1
|
Nataraj BH, Ranveer SA, K J, Nagpal R, Behare PV. Immune and microbiome modulatory effects of Limosilactobacillus fermentum NCDC 400 in an immunocompromised mouse model. Microb Pathog 2024; 196:106927. [PMID: 39265811 DOI: 10.1016/j.micpath.2024.106927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/22/2024] [Accepted: 09/09/2024] [Indexed: 09/14/2024]
Abstract
The present study was aimed to assess and validate the safety and functional efficacy of an indigenous probiotic strain Limosilactobacillus fermentum NCDC 400 (hereafter, LFN400) in an immunocompromised murine model. The study included four groups; a normal control (NC) group without immune suppression; an experimental model control (MC) with immune suppression induced via intraperitoneal cyclophosphamide (Cy) administration; and two MC groups orally administered with either low dose (LD) or high dose (HD) of LFN400 at dose 108 and 1010 CFU/mouse/day, respectively, for 15-days. Both control groups received normal saline as placebo control. LFN400 improved specific experimental characteristics including hematological and serum biochemical markers. Compared to MC group, LFN400-fed groups showed markedly (P < 0.05) decreased arrays of detrimental caecal enzymes. We did not observe instances of bacterial translocation of LFN400 from gut to bloodstream or extra-intestinal organs. LFN400 intake significantly (P < 0.05) enhanced spleen cell differentiation, immune and oxidative stress markers, and restored Cy-induced histopathological changes in multiple tissues, including the spleen. There was no genotoxic effect of LFN400 on bone marrow cells. Although not statistically significant, LFN400 feeding moderately increased gut microbiome diversity, supporting the growth of beneficial saccharolytic microorganisms and reducing the presence of pathobionts. The findings demonstrate that the probiotic strain LFN400 possesses in vivo safety and immunomodulatory potency and thus should be considered a potential candidate for future human clinical studies.
Collapse
Affiliation(s)
- Basavaprabhu Haranahalli Nataraj
- Techno-functional Starter Lab, National Collection of Dairy Cultures (NCDC), Dairy Microbiology Division, ICAR-National Dairy Research Institute, Karnal, 132001, Haryana, India; Dairy Bacteriology Section, Southern Regional Station (SRS), ICAR-National Dairy Research Institute, Adugodi, Bengaluru, 560 030, Karnataka, India.
| | - Soniya A Ranveer
- Techno-functional Starter Lab, National Collection of Dairy Cultures (NCDC), Dairy Microbiology Division, ICAR-National Dairy Research Institute, Karnal, 132001, Haryana, India.
| | - Jeevan K
- Regional Ayurveda Research Institute, Central Council for Research in Ayurvedic Sciences, Aamkho, Gwalior, 474009, Madhya Pradesh, India.
| | - Ravinder Nagpal
- The Gut Biome Lab, Department of Health, Nutrition, and Food Sciences, Florida State University, Tallahassee, FL, 32306, USA.
| | - Pradip V Behare
- Techno-functional Starter Lab, National Collection of Dairy Cultures (NCDC), Dairy Microbiology Division, ICAR-National Dairy Research Institute, Karnal, 132001, Haryana, India.
| |
Collapse
|
2
|
Nataraj BH, Jeevan K, Dang AK, Nagpal R, Ali SA, Behare PV. Pre-clinical safety and toxicity assessment of Limosilactobacillus fermentum NCDC 400 in murine model. Microb Pathog 2024; 189:106589. [PMID: 38382627 DOI: 10.1016/j.micpath.2024.106589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/01/2024] [Accepted: 02/16/2024] [Indexed: 02/23/2024]
Abstract
Comprehensive safety assessment of potential probiotic strains is crucial in the selection of risk-free strains for clinical translation. This study aimed to evaluate the biosafety of Limosilactobacillus fermentum NCDC 400, a potential probiotic strain, using oral toxicity tests in a Swiss albino mouse model. Mice were orally gavaged with low (108 CFU/mouse/day) and high (1010 CFU/mouse/day) doses of NCDC 400 for 14 (acute), 28 (subacute), and 90 (subchronic) days to assess behavioral, hematological, biochemical, immunological, and histological effects. The administration of NCDC 400 did not result in any observable adverse effects on general health parameters, including body weight, feed and water intake, and organ indices. Hematological and biochemical parameters, such as glucose, serum enzymes, urea, creatinine, serum minerals, total serum proteins, and lipid profile, remained largely unaffected by the test strain. Notably, NCDC 400 administration led to a significant reduction in harmful intestinal enzymes and improvement in gut health indices, as indicated by fecal pH, lactate, ammonia, and short-chain fatty acids. There were no instances of bacterial translocation of NCDC 400 to blood or extra-intestinal organs. Immune homeostasis was not adversely affected by repeated exposure to NCDC 400 in all three oral toxicity studies. Histopathological examination revealed no strain-related changes in various tissues. Based on these findings, a dose of 1010 CFU/mouse/day was considered as the No Observable Effect Level (NOEL) in healthy mice. In conclusion, this study demonstrates the safe and non-toxic behavior of L. fermentum NCDC 400. The results support and ensure the safety and suitability for clinical trials and eventual translation into clinical practice as potential probiotic.
Collapse
Affiliation(s)
- Basavaprabhu Haranahalli Nataraj
- Techno-functional Starter Lab, National Collection of Dairy Cultures (NCDC), Dairy Microbiology Division, ICAR-National Dairy Research Institute, Karnal, 132001, Haryana, India; Dairy Chemistry and Bacteriology Section, Southern Regional Station (SRS), ICAR-National Dairy Research Institute, Adugodi, Bengaluru, 560030, Karnataka, India.
| | - K Jeevan
- Regional Ayurveda Research Institute, Central Council for Research in Ayurvedic Sciences, Aamkho, Gwalior, 474009, Madhya Pradesh, India.
| | - Ajay Kumar Dang
- Animal Physiology Division, ICAR-NDRI, Karnal, 132001, Haryana, India.
| | - Ravinder Nagpal
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, FL, 32306, USA
| | - Syed Azmal Ali
- Proteomics of Stem Cells and Cancer, German Cancer Research Center (DKFZ), Heidelberg, 69121, Germany.
| | - Pradip V Behare
- Techno-functional Starter Lab, National Collection of Dairy Cultures (NCDC), Dairy Microbiology Division, ICAR-National Dairy Research Institute, Karnal, 132001, Haryana, India.
| |
Collapse
|
3
|
Raslan MA, Raslan SA, Shehata EM, Mahmoud AS, Viana MVC, Barh D, Sabri NA, Azevedo V. Applications of Proteomics in Probiotics Having Anticancer and Chemopreventive Properties. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1443:243-256. [PMID: 38409425 DOI: 10.1007/978-3-031-50624-6_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Proteomics has grown in importance in molecular sciences because it gives vital information on protein identification, expression levels, and alteration. Cancer is one of the world's major causes of death and is the major focus of much research. Cancer risk is determined by hereditary variables as well as the body's immunological condition. Probiotics have increasing medical importance due to their therapeutic influence on the human body in the prevention and treatment of numerous chronic illnesses, including cancer, with no adverse effects. Several anticancer, anti-inflammatory, and chemopreventive probiotics are studied using different proteomic approaches like two-dimensional gel electrophoresis, liquid chromatography-mass spectrometry, and matrix-assisted laser desorption/ionization mass spectrometry. To gain relevant information about probiotic characteristics, data from the proteomic analysis are evaluated and processed using bioinformatics pipelines. Proteomic studies showed the significance of different proteomic approaches in characterization, comparing strains, and determination of oxidative stress of different probiotics. Moreover, proteomic approaches identified different proteins that are involved in glucose metabolism and the formation of cell walls or cell membranes, and the differences in the expression of critical enzymes in the HIF-1 signaling pathway, starch, and sucrose metabolism, and other critical metabolic pathways.
Collapse
Affiliation(s)
| | | | | | - Amr S Mahmoud
- Department of Obstetrics and Gynecology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Marcus Vinicius Canário Viana
- Laboratório de Genética Celular e Molecular, Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Debmalya Barh
- Laboratório de Genética Celular e Molecular, Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Institute of Integrative Omics and Applied Biotechnology, Nonakuri, Purba Medinipur, West Bengal, India
| | - Nagwa A Sabri
- Department of Clinical Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt.
| | - Vasco Azevedo
- Laboratório de Genética Celular e Molecular, Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
4
|
Kaur H, Kaur G, Gupta T, Mittal D, Ali SA. Integrating Omics Technologies for a Comprehensive Understanding of the Microbiome and Its Impact on Cattle Production. BIOLOGY 2023; 12:1200. [PMID: 37759599 PMCID: PMC10525894 DOI: 10.3390/biology12091200] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 08/16/2023] [Accepted: 08/29/2023] [Indexed: 09/29/2023]
Abstract
Ruminant production holds a pivotal position within the global animal production and agricultural sectors. As population growth escalates, posing environmental challenges, a heightened emphasis is directed toward refining ruminant production systems. Recent investigations underscore the connection between the composition and functionality of the rumen microbiome and economically advantageous traits in cattle. Consequently, the development of innovative strategies to enhance cattle feed efficiency, while curbing environmental and financial burdens, becomes imperative. The advent of omics technologies has yielded fresh insights into metabolic health fluctuations in dairy cattle, consequently enhancing nutritional management practices. The pivotal role of the rumen microbiome in augmenting feeding efficiency by transforming low-quality feedstuffs into energy substrates for the host is underscored. This microbial community assumes focal importance within gut microbiome studies, contributing indispensably to plant fiber digestion, as well as influencing production and health variability in ruminants. Instances of compromised animal welfare can substantially modulate the microbiological composition of the rumen, thereby influencing production rates. A comprehensive global approach that targets both cattle and their rumen microbiota is paramount for enhancing feed efficiency and optimizing rumen fermentation processes. This review article underscores the factors that contribute to the establishment or restoration of the rumen microbiome post perturbations and the intricacies of host-microbiome interactions. We accentuate the elements responsible for responsible host-microbiome interactions and practical applications in the domains of animal health and production. Moreover, meticulous scrutiny of the microbiome and its consequential effects on cattle production systems greatly contributes to forging more sustainable and resilient food production systems, thereby mitigating the adverse environmental impact.
Collapse
Affiliation(s)
- Harpreet Kaur
- Division of Biochemistry, ICAR-National Dairy Research Institute (ICAR-NDRI), Karnal 132001, India
| | - Gurjeet Kaur
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, NSW 2052, Australia
- Mark Wainwright Analytical Centre, Bioanalytical Mass Spectrometry Facility, University of New South Wales, Sydney, NSW 2052, Australia
- Steno Diabetes Center Copenhagen, DK-2730 Herlev, Denmark
| | - Taruna Gupta
- Division of Biochemistry, ICAR-National Dairy Research Institute (ICAR-NDRI), Karnal 132001, India
| | - Deepti Mittal
- Division of Biochemistry, ICAR-National Dairy Research Institute (ICAR-NDRI), Karnal 132001, India
| | - Syed Azmal Ali
- Cell Biology and Proteomics Lab, Animal Biotechnology Center, ICAR-National Dairy Research Institute (ICAR-NDRI), Karnal 132001, India
- Division Proteomics of Stem Cells and Cancer, German Cancer Research Center, 69120 Heidelberg, Germany
| |
Collapse
|
5
|
Rani K, Ali SA, Kaul G, Behare PV. Protective effect of probiotic and prebiotic fermented milk containing Lactobacillus fermentum against obesity-induced hepatic steatosis and inflammation. J Food Biochem 2022; 46:e14509. [PMID: 36334279 DOI: 10.1111/jfbc.14509] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 10/17/2022] [Accepted: 10/21/2022] [Indexed: 11/08/2022]
Abstract
Obesity has reached epidemic proportions, with major economic and health implications. The complex pathophysiology of obesity explains the difficulty provided to health policy for its clinical management. Increasing data show that obesity and metabolic abnormalities are intimately connected to differences in consumption of probiotics, its relevance to gut microbiota activity and composition. The goal of this investigation was to assess the effect of oral delivery of indigenous probiotic Lactobacillus fermentum NCDC 400 and prebiotic fructo-oligosaccharide (FOS) on obesity-associated hepatic steatosis and inflammation produced by a high-fat diet (HFD). C57BL/6 mice treated with L. fermentum NCDC 400 either independently or in conjunction with FOS demonstrated reduced body weight and abdominal obesity after 24 weeks of treatment. Also, the anti-oxidative enzyme activity went down, and the inflammatory profile got better, with less fat getting into the hepatocytes. The lipid profile changed, with HDL cholesterol going up and LDL cholesterol and triglyceride levels going down. Further, L. fermentum NCDC 400 and FOS combinations decreased fasting glucose, gHbA1c, gastric inhibitory peptide, and insulin levels in mice fed with HFD, thus improving glucose homeostasis. Overall, consumption of L. fermentum NCDC 400 alone or its combinational effects had a protective role on obesity-associated hepatic steatosis. PRACTICAL APPLICATIONS: The potential indigenous probiotic Lactobacillus fermentum NCDC 400 and prebiotic FOS had a preventive role in obesity-induced hepatic steatosis and improves anti-oxidant and anti-inflammatory properties in HFD-fed obese mice. Our finding would be helpful to prevent obesity-associated hepatic steatosis and inflammation upon supplementation of pre- and pro-biotics (synbiotics).
Collapse
Affiliation(s)
- Kavita Rani
- Semen Biology Lab, Animal Biochemistry Division, ICAR-National Dairy Research Institute, Haryana, India
| | - Syed Azmal Ali
- German Cancer Research Center, Division Proteomics of Stem Cells and Cancer, Heidelberg, Germany.,Cell Biology and Proteomics Lab, Animal Biotechnology Center, ICAR-National Dairy Research Institute, Karnal, India
| | - Gautam Kaul
- Semen Biology Lab, Animal Biochemistry Division, ICAR-National Dairy Research Institute, Haryana, India
| | - Pradip V Behare
- National Collection of Dairy Cultures (NCDC) Lab, Dairy Microbiology Division, ICAR-National Dairy Research Institute, Karnal, India
| |
Collapse
|
6
|
Kaur H, Kaur G, Ali SA. Dairy-Based Probiotic-Fermented Functional Foods: An Update on Their Health-Promoting Properties. FERMENTATION-BASEL 2022; 8:425. [DOI: 10.3390/fermentation8090425] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
Numerous studies have shown a link between the consumption of fermented dairy foods and improved health outcomes. Since the early 2000s, especially probiotic-based fermented functional foods, have had a revival in popularity, mostly as a consequence of claims made about their health benefits. Among them, fermented dairy foods have been associated with obesity prevention and in other conditions such as chronic diarrhea, hypersensitivity, irritable bowel syndrome, Helicobacter pylori infection, lactose intolerance, and gastroenteritis which all are intimately linked with an unhealthy way of life. A malfunctioning inflammatory response may affect the intestinal epithelial barrier’s ability to function by interfering with the normal metabolic processes. In this regard, several studies have shown that fermented dairy probiotics products improve human health by stimulating the growth of good bacteria in the gut at the same time increasing the production of metabolic byproducts. The fermented functional food matrix around probiotic bacteria plays an important role in the survival of these strains by buffering and protecting them from intestinal conditions such as low pH, bile acids, and other harsh conditions. On average, cultured dairy products included higher concentrations of lactic acid bacteria, with some products having as much as 109/mL or g. The focus of this review is on fermented dairy foods and associated probiotic products and their mechanisms of action, including their impact on microbiota and regulation of the immune system. First, we discussed whey and whey-based fermented products, as well as the organisms associated with them. Followed by the role of probiotics, fermented-product-mediated modulation of dendritic cells, natural killer cells, neutrophils, cytokines, immunoglobulins, and reinforcement of gut barrier functions through tight junction. In turn, providing the ample evidence that supports their benefits for gastrointestinal health and related disorders.
Collapse
Affiliation(s)
- Harpreet Kaur
- Animal Biochemistry Division, Indian Council of Agricultural Research-National Dairy Research Institute (ICAR-NDRI), Karnal 132001, India
| | - Gurjeet Kaur
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, NSW 2052, Australia
- Mark Wainwright Analytical Centre, Bioanalytical Mass Spectrometry Facility, University of New South Wales, Sydney, NSW 2052, Australia
| | - Syed Azmal Ali
- Cell Biology and Proteomics Lab, Animal Biotechnology Center, ICAR-NDRI, Karnal 132001, India
- Division of Proteomics of Stem Cells and Cancer, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| |
Collapse
|
7
|
Kumari M, Singh P, Nataraj BH, Kokkiligadda A, Naithani H, Azmal Ali S, Behare PV, Nagpal R. Fostering next-generation probiotics in human gut by targeted dietary modulation: An emerging perspective. Food Res Int 2021; 150:110716. [PMID: 34865747 DOI: 10.1016/j.foodres.2021.110716] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 08/07/2021] [Accepted: 09/15/2021] [Indexed: 12/16/2022]
Abstract
Emerging evidence and an in-depth understanding of the microbiome have helped in identifying beneficial commensals and their therapeutic potentials. Specific commensal taxa/ strains of the human gut microbiome have been positively associated with human health and recently termed as next-generation probiotics (NGPs). Of these, Akkermansia muciniphila, Ruminococcus bromii, Faecalibacterium prausnitzii, Anaerobutyricum hallii, and Roseburia intestinalis are the five most relevant gut-derived NGPs that have demonstrated therapeutic potential in managing metabolic diseases. Specific and natural dietary interventions can modulate the abundance and activity of these beneficial bacteria in the gut. Hence, the understanding of targeted stimulation of specific NGP by specific probiotic-targeted diets (PTD) is indispensable for the rational application of their combination. The supplementation of NGP with its specific PTD will help the strain(s) to compete with harmful microbes and acquire its niche. This combination would enhance the effectiveness of NGPs to be used as "live biotherapeutic products" or food nutraceuticals. Under the current milieu, we review various PTDs that influence the abundance of specific potential NGPs, and contemplates potential interactions between diet, microbes, and their effects on host health. Taking into account the study mentioned, we propose that combining NGPs will provide an alternate solution for developing the new diet in conjunction with PTD.
Collapse
Affiliation(s)
- Manorama Kumari
- Technofunctional Starters Lab, National Collection of Dairy Cultures, Dairy Microbiology Division, ICAR-National Dairy Research Institute, Karnal 132001, Haryana, India
| | - Parul Singh
- Proteomics and Cell Biology Lab, Animal Biotechnology Center, National Dairy Research Institute, Karnal 132001, Haryana, India
| | - Basavaprabhu H Nataraj
- Technofunctional Starters Lab, National Collection of Dairy Cultures, Dairy Microbiology Division, ICAR-National Dairy Research Institute, Karnal 132001, Haryana, India
| | - Anusha Kokkiligadda
- Technofunctional Starters Lab, National Collection of Dairy Cultures, Dairy Microbiology Division, ICAR-National Dairy Research Institute, Karnal 132001, Haryana, India
| | - Harshita Naithani
- Technofunctional Starters Lab, National Collection of Dairy Cultures, Dairy Microbiology Division, ICAR-National Dairy Research Institute, Karnal 132001, Haryana, India
| | - Syed Azmal Ali
- Proteomics and Cell Biology Lab, Animal Biotechnology Center, National Dairy Research Institute, Karnal 132001, Haryana, India
| | - Pradip V Behare
- Technofunctional Starters Lab, National Collection of Dairy Cultures, Dairy Microbiology Division, ICAR-National Dairy Research Institute, Karnal 132001, Haryana, India.
| | - Ravinder Nagpal
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, FL 32306, USA.
| |
Collapse
|
8
|
Diversity and potential function of bacterial communities during milk fermentation of Kazak artisanal cheese. Process Biochem 2021. [DOI: 10.1016/j.procbio.2021.11.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
9
|
Azmal Ali S, Singh AK, Tomar SK, Behare P. Genome Sequence of Lacticaseibacillus rhamnosus Strain NCDC610, Isolated from a Traditional Cereal-Based Fermented Milk Product (Raabadi). Microbiol Resour Announc 2021; 10:e0067221. [PMID: 34761961 PMCID: PMC8582304 DOI: 10.1128/mra.00672-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 10/20/2021] [Indexed: 12/13/2022] Open
Abstract
We announce the draft genome sequence of Lacticaseibacillus rhamnosus NCDC610, an isolate from an Indian traditional cereal-based fermented milk product (Raabadi). The genome size of Lacticaseibacillus rhamnosus NCDC610 is 2.91 Mb with the assembled sequence, and the genome consists of 67 contigs.
Collapse
Affiliation(s)
- Syed Azmal Ali
- Proteomics and Cell Biology Laboratory, Animal Biotechnology Center, ICAR, National Dairy Research Institute, Karnal, Haryana, India
| | - Ashish Kumar Singh
- Dairy Technology Division, ICAR, National Dairy Research Institute, Karnal, Haryana, India
| | - Sudhir K. Tomar
- National Collection of Dairy Cultures Laboratory, Dairy Microbiology Division, ICAR, National Dairy Research Institute, Karnal, Haryana, India
| | - Pradip Behare
- National Collection of Dairy Cultures Laboratory, Dairy Microbiology Division, ICAR, National Dairy Research Institute, Karnal, Haryana, India
| |
Collapse
|
10
|
Liu C, Huang H, Duan X, Chen Y. Integrated Metagenomic and Metaproteomic Analyses Unravel Ammonia Toxicity to Active Methanogens and Syntrophs, Enzyme Synthesis, and Key Enzymes in Anaerobic Digestion. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:14817-14827. [PMID: 34657430 DOI: 10.1021/acs.est.1c00797] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
During anaerobic digestion, the active microbiome synthesizes enzymes by transcription and translation, and then enzymes catalyze multistep bioconversions of substrates before methane being produced. However, little information is available on how ammonia affects truly active microbes containing the expressed enzymes, enzyme synthesis, and key enzymes. In this study, an integrated metagenomic and metaproteomic investigation showed that ammonia suppressed not only the obligate acetotrophic methanogens but also the syntrophic propionate and butyrate oxidation taxa and their assistant bacteria (genus Desulfovibrio), which declined the biotransformations of propionate and butyrate → acetate → methane. Although the total population of the hydrolyzing and acidifying bacteria was not affected by ammonia, the bacteria with ammonia resistance increased. Our study also revealed that ammonia restrained the enzyme synthesis process by inhibiting the RNA polymerase (subunits A' and D) during transcription and the ribosome (large (L3, L12, L13, L22, and L25) and small (S3, S3Ae, and S7) ribosomal subunits) and aminoacyl-tRNA synthesis (aspartate-tRNA synthetase) in translation. Further investigation suggested that methylmalonyl-CoA mutase, acetyl-CoA C-acetyltransferase, and CH3-CoM reductase, which regulate propionate and butyrate oxidation and acetoclastic methanation, were significantly downregulated by ammonia. This study provides intrinsic insights into the fundamental mechanisms of how ammonia inhibits anaerobic digestion.
Collapse
Affiliation(s)
- Chao Liu
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Haining Huang
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Xu Duan
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Yinguang Chen
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| |
Collapse
|
11
|
Ali SA, Mittal D, Kaur G. In-situ monitoring of xenobiotics using genetically engineered whole-cell-based microbial biosensors: recent advances and outlook. World J Microbiol Biotechnol 2021; 37:81. [PMID: 33843020 DOI: 10.1007/s11274-021-03024-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 02/25/2021] [Indexed: 02/07/2023]
Abstract
Industrialisation, directly or indirectly, exposes humans to various xenobiotics. The increased magnitude of chemical pesticides and toxic heavy metals in the environment, as well as their intrusion into the food chain, seriously threatens human health. Therefore, the surveillance of xenobiotics is crucial for social safety and security. Online investigation by traditional methods is not sufficient for the detection and identification of such compounds because of the high costs and their complexity. Advancement in the field of genetic engineering provides a potential opportunity to use genetically modified microorganisms. In this regard, whole-cell-based microbial biosensors (WCBMB) represent an essential tool that couples genetically engineered organisms with an operator/promoter derived from a heavy metal-resistant operon combined with a regulatory protein in the gene circuit. The plasmid controls the expression of the reporter gene, such as gfp, luc, lux and lacZ, to an inducible gene promoter and has been widely applied to assay toxicity and bioavailability. This review summarises the recent trends in the development and application of microbial biosensors and the use of mobile genes for biomedical and environmental safety concerns.
Collapse
Affiliation(s)
- Syed Azmal Ali
- Proteomics and Cell Biology Lab, Animal Biotechnology Center, National Dairy Research Institute, Karnal, Haryana, India. .,Proteomics and Cell Biology Lab, Animal Biotechnology Center, ICAR-National Dairy Research Institute, 132001, Karnal, Haryana, India.
| | - Deepti Mittal
- Animal Biochemistry Division, National Dairy Research Institute, Karnal, Haryana, India
| | - Gurjeet Kaur
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, 2052, Sydney, NSW, Australia
| |
Collapse
|
12
|
Li L, Yang X, Hong R, Liu F. Combined proteomics and transcriptomics analysis of Lactococcus lactis under different culture conditions. J Dairy Sci 2021; 104:2564-2580. [PMID: 33455780 DOI: 10.3168/jds.2020-18895] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 08/08/2020] [Indexed: 11/19/2022]
Abstract
During industrial handling, Lactococcus lactis needs to adapt to different culture conditions by regulating its metabolic pathways. Modifying culture conditions may be an important way to control the biomass and functional metabolites of lactic acid bacteria. In this study, we identified the differentially expressed genes and proteins of L. lactis under different culture conditions by integrating transcriptomics and proteomics. We also analyzed the data using a bioinformatic approach to reveal the regulatory mechanisms affected by culture conditions. The transcriptome and proteome studies indicated that different culture conditions (fructose, calcium ion, palmitic acid, low pH) affected gene and protein expressions. The levels of differentially expressed proteins did not significantly correlate with the expression levels of their corresponding genes. Our results highlight the importance of comparative transcriptomics and proteomics analyses. In this study, fructose and pH significantly affected sugar metabolism of L. lactis. When lactose was replaced by fructose, fructokinase expression was promoted, and fructose metabolism was accelerated, whereas starch and sucrose metabolism and galactose metabolism system were inhibited. Low pH may be beneficial to homofermentation of L. lactis, which may also metabolize galactose through the tagatose pathway and the Leloir pathway. Fatty acid metabolism and fatty acid biosynthesis were significantly downregulated under calcium ion and palmitic acid. The purine metabolism was upregulated under fructose treatment and downregulated under palmitic acid treatment.
Collapse
Affiliation(s)
- Liang Li
- College of Food Science, Northeast Agricultural University, Harbin, 150030, China
| | - Xiaoyu Yang
- College of Food Science, Northeast Agricultural University, Harbin, 150030, China
| | - Rui Hong
- Department of Academic Theory Research, Northeast Agricultural University, Harbin, 150030, China.
| | - Fei Liu
- College of Food Science, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
13
|
Chopra A, Ali SA, Bathla S, Rawat P, Vohra V, Kumar S, Mohanty AK. High-Resolution Mass Spectrometer-Based Ultra-Deep Profile of Milk Whey Proteome in Indian Zebu ( Sahiwal) Cattle. Front Nutr 2020; 7:150. [PMID: 33072792 PMCID: PMC7533583 DOI: 10.3389/fnut.2020.00150] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 07/27/2020] [Indexed: 12/18/2022] Open
Abstract
Milk serves as a mode of protection to neonate through transferring the host defense proteins from mother to offspring. It also guards the mammary gland against various types of infections. Along with the presence of six vital proteins, bovine milk (whey) contains a massive class of minor proteins, not all of which have been comprehensively reported. In this study, we performed an LC-MS/MS-based ultra-deep identification of the milk whey proteome of Indian zebu (Sahiwal) cattle. Three independent search engines that are Comet, Tandem, and Mascot-based analysis resulted in the discovery of over 6,210 non-redundant proteins commonly identified. Genome-wise mapping revealed that chromosome 1 showed a minimum expression of 14 proteins, whereas chromosome 19 expressed 250 maximum proteins in milk whey. These results demonstrate that milk proteome in Sahiwal cattle is quite complicated, and minor milk fractions play a significant role in host defense.
Collapse
Affiliation(s)
- Alka Chopra
- Proteomics and Cell Biology Lab, Animal Biotechnology Center, National Dairy Research Institute, Karnal, India
| | - Syed Azmal Ali
- Proteomics and Cell Biology Lab, Animal Biotechnology Center, National Dairy Research Institute, Karnal, India
| | - Shveta Bathla
- Yale University School of Medicine, New Haven, CT, United States
| | - Preeti Rawat
- Proteomics and Cell Biology Lab, Animal Biotechnology Center, National Dairy Research Institute, Karnal, India
| | - Vikas Vohra
- Animal Genetics and Breeding Division, National Dairy Research Institute, Karnal, India
| | - Sudarshan Kumar
- Proteomics and Cell Biology Lab, Animal Biotechnology Center, National Dairy Research Institute, Karnal, India
| | - Ashok Kumar Mohanty
- Proteomics and Cell Biology Lab, Animal Biotechnology Center, National Dairy Research Institute, Karnal, India
| |
Collapse
|
14
|
Nataraj BH, Ali SA, Behare PV, Yadav H. Postbiotics-parabiotics: the new horizons in microbial biotherapy and functional foods. Microb Cell Fact 2020; 19:168. [PMID: 32819443 PMCID: PMC7441679 DOI: 10.1186/s12934-020-01426-w] [Citation(s) in RCA: 302] [Impact Index Per Article: 60.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 08/13/2020] [Indexed: 12/20/2022] Open
Abstract
Probiotics have several health benefits by modulating gut microbiome; however, techno-functional limitations such as viability controls have hampered their full potential applications in the food and pharmaceutical sectors. Therefore, the focus is gradually shifting from viable probiotic bacteria towards non-viable paraprobiotics and/or probiotics derived biomolecules, so-called postbiotics. Paraprobiotics and postbiotics are the emerging concepts in the functional foods field because they impart an array of health-promoting properties. Although, these terms are not well defined, however, for time being these terms have been defined as here. The postbiotics are the complex mixture of metabolic products secreted by probiotics in cell-free supernatants such as enzymes, secreted proteins, short chain fatty acids, vitamins, secreted biosurfactants, amino acids, peptides, organic acids, etc. While, the paraprobiotics are the inactivated microbial cells of probiotics (intact or ruptured containing cell components such as peptidoglycans, teichoic acids, surface proteins, etc.) or crude cell extracts (i.e. with complex chemical composition)". However, in many instances postbiotics have been used for whole category of postbiotics and parabiotics. These elicit several advantages over probiotics like; (i) availability in their pure form, (ii) ease in production and storage, (iii) availability of production process for industrial-scale-up, (iv) specific mechanism of action, (v) better accessibility of Microbes Associated Molecular Pattern (MAMP) during recognition and interaction with Pattern Recognition Receptors (PRR) and (vi) more likely to trigger only the targeted responses by specific ligand-receptor interactions. The current review comprehensively summarizes and discussed various methodologies implied to extract, purify, and identification of paraprobiotic and postbiotic compounds and their potential health benefits.
Collapse
Affiliation(s)
- Basavaprabhu H Nataraj
- Technofunctional Starters Lab, National Collection of Dairy Cultures (NCDC), Dairy Microbiology Division, ICAR-National Dairy Research Institute, Karnal, Haryana, 132001, India
| | - Syed Azmal Ali
- Proteomics and Cell Biology Lab, Animal Biotechnology Center, ICAR-National Dairy Research Institute, Karnal, Haryana, 132001, India
| | - Pradip V Behare
- Technofunctional Starters Lab, National Collection of Dairy Cultures (NCDC), Dairy Microbiology Division, ICAR-National Dairy Research Institute, Karnal, Haryana, 132001, India.
| | - Hariom Yadav
- Department of Internal Medicine-Molecular Medicine and Microbiology and Immunology, Wake Forest School of Medicine, Biotech Place, Room 2E-034, 575 North Patterson Ave, Winston-Salem, NC, 27101, USA.
| |
Collapse
|
15
|
Ali SA, Singh P, Tomar SK, Mohanty AK, Behare P. Proteomics fingerprints of systemic mechanisms of adaptation to bile in Lactobacillus fermentum. J Proteomics 2019; 213:103600. [PMID: 31805390 DOI: 10.1016/j.jprot.2019.103600] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 11/17/2019] [Accepted: 11/28/2019] [Indexed: 12/17/2022]
Abstract
Lactobacillus fermentum is a natural resident of the human GIT and is used as a probiotic. A unique property of L. fermentum is its ability to tolerate, colonize, and survive in the harsh conditions of bile, which facilitates transient colonization of the host colon. In the current study, we investigated the key mechanisms of action involved in bacterial survival in the presence of bile, using high-resolution mass spectrometry. A total of 1071 proteins were identified, among which 378 were up-regulated and 368 down-regulated by ≥2-fold (t-test, p < .05). Differentially regulated proteins comprised both intracellular and surface-exposed (i.e., membrane) proteins (p < .01, t-test for total proteome analysis; p < .05, t-test for membrane proteome analysis). These alterations strengthen the cell envelope and also mediate bile efflux by adjusting carbohydrate metabolic pathways and prevention of protein misfolding. These processes are mainly involved in the active removal of bile salts or amelioration of its adverse effects on cells. Further investigation of mRNA transcript expression levels of selected proteins by quantitative reverse transcriptase-PCR verified the proteomic data. Together, our proteomics findings reveal the roles of post-stress recovery proteins and highlight the interacting pathways responsible for bacterial cell tolerance to bile stress. BIOLOGICAL SIGNIFICANCE: Our intestinal tract is a nutrient-rich milieu crowded with up to 100 trillion (1014) of microbes. The fact that we are born germ-free describes that these microbes must colonize our intestinal tract from outside. However, their survival is also complicated because of hazardous conditions in the gut due to the presence of bile acid and others, which exerts a deleterious effect on the beneficial microbial load. While there was limited information available describing the comprehensive mechanism of survival? Furthermore, the imbalance of these micro floras leads to numerous disease conditions. It explains the need for enhanced understanding of host-microbe interactions in the colon. The present study majorly focuses on identifying "how microbes respond to environmental stressors" in this context, particularly bile acid response. This work addresses a fascinating cellular mechanism involved in the complex changes of bile induction in the microbial system; in this case, L. fermentum NCDC 605 a well established probiotic organism. In this article, we decipher the characteristic adaptation mechanism adjusted by probiotics in the harsh condition of 1.2% bile. The generated new knowledge will also improve the potential therapeutic efficacy of probiotics strains in clinical trials for patients of inflammatory bowel diseases (IBD) and related disorders.
Collapse
Affiliation(s)
- Syed Azmal Ali
- Proteomics and Cell Biology Lab, Animal Biotechnology Center, National Dairy Research Institute, Haryana, India.
| | - Parul Singh
- Proteomics and Cell Biology Lab, Animal Biotechnology Center, National Dairy Research Institute, Haryana, India
| | - Sudhir K Tomar
- National Collection of Dairy Cultures (NCDC) lab, Dairy Microbiology Division, National Dairy Research Institute, Haryana, India
| | - Ashok K Mohanty
- Proteomics and Cell Biology Lab, Animal Biotechnology Center, National Dairy Research Institute, Haryana, India
| | - Pradip Behare
- National Collection of Dairy Cultures (NCDC) lab, Dairy Microbiology Division, National Dairy Research Institute, Haryana, India.
| |
Collapse
|
16
|
Tavares GC, Pereira FL, Barony GM, Rezende CP, da Silva WM, de Souza GHMF, Verano-Braga T, de Carvalho Azevedo VA, Leal CAG, Figueiredo HCP. Delineation of the pan-proteome of fish-pathogenic Streptococcus agalactiae strains using a label-free shotgun approach. BMC Genomics 2019; 20:11. [PMID: 30616502 PMCID: PMC6323687 DOI: 10.1186/s12864-018-5423-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 12/27/2018] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Streptococcus agalactiae (GBS) is a major pathogen of Nile tilapia, a global commodity of the aquaculture sector. The aims of this study were to evaluate protein expression in the main genotypes of GBS isolated from diseased fishes in Brazil using a label-free shotgun nano-liquid chromatography-ultra definition mass spectrometry (nanoLC-UDMSE) approach and to compare the differential abundance of proteins identified in strains isolated from GBS-infected fishes and humans. RESULTS A total of 1070 protein clusters were identified by nanoLC-UDMSE in 5 fish-adapted GBS strains belonging to sequence types ST-260 and ST-927 and the non-typeable (NT) lineage and 1 human GBS strain (ST-23). A total of 1065 protein clusters corresponded to the pan-proteome of fish-adapted GBS strains; 989 of these were identified in all fish-adapted GBS strains (core proteome), and 62 were shared by at least two strains (accessory proteome). Proteins involved in the stress response and in the regulation of gene expression, metabolism and virulence were detected, reflecting the adaptive ability of fish-adapted GBS strains in response to stressor factors that affect bacterial survival in the aquatic environment and bacterial survival and multiplication inside the host cell. Measurement of protein abundance among different hosts showed that 5 and 26 proteins were exclusively found in the human- and fish-adapted GBS strains, respectively; the proteins exclusively identified in fish isolates were mainly related to virulence factors. Furthermore, 215 and 269 proteins were up- and down-regulated, respectively, in the fish-adapted GBS strains in comparison to the human isolate. CONCLUSIONS Our study showed that the core proteome of fish-adapted GBS strains is conserved and demonstrated high similarity of the proteins expressed by fish-adapted strains to the proteome of the human GBS strain. This high degree of proteome conservation of different STs suggests that, a monovalent vaccine may be effective against these variants.
Collapse
Affiliation(s)
- Guilherme Campos Tavares
- AQUACEN - National Reference Laboratory of Aquatic Animal Diseases, Ministry of Agriculture, Livestock and Food Supply, Veterinary School, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Felipe Luiz Pereira
- AQUACEN - National Reference Laboratory of Aquatic Animal Diseases, Ministry of Agriculture, Livestock and Food Supply, Veterinary School, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Gustavo Morais Barony
- AQUACEN - National Reference Laboratory of Aquatic Animal Diseases, Ministry of Agriculture, Livestock and Food Supply, Veterinary School, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Cristiana Perdigão Rezende
- AQUACEN - National Reference Laboratory of Aquatic Animal Diseases, Ministry of Agriculture, Livestock and Food Supply, Veterinary School, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Wanderson Marques da Silva
- Laboratory of Cellular and Molecular Genetics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | | | - Thiago Verano-Braga
- Department of Physiology and Biophysics, Institute of Biological Science, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Vasco Ariston de Carvalho Azevedo
- Laboratory of Cellular and Molecular Genetics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Carlos Augusto Gomes Leal
- AQUACEN - National Reference Laboratory of Aquatic Animal Diseases, Ministry of Agriculture, Livestock and Food Supply, Veterinary School, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Henrique César Pereira Figueiredo
- AQUACEN - National Reference Laboratory of Aquatic Animal Diseases, Ministry of Agriculture, Livestock and Food Supply, Veterinary School, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil. .,School of Veterinary, Department of Preventive Veterinary Medicine, Federal University of Minas Gerais, Av. Antônio Carlos 6627, Pampulha, Belo Horizonte, Minas Gerais, 30161-970, Brazil.
| |
Collapse
|
17
|
Bagon BB, Valeriano VDV, Oh JK, Pajarillo EAB, Cho CS, Kang DK. Comparative exoproteome analyses of Lactobacillus spp. reveals species- and strain-specific proteins involved in their extracellular interaction and probiotic potential. Lebensm Wiss Technol 2018. [DOI: 10.1016/j.lwt.2018.03.069] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
18
|
Recombinant purified buffalo leukemia inhibitory factor plays an inhibitory role in cell growth. PLoS One 2018; 13:e0198523. [PMID: 29897967 PMCID: PMC5999108 DOI: 10.1371/journal.pone.0198523] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 05/21/2018] [Indexed: 01/22/2023] Open
Abstract
Leukemia Inhibitory Factor (LIF) is a polyfunctional cytokine, involved in numerous regulatory effects in vivo and in vitro, varying from cell proliferation to differentiation, and has therapeutic potential for treating various diseases. In the current study, a COS-1 cell line overexpressing recombinant Buffalo LIF (rBuLIF) was established. The rBuLIF was purified to homogeneity from the total cell lysate of COS-1 cells using a two-step affinity chromatography. The purified LIF was confirmed by western blot and mass spectrometer (MS/MS). Particularly, high-resolution MS has identified the rBuLIF with 73% of sequence coverage with highest confidence parameters and with the search engine score of 4580. We determined the molecular weight of rBuLIF protein to be 58.99 kDa and 48.9 kDa with and without glycosylation, respectively. Moreover, the purified rBuLIF was verified to be functionally active by measuring the growth inhibition of M1 myeloid leukemia cells, revealing a maximum inhibition at 72 hours and half-maximal effective concentration (EC50) of 0.0555 ng/ml, corresponding to a specific activity of >1.6×107 units/mg. Next, we evaluated the effect of rBuLIF on buffalo mammary epithelial cell lines for its role in involution and also identified the IC50 value for BuMEC migrating cells to be 77.8 ng/ml. Additionally, the treatment of MECs (BuMEC and EpH4) displayed significant (P < 0.05) reduction in growth progression, as confirmed by qRT-PCR analysis, suggesting its strong involvement in the involution of the mammary gland in vivo. Thus, we conclude that the glycosylated rBuLIF, purified from COS-1 cells was found to be functionally active as its natural counterpart.
Collapse
|
19
|
Evaluation of some in vitro probiotic properties of Lactobacillus fermentum Strains. Journal of Food Science and Technology 2018; 55:2801-2807. [PMID: 30042597 DOI: 10.1007/s13197-018-3197-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 12/17/2017] [Accepted: 05/09/2018] [Indexed: 10/16/2022]
Abstract
This study aimed to check the in vitro probiotic properties of eleven Lactobacillus fermentum strains previously isolated from fermented dairy products and infant faeces. These cultures were tested for their tolerance to different pH such as 2.0, 2.5, 3.0, 3.5 and 6.5, bile salt hydrolysis and cell surface hydrophobicity. All the strains were persistent at pH 3.5 for 3 h whereas only faecal origin isolates such as L. fermentum BIF-19, BIF-20, BIF-18 and MTCC 8711 had shown considerable growth at pH 2.5. The strains NCDC-400, MTCC 8711, BIF-18, BIF-19 and BIF-20 showed slight to intense precipitation zone of bile salt hydrolase activity by agar plate assay. The strain L. fermentum BIF-19 exhibited best preliminary probiotic properties was selected for the adhesion to Caco-2 cell lines, which shows similar adhesion to that observed for standard probiotic Lactobacillus rhamnosus GG.
Collapse
|
20
|
Draft Genome Sequence of Lactobacillus fermentum NCDC 400, Isolated from a Traditional Indian Dairy Product. GENOME ANNOUNCEMENTS 2018; 6:6/2/e01492-17. [PMID: 29326227 PMCID: PMC5764951 DOI: 10.1128/genomea.01492-17] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We announce here the draft genome sequence of Lactobacillus fermentum NCDC 400, a potential probiotic strain isolated from a traditional Indian dairy product. The genome size of Lactobacillus fermentum NCDC 400 is 1.89 Mb, and the assembled sequence consists of 185 contigs joined into 138 scaffolds.
Collapse
|
21
|
Label-free quantitative proteomic analysis of Lactobacillus fermentum NCDC 400 during bile salt exposure. J Proteomics 2017; 167:36-45. [DOI: 10.1016/j.jprot.2017.08.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 07/19/2017] [Accepted: 08/07/2017] [Indexed: 11/20/2022]
|