbiology, Immunobiology and Genetics, Vienna Biocenter, University of Vienna, Vienna, Austria
| | | | - Armin Resch
- Max F. Perutz Laboratories, Department of Microbiology, Immunobiology and Genetics, Vienna Biocenter, University of Vienna, Vienna, Austria
| | - Udo Bläsi
- Max F. Perutz Laboratories, Department of Microbiology, Immunobiology and Genetics, Vienna Biocenter, University of Vienna, Vienna, Austria
| |
Collapse
|
24
|
Paiardini A, Mantoni F, Giardina G, Paone A, Janson G, Leoni L, Rampioni G, Cutruzzolà F, Rinaldo S. A novel bacterial l-arginine sensor controlling c-di-GMP levels in Pseudomonas aeruginosa. Proteins 2018; 86:1088-1096. [PMID: 30040157 DOI: 10.1002/prot.25587] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 07/17/2018] [Accepted: 07/18/2018] [Indexed: 01/16/2023]
Abstract
Nutrients such as amino acids play key roles in shaping the metabolism of microorganisms in natural environments and in host-pathogen interactions. Beyond taking part to cellular metabolism and to protein synthesis, amino acids are also signaling molecules able to influence group behavior in microorganisms, such as biofilm formation. This lifestyle switch involves complex metabolic reprogramming controlled by local variation of the second messenger 3', 5'-cyclic diguanylic acid (c-di-GMP). The intracellular levels of this dinucleotide are finely tuned by the opposite activity of dedicated diguanylate cyclases (GGDEF signature) and phosphodiesterases (EAL and HD-GYP signatures), which are usually allosterically controlled by a plethora of environmental and metabolic clues. Among the genes putatively involved in controlling c-di-GMP levels in P. aeruginosa, we found that the multidomain transmembrane protein PA0575, bearing the tandem signature GGDEF-EAL, is an l-arginine sensor able to hydrolyse c-di-GMP. Here, we investigate the basis of arginine recognition by integrating bioinformatics, molecular biophysics and microbiology. Although the role of nutrients such as l-arginine in controlling the cellular fate in P. aeruginosa (including biofilm, pathogenicity and virulence) is already well established, we identified the first l-arginine sensor able to link environment sensing, c-di-GMP signaling and biofilm formation in this bacterium.
Collapse
Affiliation(s)
- A Paiardini
- Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome (I), Roma, Italy.,Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Roma, Italy
| | - F Mantoni
- Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome (I), Roma, Italy.,Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Roma, Italy
| | - G Giardina
- Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome (I), Roma, Italy.,Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Roma, Italy
| | - A Paone
- Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome (I), Roma, Italy
| | - G Janson
- Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome (I), Roma, Italy
| | - L Leoni
- Department of Science, University Roma Tre (I), Roma, Italy
| | - G Rampioni
- Department of Science, University Roma Tre (I), Roma, Italy
| | - F Cutruzzolà
- Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome (I), Roma, Italy.,Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Roma, Italy
| | - S Rinaldo
- Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome (I), Roma, Italy.,Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Roma, Italy
| |
Collapse
|
25
|
Fan Z, Xu C, Pan X, Dong Y, Ren H, Jin Y, Bai F, Cheng Z, Jin S, Wu W. Mechanisms of RsaL mediated tolerance to ciprofloxacin and carbenicillin in Pseudomonas aeruginosa. Curr Genet 2018; 65:213-222. [DOI: 10.1007/s00294-018-0863-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 06/05/2018] [Accepted: 06/22/2018] [Indexed: 02/07/2023]
|
26
|
Dhusia K, Bajpai A, Ramteke PW. Overcoming antibiotic resistance: Is siderophore Trojan horse conjugation an answer to evolving resistance in microbial pathogens? J Control Release 2017; 269:63-87. [PMID: 29129658 DOI: 10.1016/j.jconrel.2017.11.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 10/30/2017] [Accepted: 11/01/2017] [Indexed: 01/11/2023]
Abstract
Comparative study of siderophore biosynthesis pathway in pathogens provides potential targets for antibiotics and host drug delivery as a part of computationally feasible microbial therapy. Iron acquisition using siderophore models is an essential and well established model in all microorganisms and microbial infections a known to cause great havoc to both plant and animal. Rapid development of antibiotic resistance in bacterial as well as fungal pathogens has drawn us at a verge where one has to get rid of the traditional way of obstructing pathogen using single or multiple antibiotic/chemical inhibitors or drugs. 'Trojan horse' strategy is an answer to this imperative call where antibiotic are by far sneaked into the pathogenic cell via the siderophore receptors at cell and outer membrane. This antibiotic once gets inside, generates a 'black hole' scenario within the opportunistic pathogens via iron scarcity. For pathogens whose siderophore are not compatible to smuggle drug due to their complex conformation and stiff valence bonds, there is another approach. By means of the siderophore biosynthesis pathways, potential targets for inhibition of these siderophores in pathogenic bacteria could be achieved and thus control pathogenic virulence. Method to design artificial exogenous siderophores for pathogens that would compete and succeed the battle of intake is also covered with this review. These manipulated siderophore would enter pathogenic cell like any other siderophore but will not disperse iron due to which iron inadequacy and hence pathogens control be accomplished. The aim of this review is to offer strategies to overcome the microbial infections/pathogens using siderophore.
Collapse
Affiliation(s)
- Kalyani Dhusia
- Deptartment of Computational Biology and Bioinformatics, Jacob Institute of Biotechnology and Bio-Engineering, Sam Higginbottom University of Agriculture, Technology and Sciences (SHUATS), Allahabad-211007 (U.P.), India
| | - Archana Bajpai
- Laboratory for Disease Systems Modeling, Center for Integrative Medical Sciences, RIKEN, Yokohama City, Kanagawa, 230-0045, Japan
| | - P W Ramteke
- Deptartment of Computational Biology and Bioinformatics, Jacob Institute of Biotechnology and Bio-Engineering, Sam Higginbottom University of Agriculture, Technology and Sciences (SHUATS), Allahabad-211007 (U.P.), India
| |
Collapse
|
27
|
Abstract
De novo peptide sequencing from tandem MS data is the key technology in proteomics for the characterization of proteins, especially for new sequences, such as mAbs. In this study, we propose a deep neural network model, DeepNovo, for de novo peptide sequencing. DeepNovo architecture combines recent advances in convolutional neural networks and recurrent neural networks to learn features of tandem mass spectra, fragment ions, and sequence patterns of peptides. The networks are further integrated with local dynamic programming to solve the complex optimization task of de novo sequencing. We evaluated the method on a wide variety of species and found that DeepNovo considerably outperformed state of the art methods, achieving 7.7-22.9% higher accuracy at the amino acid level and 38.1-64.0% higher accuracy at the peptide level. We further used DeepNovo to automatically reconstruct the complete sequences of antibody light and heavy chains of mouse, achieving 97.5-100% coverage and 97.2-99.5% accuracy, without assisting databases. Moreover, DeepNovo is retrainable to adapt to any sources of data and provides a complete end-to-end training and prediction solution to the de novo sequencing problem. Not only does our study extend the deep learning revolution to a new field, but it also shows an innovative approach in solving optimization problems by using deep learning and dynamic programming.
Collapse
|