1
|
Wang B, Shang N, Feng X, Hu Z, Li P, Chen Y, Hu B, Ding M, Xu J. Understanding the microbiome-crop rotation nexus in karst agricultural systems: insights from Southwestern China. Front Microbiol 2025; 16:1503636. [PMID: 40078553 PMCID: PMC11897573 DOI: 10.3389/fmicb.2025.1503636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Accepted: 02/05/2025] [Indexed: 03/14/2025] Open
Abstract
Understanding how soil properties and microbial communities respond to crop rotation is essential for the sustainability of agroecosystems. However, there has been limited research on how crop rotation alters below-ground microbial communities in soils with serious bacterial wilt within the karst agricultural system. This study investigated the effects of continuous planting of corn, tobacco, and tobacco-corn rotation on soil microbial communities in the karst regions of Southwestern China. High-throughput sequencing was used to evaluate the responses of the soil microbial community structure to crop monoculture and rotation patterns. As expected, the tobacco-corn rotation mitigated the negative effects of continuous cropping and reduced soil acidification. The tobacco-corn rotation also significantly altered the composition of microbial communities and promoted plant growth by fostering a higher abundance of beneficial microorganisms. The predominant bacteria genera Sphingomonas and Gaiella and the predominant fungal genera Mortierella and Saitozyma were identified as discriminant biomarkers that are critical to soil ecosystem health. pH, available potassium (AK), and available phosphorus (AP) were the primary soil factors related to the soil microbiome assembly. This study aimed to demonstrate the association between crop rotation and microbiomes, suggesting that altering cultivation patterns could enhance karst agricultural systems.
Collapse
Affiliation(s)
- Bin Wang
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, China
- Yunnan Tobacco Company Wenshan Prefecture Company, Wenshan Zhuang and Miao Autonomous Prefecture, Yunnan, China
| | - Nianjie Shang
- Institute of Crop Germplasm Resources, Guizhou Academy of Agricultural Sciences, Guiyang, China
| | - Xinwei Feng
- Guizhou Tobacco Company Qiannan Company, Duyun, China
| | - Zongling Hu
- Yunnan Tobacco Company Wenshan Prefecture Company, Wenshan Zhuang and Miao Autonomous Prefecture, Yunnan, China
| | - Pengfei Li
- Yunnan Tobacco Company Wenshan Prefecture Company, Wenshan Zhuang and Miao Autonomous Prefecture, Yunnan, China
| | - Yi Chen
- Yunnan Academy of Tobacco Agricultural Sciences, Kunming, China
| | - Binbin Hu
- Yunnan Academy of Tobacco Agricultural Sciences, Kunming, China
| | - Mengjiao Ding
- College of Tobacco Science, Guizhou University, Guiyang, China
- Guizhou Provincial Key Laboratory for Tobacco Quality, College of Tobacco Science, Guizhou University, Guiyang, China
- Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, China
| | - Junju Xu
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, China
| |
Collapse
|
2
|
Ding W, Duan Y, Wang Y, Fan J, Rao W, Xing S. Quantitative Proteomic Analysis of Lysine Malonylation in Response to Salicylic Acid in the Roots of Platycodon grandiflorus. Int J Mol Sci 2025; 26:1392. [PMID: 39941159 PMCID: PMC11818218 DOI: 10.3390/ijms26031392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 01/20/2025] [Accepted: 01/21/2025] [Indexed: 02/16/2025] Open
Abstract
Salicylic acid, as a plant hormone, significantly affects the physiological and biochemical indexes of soluble sugar, malondialdehyde content, peroxidase, and superoxide dismutase enzyme activity in Platycodon grandiflorus. Lysine malonylation is a post-translational modification that involves various cellular functions in plants, though it is rarely studied, especially in medicinal plants. In this study, the aim was to perform a comparative quantitative proteomic study of malonylation modification on P. grandiflorus root proteins after salicylic acid treatment using Western blot with specific antibodies, affinity enrichment and LC-MS/MS analysis methods. The analysis identified 1907 malonyl sites for 809 proteins, with 414 proteins and 798 modification sites quantified with high confidence. Post-treatment, 361 proteins were upregulated, and 310 were downregulated. Bioinformatics analysis revealed that malonylation in P. grandiflorus is primarily involved in photosynthesis and carbon metabolism. Physiological and biochemical analysis showed that salicylic acid treatment increased the malondialdehyde levels, soluble protein, superoxide dismutase, and peroxidase activity but did not significantly affect the total saponins content in P. grandiflorus. These findings provide an important basis for exploring the molecular mechanisms of P. grandiflorus following salicylic acid treatment and enhance understanding of the biological function of protein lysine malonylation in plants.
Collapse
Affiliation(s)
- Wanyue Ding
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; (W.D.); (Y.D.); (Y.W.); (J.F.); (W.R.)
- Institute of Traditional Chinese Medicine Resources Protection and Development, Anhui Academy of Chinese Medicine, Hefei 230012, China
| | - Yingying Duan
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; (W.D.); (Y.D.); (Y.W.); (J.F.); (W.R.)
| | - Yuqing Wang
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; (W.D.); (Y.D.); (Y.W.); (J.F.); (W.R.)
| | - Jizhou Fan
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; (W.D.); (Y.D.); (Y.W.); (J.F.); (W.R.)
| | - Weiyi Rao
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; (W.D.); (Y.D.); (Y.W.); (J.F.); (W.R.)
- MOE—Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei 230038, China
| | - Shihai Xing
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; (W.D.); (Y.D.); (Y.W.); (J.F.); (W.R.)
- Institute of Traditional Chinese Medicine Resources Protection and Development, Anhui Academy of Chinese Medicine, Hefei 230012, China
- MOE—Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei 230038, China
| |
Collapse
|
3
|
Liu Y, Yin C, Zhu M, Zhan Y, Lin M, Yan Y. Comparative Genomic Analysis of Bacillus velezensis BRI3 Reveals Genes Potentially Associated with Efficient Antagonism of Sclerotinia sclerotiorum (Lib.) de Bary. Genes (Basel) 2024; 15:1588. [PMID: 39766855 PMCID: PMC11675273 DOI: 10.3390/genes15121588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/04/2024] [Accepted: 12/07/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND/OBJECTIVES Bacillus velezensis has recently received increased attention as a potential biological agent because of its broad-spectrum antagonistic capacity against harmful bacteria and fungi. This study aims to thoroughly analyze the genomic characteristics of B. velezensis BRI3, thereby providing theoretical groundwork for the agronomic utilization of this strain. METHODS In this work, we evaluated the beneficial traits of the newly isolated strain B. velezensis BRI3 via in vitro experiments, whole-genome sequencing, functional annotation, and comparative genomic analysis. RESULTS B. velezensis BRI3 exhibits broad-spectrum antifungal activity against various soilborne pathogens, displays inhibitory effects comparable to those of the type strain FZB42, and exhibits particularly effective antagonism against Sclerotinia sclerotiorum (Lib.) de Bary. Whole-genome sequencing and assembly revealed that the genome of BRI3 contains one chromosome and two plasmids, which carry a large amount of genetic information. Moreover, 13 biosynthetic gene clusters (BGCs) involved in the biosynthesis of secondary metabolites were predicted within the BRI3 genome. Among these, two unique BGCs (cluster 11 and cluster 13), which were not previously reported in the genomes of other strains and could potentially encode novel metabolic products, were identified. The results of the comparative genomic analysis demonstrated the genomic structural conservation and genetic homogeneity of BRI3. CONCLUSIONS The unique characteristics and genomic data provide insights into the potential application of BRI3 as a biocontrol and probiotic agent.
Collapse
Affiliation(s)
| | | | | | | | | | - Yongliang Yan
- National Key Laboratory of Agricultural Microbiology, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
4
|
Popova L, Carr RA, Carabetta VJ. Recent Contributions of Proteomics to Our Understanding of Reversible N ε-Lysine Acylation in Bacteria. J Proteome Res 2024; 23:2733-2749. [PMID: 38442041 PMCID: PMC11296938 DOI: 10.1021/acs.jproteome.3c00912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
Post-translational modifications (PTMs) have been extensively studied in both eukaryotes and prokaryotes. Lysine acetylation, originally thought to be a rare occurrence in bacteria, is now recognized as a prevalent and important PTM in more than 50 species. This expansion in interest in bacterial PTMs became possible with the advancement of mass spectrometry technology and improved reagents such as acyl-modification specific antibodies. In this Review, we discuss how mass spectrometry-based proteomic studies of lysine acetylation and other acyl modifications have contributed to our understanding of bacterial physiology, focusing on recently published studies from 2018 to 2023. We begin with a discussion of approaches used to study bacterial PTMs. Next, we discuss newly characterized acylomes, including acetylomes, succinylomes, and malonylomes, in different bacterial species. In addition, we examine proteomic contributions to our understanding of bacterial virulence and biofilm formation. Finally, we discuss the contributions of mass spectrometry to our understanding of the mechanisms of acetylation, both enzymatic and nonenzymatic. We end with a discussion of the current state of the field and possible future research avenues to explore.
Collapse
Affiliation(s)
- Liya Popova
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, New Jersey 08103, United States
| | - Rachel A Carr
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, New Jersey 08103, United States
| | - Valerie J Carabetta
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, New Jersey 08103, United States
| |
Collapse
|
5
|
Ramazi S, Tabatabaei SAH, Khalili E, Nia AG, Motarjem K. Analysis and review of techniques and tools based on machine learning and deep learning for prediction of lysine malonylation sites in protein sequences. Database (Oxford) 2024; 2024:baad094. [PMID: 38245002 PMCID: PMC10799748 DOI: 10.1093/database/baad094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 11/30/2023] [Accepted: 12/20/2023] [Indexed: 01/22/2024]
Abstract
The post-translational modifications occur as crucial molecular regulatory mechanisms utilized to regulate diverse cellular processes. Malonylation of proteins, a reversible post-translational modification of lysine/k residues, is linked to a variety of biological functions, such as cellular regulation and pathogenesis. This modification plays a crucial role in metabolic pathways, mitochondrial functions, fatty acid oxidation and other life processes. However, accurately identifying malonylation sites is crucial to understand the molecular mechanism of malonylation, and the experimental identification can be a challenging and costly task. Recently, approaches based on machine learning (ML) have been suggested to address this issue. It has been demonstrated that these procedures improve accuracy while lowering costs and time constraints. However, these approaches also have specific shortcomings, including inappropriate feature extraction out of protein sequences, high-dimensional features and inefficient underlying classifiers. As a result, there is an urgent need for effective predictors and calculation methods. In this study, we provide a comprehensive analysis and review of existing prediction models, tools and benchmark datasets for predicting malonylation sites in protein sequences followed by a comparison study. The review consists of the specifications of benchmark datasets, explanation of features and encoding methods, descriptions of the predictions approaches and their embedding ML or deep learning models and the description and comparison of the existing tools in this domain. To evaluate and compare the prediction capability of the tools, a new bunch of data has been extracted based on the most updated database and the tools have been assessed based on the extracted data. Finally, a hybrid architecture consisting of several classifiers including classical ML models and a deep learning model has been proposed to ensemble the prediction results. This approach demonstrates the better performance in comparison with all prediction tools included in this study (the source codes of the models presented in this manuscript are available in https://github.com/Malonylation). Database URL: https://github.com/A-Golshan/Malonylation.
Collapse
Affiliation(s)
| | - Seyed Amir Hossein Tabatabaei
- Department of Computer Science, Faculty of Mathematical Sciences, University of Guilan, Namjoo St. Postal, Rasht 41938-33697, Iran
- Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Jalal AleAhmad, Tehran 14117-13116, Iran
| | - Elham Khalili
- Department of Plant Sciences, Faculty of Science, Tarbiat Modares University, Jalal AleAhmad, Tehran 14117-13116, Iran
| | - Amirhossein Golshan Nia
- Department of Mathematics and Computer Science, Amirkabir University of Technology, No. 350, Hafez Ave, Tehran 15916-34311, Iran
| | - Kiomars Motarjem
- Department of Statistics, Faculty of Mathematical Sciences, Tarbiat Modares University, Jalal AleAhmad, Tehran 14117-13116, Iran
| |
Collapse
|
6
|
Zhang M, Liu T, Wang L, Huang Y, Fan R, Ma K, Kan Y, Tan M, Xu JY. Global landscape of lysine acylomes in Bacillus subtilis. J Proteomics 2023; 271:104767. [PMID: 36336260 DOI: 10.1016/j.jprot.2022.104767] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 10/21/2022] [Accepted: 10/25/2022] [Indexed: 11/06/2022]
Abstract
Lysine acetylation is a common posttranslational modification that regulates numerous biochemical functions in both eukaryotic and prokaryotic species. In addition, several new non-acetyl acylations are structurally different from lysine acetylation and participate in diverse physiological functions. Here, a comprehensive analysis of several lysine acylomes was performed by combining the high-affinity antibody enrichment with high-resolution LC-MS/MS. In total, we identified 2536 lysine acetylated sites, 4723 propionylated sites, 2150 succinylated sites and 3001 malonylated sites in Bacillus subtilis, respectively. These acylated proteins account for 35.8% of total protein in this bacterium. The four lysine acylomes showed a motif preference for glutamate surrounding the modified lysine residues, and a functional preference for several metabolic pathways, such as carbon metabolism, fatty acid metabolism, and ribosome. In addition, more protein-protein interaction clusters were identified in the propionylated substrates than other three lysine acylomes. In summary, our study presents a global landscape of acylation in the Gram-positive model organism Bacillus and their potential functions in metabolism and physiology.
Collapse
Affiliation(s)
- Mingya Zhang
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - TianXian Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Le Wang
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yuqi Huang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Rufeng Fan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Ke Ma
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yunbo Kan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, China
| | - Minjia Tan
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, China; Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, Guangdong 528400, China.
| | - Jun-Yu Xu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, China.
| |
Collapse
|
7
|
Li Z, Wu Q, Zhang Y, Zhou X, Peng X. Systematic analysis of lysine malonylation in Streptococcus mutans. Front Cell Infect Microbiol 2022; 12:1078572. [PMID: 36519128 PMCID: PMC9742479 DOI: 10.3389/fcimb.2022.1078572] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 11/11/2022] [Indexed: 11/29/2022] Open
Abstract
Protein lysine malonylation (Kmal) is a novel post-translational modification (PTM) that regulates various biological pathways such as energy metabolism and translation. Malonylation in prokaryotes, however, is still poorly understood. In this study, we performed a global Kmal analysis of the cariogenic organism Streptococcus mutans by combining antibody-based affinity enrichment and high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) analysis. Altogether, 392 malonyllysine sites in 159 proteins were identified. Subsequent bioinformatic analysis revealed that Kmal occurs in proteins involved in various metabolic pathways including translation machinery, energy metabolism, RNA degradation, and biosynthesis of various secondary metabolites. Quantitative analysis demonstrated that Kmal substrates were globally altered in the biofilm growth state compared to the planktonic growth state. Furthermore, a comparative analysis of the lysine malonylome of our study with previously determined lysine acetylome in S. mutans revealed that a small proportion of Kmal sites overlapped with acetylated sites, whereby suggesting that these two acylations have distinct functional implications. These results expand our knowledge of Kmal in prokaryotes, providing a resource for researching metabolic regulation of bacterial virulence and physiological functions by PTM.
Collapse
Affiliation(s)
- Zhengyi Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Qinrui Wu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yixin Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xian Peng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
8
|
Bi J, Guo Q, Zhou Z, Huang X, Qin L, Tao X, Ye T, Chen L, Li G, Wang Z, Liu L, Zhang G. Malonylome analysis uncovers the association of lysine malonylation with metabolism and acidic stress in pathogenic Mycobacterium tuberculosis. Microbiol Res 2022; 265:127209. [PMID: 36174356 DOI: 10.1016/j.micres.2022.127209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 09/19/2022] [Accepted: 09/19/2022] [Indexed: 10/14/2022]
Abstract
Mycobacterium tuberculosis (Mtb), the pathogenic agent of tuberculosis, remains a primary inducement of morbidity and mortality globally. Mtb have evolved mechanisms to recognize diverse signals, such as acidic pH within phagolysosomes and therefore to reprogram multiple physiological and metabolic processes to adapt to intracellular survival. Moreover, lysine malonylation has been suggested to participate in regulation of enzymes in carbon metabolism. However, lysine malonylation in Mtb and its association with acidic pH associated metabolism adaptation remain unknown. Here, we systematically characterized the comparative malonylome of Mtb H37Rv grown in normal (7H9-Tyloxapol (Ty)-7.4) and acidic (7H9-Ty-4.5) medium mimicking lysosome pH. In total, 2467 lysine malonylation sites within 1026 proteins were identified, which related to diverse biological processes, particularly accumulated in metabolic process. 1090 lysine malonylation sites from 562 proteins were quantified, among which 391 lysine malonylation sites in 273 protein were down-regulated while 40 lysine malonylation sites from 36 proteins were up-regulated in acidic medium, indicating that malonylation may participate in acidic pH associated metabolism. Accordingly, the enzyme activity of GlcB was reduced under acidic stress corresponding to decreased malonylation of GlcB compared with that of normal condition and this was further demonstrated by site-specific mutations. We further found that Mtb-CobB, a sirtuin-like deacetylase and desuccinylase, involved in demalonylase activity. Together, the Mtb malonylome not only indicates the critical role of malonylation in metabolism regulation, but may provide new insights of malonylation on metabolism adaptation to acidic micro-environment in vivo.
Collapse
Affiliation(s)
- Jing Bi
- National Clinical Research Center for Infectious Diseases, Guangdong Provincial Clinical Research Center for Tuberculosis, Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen 518112, China
| | - Qinglong Guo
- National Clinical Research Center for Infectious Diseases, Guangdong Provincial Clinical Research Center for Tuberculosis, Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen 518112, China
| | - Ziyuan Zhou
- National Clinical Research Center for Infectious Diseases, Guangdong Provincial Clinical Research Center for Tuberculosis, Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen 518112, China
| | - Xiujing Huang
- National Clinical Research Center for Infectious Diseases, Guangdong Provincial Clinical Research Center for Tuberculosis, Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen 518112, China
| | - Linxiu Qin
- National Clinical Research Center for Infectious Diseases, Guangdong Provincial Clinical Research Center for Tuberculosis, Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen 518112, China
| | - Xiaoyu Tao
- National Clinical Research Center for Infectious Diseases, Guangdong Provincial Clinical Research Center for Tuberculosis, Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen 518112, China
| | - Taosheng Ye
- National Clinical Research Center for Infectious Diseases, Guangdong Provincial Clinical Research Center for Tuberculosis, Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen 518112, China
| | - Liang Chen
- Guangdong Centre for Tuberculosis Control, Guangzhou 510430, China
| | - Guobao Li
- National Clinical Research Center for Infectious Diseases, Guangdong Provincial Clinical Research Center for Tuberculosis, Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen 518112, China
| | - Zhaoqin Wang
- National Clinical Research Center for Infectious Diseases, Guangdong Provincial Clinical Research Center for Tuberculosis, Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen 518112, China
| | - Lei Liu
- National Clinical Research Center for Infectious Diseases, Guangdong Provincial Clinical Research Center for Tuberculosis, Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen 518112, China
| | - Guoliang Zhang
- National Clinical Research Center for Infectious Diseases, Guangdong Provincial Clinical Research Center for Tuberculosis, Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen 518112, China.
| |
Collapse
|
9
|
Wu X, Fan Y, Wang R, Zhao Q, Ali Q, Wu H, Gu Q, Borriss R, Xie Y, Gao X. Bacillus halotolerans KKD1 induces physiological, metabolic and molecular reprogramming in wheat under saline condition. FRONTIERS IN PLANT SCIENCE 2022; 13:978066. [PMID: 36035675 PMCID: PMC9404337 DOI: 10.3389/fpls.2022.978066] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 07/26/2022] [Indexed: 06/15/2023]
Abstract
Salt stress decreases plant growth and is a major threat to crop yields worldwide. The present study aimed to alleviate salt stress in plants by inoculation with halophilic plant growth-promoting rhizobacteria (PGPR) isolated from an extreme environment in the Qinghai-Tibetan Plateau. Wheat plants inoculated with Bacillus halotolerans KKD1 showed increased seedling morphological parameters and physiological indexes. The expression of wheat genes directly involved in plant growth was upregulated in the presence of KKD1, as shown by real-time quantitative PCR (RT-qPCR) analysis. The metabolism of phytohormones, such as 6-benzylaminopurine and gibberellic acid were also enhanced. Mining of the KKD1 genome corroborated its potential plant growth promotion (PGP) and biocontrol properties. Moreover, KKD1 was able to support plant growth under salt stress by inducing a stress response in wheat by modulating phytohormone levels, regulating lipid peroxidation, accumulating betaine, and excluding Na+. In addition, KKD1 positively affected the soil nitrogen content, soil phosphorus content and soil pH. Our findings indicated that KKD1 is a promising candidate for encouraging wheat plant growth under saline conditions.
Collapse
Affiliation(s)
- Xiaohui Wu
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
- State Key Laboratory of Plateau Ecology and Agriculture, Department of Grassland Science, College of Agricultural and Husbandry, Qinghai University, Xining, China
| | - Yaning Fan
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Ruoyi Wang
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Qian Zhao
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Qurban Ali
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Huijun Wu
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Qin Gu
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Rainer Borriss
- Institut für Biologie, Humboldt Universität, Berlin, Germany
- Nord Reet UG, Greifswald, Germany
| | - Yongli Xie
- State Key Laboratory of Plateau Ecology and Agriculture, Department of Grassland Science, College of Agricultural and Husbandry, Qinghai University, Xining, China
| | - Xuewen Gao
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
10
|
Xu X, Hu X, Dong J, Xue Y, Liu T, Jin Q. Proteome-Wide Identification and Functional Analysis of Lysine Crotonylation in Trichophyton rubrum Conidial and Mycelial Stages. Front Genet 2022; 13:832668. [PMID: 35356433 PMCID: PMC8960058 DOI: 10.3389/fgene.2022.832668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 01/26/2022] [Indexed: 11/13/2022] Open
Abstract
Lysine crotonylation is a newly discovered post-translational modification (PTM) with key roles in various important regulatory pathways. Despite its functional significance, there is limited knowledge about crotonylation in fungi. Trichophyton rubrum is the most common fungal pathogen in human infection and is considered a model organism of dermatophytes and human pathogenic filamentous fungi. In this study, we obtained a proteome-wide crotonylation profile of T. rubrum, leading to the identification of 14,019 crotonylated sites on 3144 proteins. The crotonylated proteins were significantly involved in translation and in various metabolic and biosynthetic processes. Some proteins related to fungal pathogenicity were also found to be targets of crotonylation. In addition, extensive crotonylation was found on histones, suggesting a role in epigenetic regulation. Furthermore, about half of the crotonylated proteins were specific to either the conidial or the mycelial stage, and functional enrichment analysis showed some differences between the two stages. The results suggest that the difference in crotonylation between the two stages is not due to differences in protein abundance. Crosstalk of crotonylation with acetylation, propionylation, and succinylation suggests distinct regulatory roles. This study is the first crotonylation analysis in dermatophytes and human pathogenic filamentous fungi. These results represent a solid foundation for further research on PTM regulatory mechanisms in fungi and should facilitate improved antifungal strategies against these medical important species.
Collapse
Affiliation(s)
| | | | | | | | - Tao Liu
- *Correspondence: Tao Liu, ; Qi Jin,
| | - Qi Jin
- *Correspondence: Tao Liu, ; Qi Jin,
| |
Collapse
|
11
|
Shi Y, Li Y, Yang K, Wei G, Huang A. Antimicrobial Peptide BCp12 Inhibits Staphylococcus aureus Growth by Altering Lysine Malonylation Levels in the Arginine Synthesis Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:403-414. [PMID: 34942069 DOI: 10.1021/acs.jafc.1c05894] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
To adapt to external stimuli, bacteria fine-tune important protein activities using post-translational modifications. The present study provides novel insights into the molecular mechanism of the antimicrobial peptide BCp12. We demonstrate that BCp12 significantly suppressed bacterial growth, induced cell apoptosis, and modulated overall malonylation levels in Staphylococcus aureus cells. Malonylateomic analysis was performed to identify the proteins malonylated by the BCp12 treatment of S. aureus. In total, 53 malonylated proteins (17 up-regulated, 36 down-regulated) were identified as differentially expressed malonylated proteins (DMPs; > 1.5-fold or <0.67-fold, P < 0.05). This result was confirmed via the identification of 21 differential metabolites (DMs; VIP > 1, P < 0.05) in the arginine and proline metabolome. Bioinformatic analysis revealed that the DMPs and DMs were especially enriched in the arginine synthesis pathway. By integrating our lysine malonylational and metabolomic data, we provide new insights into the mechanism by which BCp12 inhibits S. aureus.
Collapse
Affiliation(s)
- Yanan Shi
- College of Food Science &Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Yufang Li
- College of Food Science &Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Kun Yang
- College of Food Science &Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Guangqiang Wei
- College of Food Science &Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Aixiang Huang
- College of Food Science &Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| |
Collapse
|
12
|
Wang T, Wang G, Zhang G, Hou R, Zhou L, Tian X. Systematic analysis of the lysine malonylome in Sanghuangporus sanghuang. BMC Genomics 2021; 22:840. [PMID: 34798813 PMCID: PMC8603570 DOI: 10.1186/s12864-021-08120-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 10/22/2021] [Indexed: 01/18/2023] Open
Abstract
Background Sanghuangporus sanghuang is a well-known traditional medicinal mushroom associated with mulberry. Despite the properties of this mushroom being known for many years, the regulatory mechanisms of bioactive compound biosynthesis in this medicinal mushroom are still unclear. Lysine malonylation is a posttranslational modification that has many critical functions in various aspects of cell metabolism. However, at present we do not know its role in S. sanghuang. In this study, a global investigation of the lysine malonylome in S. sanghuang was therefore carried out. Results In total, 714 malonyl modification sites were matched to 255 different proteins. The analysis indicated that malonyl modifications were involved in a wide range of cellular functions and displayed a distinct subcellular localization. Bioinformatics analysis indicated that malonylated proteins were engaged in different metabolic pathways, including glyoxylate and dicarboxylate metabolism, glycolysis/gluconeogenesis, and the tricarboxylic acid (TCA) cycle. Notably, a total of 26 enzymes related to triterpene and polysaccharide biosynthesis were found to be malonylated, indicating an indispensable role of lysine malonylation in bioactive compound biosynthesis in S. sanghuang. Conclusions These findings suggest that malonylation is associated with many metabolic pathways, particularly the metabolism of the bioactive compounds triterpene and polysaccharide. This paper represents the first comprehensive survey of malonylation in S. sanghuang and provides important data for further study on the physiological function of lysine malonylation in S. sanghuang and other medicinal mushrooms. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-08120-0.
Collapse
Affiliation(s)
- Tong Wang
- Shandong Province Key Laboratory of Applied Mycology, Qingdao Agricultural University, Changcheng Road, No.700, Qingdao, 266109, China
| | - Guangyuan Wang
- Shandong Province Key Laboratory of Applied Mycology, Qingdao Agricultural University, Changcheng Road, No.700, Qingdao, 266109, China
| | - Guoli Zhang
- Shandong Province Key Laboratory of Applied Mycology, Qingdao Agricultural University, Changcheng Road, No.700, Qingdao, 266109, China
| | - Ranran Hou
- Shandong Province Key Laboratory of Applied Mycology, Qingdao Agricultural University, Changcheng Road, No.700, Qingdao, 266109, China
| | - Liwei Zhou
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xuemei Tian
- Shandong Province Key Laboratory of Applied Mycology, Qingdao Agricultural University, Changcheng Road, No.700, Qingdao, 266109, China.
| |
Collapse
|
13
|
Xu M, Tian X, Ku T, Wang G, Zhang E. Global Identification and Systematic Analysis of Lysine Malonylation in Maize ( Zea mays L.). FRONTIERS IN PLANT SCIENCE 2021; 12:728338. [PMID: 34490025 PMCID: PMC8417889 DOI: 10.3389/fpls.2021.728338] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 08/02/2021] [Indexed: 05/27/2023]
Abstract
Lysine malonylation is a kind of post-translational modifications (PTMs) discovered in recent years, which plays an important regulatory role in plants. Maize (Zea mays L.) is a major global cereal crop. Immunoblotting revealed that maize was rich in malonylated proteins. We therefore performed a qualitative malonylome analysis to globally identify malonylated proteins in maize. In total, 1,722 uniquely malonylated lysine residues were obtained in 810 proteins. The modified proteins were involved in various biological processes such as photosynthesis, ribosome and oxidative phosphorylation. Notably, a large proportion of the modified proteins (45%) were located in chloroplast. Further functional analysis revealed that 30 proteins in photosynthesis and 15 key enzymes in the Calvin cycle were malonylated, suggesting an indispensable regulatory role of malonylation in photosynthesis and carbon fixation. This work represents the first comprehensive survey of malonylome in maize and provides an important resource for exploring the function of lysine malonylation in physiological regulation of maize.
Collapse
Affiliation(s)
- Min Xu
- College of Agronomy, Qingdao Agricultural University, Qingdao, China
| | - Xiaomin Tian
- College of Agronomy, Qingdao Agricultural University, Qingdao, China
| | - Tingting Ku
- College of Agronomy, Qingdao Agricultural University, Qingdao, China
| | - Guangyuan Wang
- Shandong Province Key Laboratory of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Enying Zhang
- College of Agronomy, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
14
|
Cao X, Li Y, Fan J, Zhao Y, Borriss R, Fan B. Two Lysine Sites That Can Be Malonylated Are Important for LuxS Regulatory Roles in Bacillus velezensis. Microorganisms 2021; 9:microorganisms9061338. [PMID: 34205485 PMCID: PMC8233902 DOI: 10.3390/microorganisms9061338] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/13/2021] [Accepted: 06/09/2021] [Indexed: 11/28/2022] Open
Abstract
S-ribosylhomocysteine lyase (LuxS) has been shown to regulate bacterial multicellular behaviors, typically biofilm formation. However, the mechanisms for the regulation are still mysterious. We previously identified a malonylation modification on K124 and K130 of the LuxS in the plant growth-promoting rhizobacterium B. velezensis (FZB42). In this work, we investigated the effects of the two malonylation sites on biofilm formation and other biological characteristics of FZB42. The results showed that the K124R mutation could severely impair biofilm formation, swarming, and sporulation but promote AI-2 production, suggesting inhibitory effects of high-level AI-2 on the features. All mutations (K124R, K124E, K130R, and K130E) suppressed FZB42 sporulation but increased its antibiotic production. The double mutations generally had a synergistic effect or at least equal to the effects of the single mutations. The mutation of K130 but not of K124 decreased the in vitro enzymatic activity of LuxS, corresponding to the conservation of K130 among various Bacillus LuxS proteins. From the results, we deduce that an alternative regulatory circuit may exist to compensate for the roles of LuxS upon its disruption. This study broadens the understanding of the biological function of LuxS in bacilli and underlines the importance of the two post-translational modification sites.
Collapse
Affiliation(s)
- Xianming Cao
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China; (X.C.); (Y.L.); (Y.Z.)
| | - Yulong Li
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China; (X.C.); (Y.L.); (Y.Z.)
| | - Jialu Fan
- College of Life Sciences, Nanjing Normal University, Nanjing 210046, China;
| | - Yinjuan Zhao
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China; (X.C.); (Y.L.); (Y.Z.)
| | - Rainer Borriss
- Institut für Biologie, Humboldt Universität Berlin, 10115 Berlin, Germany;
- Nord Reet UG, Marienstr. 27a, 17489 Greifswald, Germany
| | - Ben Fan
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China; (X.C.); (Y.L.); (Y.Z.)
- Correspondence:
| |
Collapse
|
15
|
Synergistic effects of Bacillus pumilus and exogenous protease on Nile tilapia (Oreochromis niloticus) growth, gut microbes, immune response and gene expression fed plant protein diet. Anim Feed Sci Technol 2021. [DOI: 10.1016/j.anifeedsci.2021.114892] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
16
|
Dong Y, Li P, Li P, Chen C. First comprehensive analysis of lysine succinylation in paper mulberry (Broussonetia papyrifera). BMC Genomics 2021; 22:255. [PMID: 33838656 PMCID: PMC8035759 DOI: 10.1186/s12864-021-07567-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 03/26/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Lysine succinylation is a naturally occurring post-translational modification (PTM) that is ubiquitous in organisms. Lysine succinylation plays important roles in regulating protein structure and function as well as cellular metabolism. Global lysine succinylation at the proteomic level has been identified in a variety of species; however, limited information on lysine succinylation in plant species, especially paper mulberry, is available. Paper mulberry is not only an important plant in traditional Chinese medicine, but it is also a tree species with significant economic value. Paper mulberry is found in the temperate and tropical zones of China. The present study analyzed the effects of lysine succinylation on the growth, development, and physiology of paper mulberry. RESULTS A total of 2097 lysine succinylation sites were identified in 935 proteins associated with the citric acid cycle (TCA cycle), glyoxylic acid and dicarboxylic acid metabolism, ribosomes and oxidative phosphorylation; these pathways play a role in carbon fixation in photosynthetic organisms and may be regulated by lysine succinylation. The modified proteins were distributed in multiple subcellular compartments and were involved in a wide variety of biological processes, such as photosynthesis and the Calvin-Benson cycle. CONCLUSION Lysine-succinylated proteins may play key regulatory roles in metabolism, primarily in photosynthesis and oxidative phosphorylation, as well as in many other cellular processes. In addition to the large number of succinylated proteins associated with photosynthesis and oxidative phosphorylation, some proteins associated with the TCA cycle are succinylated. Our study can serve as a reference for further proteomics studies of the downstream effects of succinylation on the physiology and biochemistry of paper mulberry.
Collapse
Affiliation(s)
- Yibo Dong
- College of Animal Science, Guizhou university, Guiyang, 550025, Guizhou, China
- Department of Plant Protection, Institute of Crop Protection, College of Agriculture, Guizhou University, Guiyang, 550025, Guizhou, China
| | - Ping Li
- Institute of Grassland Research, Sichuan Academy of Grassland Science, Chengdu, 610000, Sichuan, China
| | - Ping Li
- College of Animal Science, Guizhou university, Guiyang, 550025, Guizhou, China
| | - Chao Chen
- College of Animal Science, Guizhou university, Guiyang, 550025, Guizhou, China.
| |
Collapse
|
17
|
Zhang C, Cai M, Chen S, Zhang F, Cui T, Xue Z, Wang W, Zhang B, Liu X. The consensus N glyco -X-S/T motif and a previously unknown N glyco -N-linked glycosylation are necessary for growth and pathogenicity of Phytophthora. Environ Microbiol 2021; 23:5147-5163. [PMID: 33728790 DOI: 10.1111/1462-2920.15468] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 03/10/2021] [Accepted: 03/15/2021] [Indexed: 11/26/2022]
Abstract
Asparagine (Asn, N)-linked glycosylation within Nglyco -X-S/T; X ≠ P motif is a ubiquitously distributed post-translational modification that participates in diverse cellular processes. In this work, N-glycosylation inhibitor was shown to prevent Phytophthora sojae growth, suggesting that N-glycosylation is necessary for oomycete development. We conducted a glycoproteomic analysis of P. sojae to identify and map N-glycosylated proteins and to quantify differentially expressed glycoproteins associated with mycelia, asexual cyst, and sexual oospore developmental stages. A total of 355 N-glycosylated proteins was found, containing 496 glycosites, potentially involved in glycan degradation, carbon metabolism, glycolysis, or other metabolic pathways. Through PNGase F deglycosylation assays and site-directed mutagenesis of a GPI transamidase protein (GPI16) upregulated in cysts and a heat shock protein 70 (HSP70) upregulated in oospores, we demonstrated that both proteins were N-glycosylated and that the Nglyco -N motif is a target site for asparagine - oligosaccharide linkage. Glycosite mutations of Asn 94 Nglyco -X-S/T in the GPI16 led to impaired cyst germination and pathogenicity, while mutation of the previously unknown Asn 270 Nglyco -N motif in HSP70 led to decreased oospore production. In addition to providing a map of the oomycete N-glycoproteome, this work confirms that P. sojae has evolved multiple N-glycosylation motifs essential for growth.
Collapse
Affiliation(s)
- Can Zhang
- Department of Plant Pathology, China Agricultural University, Beijing, 100193, China
| | - Meng Cai
- Department of Plant Pathology, China Agricultural University, Beijing, 100193, China
| | - Shanshan Chen
- Department of Plant Pathology, China Agricultural University, Beijing, 100193, China
| | - Fan Zhang
- Department of Plant Pathology, China Agricultural University, Beijing, 100193, China
| | - Tongshan Cui
- Department of Plant Pathology, China Agricultural University, Beijing, 100193, China
| | - Zhaolin Xue
- Department of Plant Pathology, China Agricultural University, Beijing, 100193, China
| | - Weizhen Wang
- Department of Plant Pathology, China Agricultural University, Beijing, 100193, China
| | - Borui Zhang
- Department of Plant Pathology, China Agricultural University, Beijing, 100193, China
| | - Xili Liu
- Department of Plant Pathology, China Agricultural University, Beijing, 100193, China.,State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, 712100, China
| |
Collapse
|
18
|
Shi Y, Zhu J, Xu Y, Tang X, Yang Z, Huang A. Malonyl-proteome profiles of Staphylococcus aureus reveal lysine malonylation modification in enzymes involved in energy metabolism. Proteome Sci 2021; 19:1. [PMID: 33436009 PMCID: PMC7802289 DOI: 10.1186/s12953-020-00169-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 12/16/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Protein lysine malonylation, a novel post-translational modification (PTM), has been recently linked with energy metabolism in bacteria. Staphylococcus aureus is the third most important foodborne pathogen worldwide. Nonetheless, substrates and biological roles of malonylation are still poorly understood in this pathogen. RESULTS Using anti-malonyl-lysine antibody enrichment and high-resolution LC-MS/MS analysis, 440 lysine-malonylated sites were identified in 281 proteins of S. aureus strain. The frequency of valine in position - 1 and alanine at + 2 and + 4 positions was high. KEGG pathway analysis showed that six categories were highly enriched, including ribosome, glycolysis/gluconeogenesis, pentose phosphate pathway (PPP), tricarboxylic acid cycle (TCA), valine, leucine, isoleucine degradation, and aminoacyl-tRNA biosynthesis. In total, 31 malonylated sites in S. aureus shared homology with lysine-malonylated sites previously identified in E. coli, indicating malonylated proteins are highly conserved among bacteria. Key rate-limiting enzymes in central carbon metabolic pathways were also found to be malonylated in S. aureus, namely pyruvate kinase (PYK), 6-phosphofructokinase, phosphoglycerate kinase, dihydrolipoyl dehydrogenase, and F1F0-ATP synthase. Notably, malonylation sites were found at or near protein active sites, including KH domain protein, thioredoxin, alanine dehydrogenase (ALD), dihydrolipoyl dehydrogenase (LpdA), pyruvate oxidase CidC, and catabolite control protein A (CcpA), thus suggesting that lysine malonylation may affect the activity of such enzymes. CONCLUSIONS Data presented herein expand the current knowledge on lysine malonylation in prokaryotes and indicate the potential roles of protein malonylation in bacterial physiology and metabolism.
Collapse
Affiliation(s)
- Yanan Shi
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
| | - Jingjing Zhu
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
| | - Yan Xu
- Yunnan Center for Disease Control and Prevention, Kunming, 650201, Yunnan, China
| | - Xiaozhao Tang
- Yunnan Center for Disease Control and Prevention, Kunming, 650201, Yunnan, China
| | - Zushun Yang
- Yunnan Center for Disease Control and Prevention, Kunming, 650201, Yunnan, China
| | - Aixiang Huang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, 650201, Yunnan, China.
| |
Collapse
|
19
|
Metabolomic and genomic profiles of Streptomyces albulus with a higher ε-polylysine production through ARTP mutagenesis. Biochem Eng J 2020. [DOI: 10.1016/j.bej.2020.107720] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
20
|
Nie LB, Liang QL, Du R, Elsheikha HM, Han NJ, Li FC, Zhu XQ. Global Proteomic Analysis of Lysine Malonylation in Toxoplasma gondii. Front Microbiol 2020; 11:776. [PMID: 32411114 PMCID: PMC7198775 DOI: 10.3389/fmicb.2020.00776] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 03/31/2020] [Indexed: 11/17/2022] Open
Abstract
Lysine malonylation (Kmal) is a new post-translational modification (PTM), which has been reported in several prokaryotic and eukaryotic species. Although Kmal can regulate many and diverse biological processes in various organisms, knowledge about this important PTM in the apicomplexan parasite Toxoplasma gondii is limited. In this study, we performed the first global profiling of malonylated proteins in T. gondii tachyzoites using affinity enrichment and Liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis. Three experiments performed in tandem revealed 294, 345, 352 Kmal sites on 203, 236, 230 malonylated proteins, respectively. Computational analysis showed the identified malonylated proteins to be localized in various subcellular compartments and involved in many cellular functions, particularly mitochondrial function. Additionally, one conserved Kmal motif with a strong bias for cysteine was detected. Taken together, these findings provide the first report of Kmal profile in T. gondii and should be an important resource for studying the physiological roles of Kmal in this parasite.
Collapse
Affiliation(s)
- Lan-Bi Nie
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China.,State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Qin-Li Liang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Rui Du
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Hany M Elsheikha
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Loughborough, United Kingdom
| | - Nai-Jian Han
- Jingjie PTM Biolabs (Hangzhou) Co. Ltd., Hangzhou, China
| | - Fa-Cai Li
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Xing-Quan Zhu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| |
Collapse
|
21
|
Fan B, Wang C, Ding X, Zhu B, Song X, Borriss R. AmyloWiki: an integrated database for Bacillus velezensis FZB42, the model strain for plant growth-promoting Bacilli. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2020; 2019:5520604. [PMID: 31219564 PMCID: PMC6585148 DOI: 10.1093/database/baz071] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 04/27/2019] [Accepted: 05/07/2019] [Indexed: 12/23/2022]
Abstract
Since its isolation 20 years ago, many studies have been devoted to Bacillus velezensis FZB42 (former name Bacillus amyloliquefaciens subsp. plantarum FZB42), which has been gradually accepted as a model organism for Gram-positive rhizobacteria. FZB42 is different from another widely studied bacterial strain, Bacillus subtilis 168, in its many features that are closely associated with plants. FZB42 represents a large group of Bacillus isolates that are beneficial to plants and of great importance in agriculture. In this work a database for FZB42 named 'AmyloWiki' is built to integrate all information of FZB42 available to date. The information includes the genomic, transcriptomic, proteomic, post-translational data as well as FZB42 unique genes, protein regulators, mutant availability, publications and etc. The website is built up with PHP and MySQL with a function of keyword searching, browsing, data-downloading and other functions.
Collapse
Affiliation(s)
- Ben Fan
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Cong Wang
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Xiaolei Ding
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Bingyao Zhu
- Department of General Microbiology, Institute of Microbiology and Genetics, Georg-August University Göttingen, Grisebachstr. 8, D-37077 Göttingen, Germany
| | - Xiaofeng Song
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Rainer Borriss
- Institut für Biologie, Humboldt Universität Berlin, 10115 Berlin, Germany, and Nord Reet UG, Marienstr. 27a, 17489 Greifswald, Germany
| |
Collapse
|
22
|
Xu X, Cao X, Yang J, Chen L, Liu B, Liu T, Jin Q. Proteome-Wide Identification of Lysine Propionylation in the Conidial and Mycelial Stages of Trichophyton rubrum. Front Microbiol 2019; 10:2613. [PMID: 31798556 PMCID: PMC6861857 DOI: 10.3389/fmicb.2019.02613] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 10/28/2019] [Indexed: 01/05/2023] Open
Abstract
Posttranslational modifications (PTMs) exist in a wide variety of organisms and play key roles in regulating various essential biological processes. Lysine propionylation is a newly discovered PTM that has rarely been identified in fungi. Trichophyton rubrum (T. rubrum) is one of the most common fungal pathogens in the world and has been studied as an important model organism of anthropic pathogenic filamentous fungi. In this study, we performed a proteome-wide propionylation analysis in the conidial and mycelial stages of T. rubrum. A total of 157 propionylated sites on 115 proteins were identified, and the high confidence of propionylation identification was validated by parallel reaction monitoring (PRM) assay. The results show that the propionylated proteins were mostly involved in various metabolic pathways. Histones and 15 pathogenicity-related proteins were also targets for propionylation modification, suggesting their roles in epigenetic regulation and pathogenicity. A comparison of the conidial and mycelial stages revealed that most propionylated proteins and sites were growth-stage specific and independent of protein abundance. Based on the function classifications, the propionylated proteins had a similar distribution in both stages; however, some differences were also identified. Furthermore, our results show that the concentration of propionyl-CoA had a significant influence on the propionylation level. In addition to the acetylation, succinylation and propionylation identified in T. rubrum, 26 other PTMs were also found to exist in this fungus. Overall, our study provides the first global propionylation profile of a pathogenic fungus. These results would be a foundation for further research on the regulation mechanism of propionylation in T. rubrum, which will enhance our understanding of the physiological features of T. rubrum and provide some clues for the exploration of improved therapies to treat this medically important fungus.
Collapse
Affiliation(s)
- Xingye Xu
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xingwei Cao
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jian Yang
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Lihong Chen
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Bo Liu
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Tao Liu
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Qi Jin
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
23
|
Niu KM, Khosravi S, Kothari D, Lee WD, Lim JM, Lee BJ, Kim KW, Lim SG, Lee SM, Kim SK. Effects of dietary multi-strain probiotics supplementation in a low fishmeal diet on growth performance, nutrient utilization, proximate composition, immune parameters, and gut microbiota of juvenile olive flounder (Paralichthys olivaceus). FISH & SHELLFISH IMMUNOLOGY 2019; 93:258-268. [PMID: 31336156 DOI: 10.1016/j.fsi.2019.07.056] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 06/29/2019] [Accepted: 07/19/2019] [Indexed: 06/10/2023]
Abstract
A 12-week feeding trial was conducted to evaluate the effects of multi-strain probiotics (MSP) in a low fish meal (FM) diet on overall performance, gut microbiota, selected non-specific immune responses and antioxidant enzyme activities of olive flounder (Paralichthys olivaceus) juveniles. A total of 225 healthy olive flounders (initial mean body weight, 13.5 ± 0.01 g) were randomly separated into 3 groups of 75 fish, each group having three replicates of 25 fish; first group was fed with a FM-based control diet (Con), 2nd group was fed with a low-FM diet containing a blend of plant and animal protein meals replacing 30% of the FM protein (FM30), and 3rd group was fed with the FM30 diet supplemented with 108-109 CFU kg-1 of the MSP (Pro). With the exception of lipid retention, which was significantly lower in fish fed the FM30 diet compared to the other two treatments, no other statistically significant differences were recorded with respect to any of the other growth and nutrient utilization parameters. Myeloperoxidase and lysozyme activities of fish fed the Pro diet were much higher and significantly different than those of fish fed the FM30 diet. Glutathione peroxidase activity was significantly higher in Pro- than in Con-fed fish, which, in turn, was significantly higher than FM30-fed fish. Expression of immune-related genes including IL-1β, IL-6, and TNF-α was markedly upregulated in livers of the fish fed Pro diet compared to those fed the Con and FM30 diets. Furthermore, supplementation of MSP in FM30 diet enriched the Lactobacillus abundance in the fish gut as well as predictive gene functions in relation to lipid and carbohydrate metabolisms. These data suggested that the MSP could reduce the potential adverse effects of the low-FM diet and might be used as a healthy immunostimulant for olive flounder.
Collapse
Affiliation(s)
- Kai-Min Niu
- Institute of Biological Resource, Jiangxi Academy of Sciences, Nanchang, 330029, China; Department of Animal Science and Technology, Konkuk University, Seoul, 05029, Republic of Korea
| | - Sanaz Khosravi
- Department of Marine Biotechnology, Gangneung Wonju National University, Gangneung, 25457, Republic of Korea
| | - Damini Kothari
- Department of Animal Science and Technology, Konkuk University, Seoul, 05029, Republic of Korea
| | - Woo-Do Lee
- Department of Animal Science and Technology, Konkuk University, Seoul, 05029, Republic of Korea
| | - Jeong-Min Lim
- Department of Animal Science and Technology, Konkuk University, Seoul, 05029, Republic of Korea
| | - Bong-Joo Lee
- Aquafeed Research Center, National Institute of Fisheries Science, Pohang, 37517, Republic of Korea
| | - Kang-Woong Kim
- Aquafeed Management Division, NIFS, Busan, 46083, Republic of Korea
| | - Sang-Gu Lim
- Aquafeed Research Center, National Institute of Fisheries Science, Pohang, 37517, Republic of Korea
| | - Sang-Min Lee
- Department of Marine Biotechnology, Gangneung Wonju National University, Gangneung, 25457, Republic of Korea.
| | - Soo-Ki Kim
- Department of Animal Science and Technology, Konkuk University, Seoul, 05029, Republic of Korea.
| |
Collapse
|
24
|
Yao Z, Guo Z, Wang Y, Li W, Fu Y, Lin Y, Lin W, Lin X. Integrated Succinylome and Metabolome Profiling Reveals Crucial Role of S-Ribosylhomocysteine Lyase in Quorum Sensing and Metabolism of Aeromonas hydrophila. Mol Cell Proteomics 2019; 18:200-215. [PMID: 30352804 PMCID: PMC6356075 DOI: 10.1074/mcp.ra118.001035] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 09/27/2018] [Indexed: 01/21/2023] Open
Abstract
Protein modification by lysine succinylation is a newly identified post-translational modification (PTM) of lysine residues and plays an important role in diverse physiological functions, although their associated biological characteristics are still largely unknown. Here, we investigated the effects of lysine succinylation on the physiological regulation within a well-known fish pathogen, Aeromonas hydrophila A high affinity purification method was used to enrich peptides with lysine succinylation in A. hydrophila ATCC 7966, and a total of 2,174 lysine succinylation sites were identified on 666 proteins using LC-MS/MS. Gene ontology analysis indicated that these succinylated proteins are involved in diverse metabolic pathways and biological processes, including translation, protein export, and central metabolic pathways. The modifications of several selected candidates were further validated by Western blotting. Using site-directed mutagenesis, we observed that the succinylation of lysines on S-ribosylhomocysteine lyase (LuxS) at the K23 and K30 sites positively regulate the production of the quorum sensing autoinducer AI-2, and that these PTMs ultimately alter its competitiveness with another pathogen, Vibrio alginolyticus Moreover, subsequent metabolomic analyses indicated that K30 succinylation on LuxS may suppress the activated methyl cycle (AMC) and that both the K23 and K30 sites are involved in amino acid metabolism. Taken together, the results from this study provide significant insights into the functions of lysine succinylation and its critical roles on LuxS in regulating the cellular physiology of A. hydrophila.
Collapse
Affiliation(s)
- Zujie Yao
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring (School of Life Sciences, Fujian Agriculture and Forestry University), Fuzhou, PR China;; Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, PR China;; Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Plant Science Research Center, Chinese Academy of Sciences, Shanghai Chenshan Botanical Garden, Shanghai, PR China
| | - Zhuang Guo
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring (School of Life Sciences, Fujian Agriculture and Forestry University), Fuzhou, PR China;; Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, PR China
| | - Yuqian Wang
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring (School of Life Sciences, Fujian Agriculture and Forestry University), Fuzhou, PR China;; Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, PR China
| | - Wanxin Li
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring (School of Life Sciences, Fujian Agriculture and Forestry University), Fuzhou, PR China;; Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, PR China
| | - Yuying Fu
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring (School of Life Sciences, Fujian Agriculture and Forestry University), Fuzhou, PR China;; Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, PR China
| | - Yuexu Lin
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring (School of Life Sciences, Fujian Agriculture and Forestry University), Fuzhou, PR China;; Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, PR China
| | - Wenxiong Lin
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring (School of Life Sciences, Fujian Agriculture and Forestry University), Fuzhou, PR China;; Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, PR China
| | - Xiangmin Lin
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring (School of Life Sciences, Fujian Agriculture and Forestry University), Fuzhou, PR China;; Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, PR China;.
| |
Collapse
|
25
|
Fan B, Wang C, Song X, Ding X, Wu L, Wu H, Gao X, Borriss R. Bacillus velezensis FZB42 in 2018: The Gram-Positive Model Strain for Plant Growth Promotion and Biocontrol. Front Microbiol 2018; 9:2491. [PMID: 30386322 PMCID: PMC6198173 DOI: 10.3389/fmicb.2018.02491] [Citation(s) in RCA: 202] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 09/28/2018] [Indexed: 12/31/2022] Open
Abstract
Bacillus velezensis FZB42, the model strain for Gram-positive plant-growth-promoting and biocontrol rhizobacteria, has been isolated in 1998 and sequenced in 2007. In order to celebrate these anniversaries, we summarize here the recent knowledge about FZB42. In last 20 years, more than 140 articles devoted to FZB42 have been published. At first, research was mainly focused on antimicrobial compounds, apparently responsible for biocontrol effects against plant pathogens, recent research is increasingly directed to expression of genes involved in bacteria–plant interaction, regulatory small RNAs (sRNAs), and on modification of enzymes involved in synthesis of antimicrobial compounds by processes such as acetylation and malonylation. Till now, 13 gene clusters involved in non-ribosomal and ribosomal synthesis of secondary metabolites with putative antimicrobial action have been identified within the genome of FZB42. These gene clusters cover around 10% of the whole genome. Antimicrobial compounds suppress not only growth of plant pathogenic bacteria and fungi, but could also stimulate induced systemic resistance (ISR) in plants. It has been found that besides secondary metabolites also volatile organic compounds are involved in the biocontrol effect exerted by FZB42 under biotic (plant pathogens) and abiotic stress conditions. In order to facilitate easy access to the genomic data, we have established an integrating data bank ‘AmyloWiki’ containing accumulated information about the genes present in FZB42, available mutant strains, and other aspects of FZB42 research, which is structured similar as the famous SubtiWiki data bank.
Collapse
Affiliation(s)
- Ben Fan
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, China
| | - Cong Wang
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Xiaofeng Song
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Xiaolei Ding
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, China
| | - Liming Wu
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China
| | - Huijun Wu
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China
| | - Xuewen Gao
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China
| | - Rainer Borriss
- Institut für Biologie, Humboldt Universität Berlin, Berlin, Germany.,Nord Reet UG, Greifswald, Germany
| |
Collapse
|
26
|
Palazzotto E, Weber T. Omics and multi-omics approaches to study the biosynthesis of secondary metabolites in microorganisms. Curr Opin Microbiol 2018; 45:109-116. [PMID: 29656009 DOI: 10.1016/j.mib.2018.03.004] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 03/28/2018] [Accepted: 03/30/2018] [Indexed: 10/17/2022]
Abstract
Natural products produced by microorganisms represent the main source of bioactive molecules. The development of high-throughput (omics) techniques have importantly contributed to the renaissance of new antibiotic discovery increasing our understanding of complex mechanisms controlling the expression of biosynthetic gene clusters (BGCs) encoding secondary metabolites. In this context this review highlights recent progress in the use and integration of 'omics' approaches with focuses on genomics, transcriptomics, proteomics metabolomics meta-omics and combined omics as powerful strategy to discover new antibiotics.
Collapse
Affiliation(s)
- Emilia Palazzotto
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet bygning 220, 2800 Kgs., Lyngby, Denmark
| | - Tilmann Weber
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet bygning 220, 2800 Kgs., Lyngby, Denmark.
| |
Collapse
|
27
|
Systematic analysis of the lysine malonylome in common wheat. BMC Genomics 2018; 19:209. [PMID: 29558883 PMCID: PMC5859436 DOI: 10.1186/s12864-018-4535-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 02/06/2018] [Indexed: 01/19/2023] Open
Abstract
Background Protein lysine malonylation, a newly discovered post-translational modification (PTM), plays an important role in diverse metabolic processes in both eukaryotes and prokaryotes. Common wheat is a major global cereal crop. However, the functions of lysine malonylation are relatively unknown in this crop. Here, a global analysis of lysine malonylation was performed in wheat. Results In total, 342 lysine malonylated sites were identified in 233 proteins. Bioinformatics analysis showed that the frequency of arginine (R) in position + 1 was highest, and a modification motif, KmaR, was identified. The malonylated proteins were located in multiple subcellular compartments, especially in the cytosol (45%) and chloroplast (30%). The identified proteins were found to be involved in diverse pathways, such as carbon metabolism, the Calvin cycle, and the biosynthesis of amino acids, suggesting an important role for lysine malonylation in these processes. Protein interaction network analysis revealed eight highly interconnected clusters of malonylated proteins, and 137 malonylated proteins were mapped to the protein network database. Moreover, five proteins were simultaneously modified by lysine malonylation, acetylation and succinylation, suggesting that these three PTMs may coordinately regulate the function of many proteins in common wheat. Conclusions Our results suggest that lysine malonylation is involved in a variety of biological processes, especially carbon fixation in photosynthetic organisms. These data represent the first report of the lysine malonylome in common wheat and provide an important dataset for further exploring the physiological role of lysine malonylation in wheat and likely all plants. Electronic supplementary material The online version of this article (10.1186/s12864-018-4535-y) contains supplementary material, which is available to authorized users.
Collapse
|
28
|
Ye M, Tang X, Yang R, Zhang H, Li F, Tao F, Li F, Wang Z. Characteristics and Application of a Novel Species of Bacillus: Bacillus velezensis. ACS Chem Biol 2018; 13:500-505. [PMID: 29309732 DOI: 10.1021/acschembio.7b00874] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Bacillus velezensis has been investigated and applied more and more widely recently because it can inhibit fungi and bacteria and become a potential biocontrol agent. In order to provide more clear and comprehensive understanding of B. velezensis for researchers, we collected the recent relevant articles systematically and reviewed the discovery and taxonomy, secondary metabolites, characteristics and application, gene function, and molecular research of B. velezensis. This review will give some direction to the research and application of this strain for the future.
Collapse
Affiliation(s)
- Miao Ye
- College of Life Science, Anhui Agricultural University, Anhui Hefei 230036, Peoples’ Republic of China
| | - Xiangfang Tang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Ru Yang
- College of Life Science, Anhui Agricultural University, Anhui Hefei 230036, Peoples’ Republic of China
| | - Hongfu Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Fangshu Li
- College of Life Science, Anhui Agricultural University, Anhui Hefei 230036, Peoples’ Republic of China
| | - Fangzheng Tao
- College of Life Science, Anhui Agricultural University, Anhui Hefei 230036, Peoples’ Republic of China
| | - Fei Li
- College of Life Science, Anhui Agricultural University, Anhui Hefei 230036, Peoples’ Republic of China
| | - Zaigui Wang
- College of Life Science, Anhui Agricultural University, Anhui Hefei 230036, Peoples’ Republic of China
| |
Collapse
|
29
|
Xu JY, Xu Z, Liu X, Tan M, Ye BC. Protein Acetylation and Butyrylation Regulate the Phenotype and Metabolic Shifts of the Endospore-forming Clostridium acetobutylicum. Mol Cell Proteomics 2018. [PMID: 29523768 DOI: 10.1074/mcp.ra117.000372] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Clostridium acetobutylicum is a strict anaerobic, endospore-forming bacterium, which is used for the production of the high energy biofuel butanol in metabolic engineering. The life cycle of C. acetobutylicum can be divided into two phases, with acetic and butyric acids being produced in the exponential phase (acidogenesis) and butanol formed in the stationary phase (solventogenesis). During the transitional phase from acidogenesis to solventogenesis and latter stationary phase, concentration peaks of the metabolic intermediates butyryl phosphate and acetyl phosphate are observed. As an acyl group donor, acyl-phosphate chemically acylates protein substrates. However, the regulatory mechanism of lysine acetylation and butyrylation involved in the phenotype and solventogenesis of C. acetobutylicum remains unknown. In our study, we conducted quantitative analysis of protein acetylome and butyrylome to explore the dynamic change of lysine acetylation and butyrylation in the exponential phase, transitional phase, and stationary phase of C. acetobutylicum Total 458 lysine acetylation sites and 1078 lysine butyrylation sites were identified in 254 and 373 substrates, respectively. Bioinformatics analysis uncovered the similarities and differences between the two acylation modifications in C. acetobutylicum Mutation analysis of butyrate kinase and the central transcriptional factor Spo0A was performed to characterize the unique role of lysine butyrylation in the metabolic pathway and sporulation process of C. acetobutylicum Moreover, quantitative proteomic assays were performed to reveal the relationship between protein features (e.g. gene expression level and lysine acylation level) and metabolites in the three growth stages. This study expanded our knowledge of lysine acetylation and butyrylation in Clostridia and constituted a resource for functional studies on lysine acylation in bacteria.
Collapse
Affiliation(s)
- Jun-Yu Xu
- From the ‡Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China.,§State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, PR China.,¶Lab of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Zhen Xu
- From the ‡Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China.,¶Lab of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - XinXin Liu
- ¶Lab of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Minjia Tan
- §State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, PR China
| | - Bang-Ce Ye
- From the ‡Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China; .,¶Lab of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| |
Collapse
|
30
|
Mujahid H, Meng X, Xing S, Peng X, Wang C, Peng Z. Malonylome analysis in developing rice (Oryza sativa) seeds suggesting that protein lysine malonylation is well-conserved and overlaps with acetylation and succinylation substantially. J Proteomics 2017; 170:88-98. [PMID: 28882676 DOI: 10.1016/j.jprot.2017.08.021] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 07/29/2017] [Accepted: 08/31/2017] [Indexed: 12/13/2022]
Abstract
In recent years, lysine malonylation has garnered wide spread interest due to its potential regulatory roles. While studies have been performed in bacteria, mouse, and human, the involvement and the biological function of this modification in plant are still largely unknown. We examined the global proteome profile of lysine malonylation in developing rice seeds using affinity enrichment followed by LC-MS/MS analysis. We identified 421 malonylated lysine sites across 247 proteins. Functional analyses showed predominant presence of malonylated proteins in metabolic processes, including carbon metabolism, glycolysis/gluconeogenesis, TCA cycle, as well as photosynthesis. Malonylation was also detected on enzymes in starch biosynthesis pathway in developing rice seeds. In addition, we found a remarkable overlap among the malonylated, succinylated and acetylated sites identified in rice. Furthermore, malonylation at conserved sites of homologous proteins was observed across organisms of different kingdoms, including mouse, human, and bacteria. Finally, distinct motifs were identified when the rice malonylation sites were analyzed and conserved motifs were observed from bacterium to human and rice. Our results provide an initial understanding of the lysine malonylome in plants. The study has critical reference value for future understanding of the biological function of protein lysine malonylation in plants. BIOLOGICAL SIGNIFICANCE Lysine malonylation is a newly discovered acylation with functional potential in regulating cellular metabolisms and activities. However, the malonylation status has not been reported in plants. Grain yield and quality, mainly determined during cereal seed development, are closely related to food security, human health and economic value. To evaluate malonylation level in plants and the possible regulatory functions of malonylation in seed development, we conducted comprehensive analyses of malonylome in developing rice seeds. A total of 421 malonylated lysine sites from 247 proteins were identified, which involved in multiple critical metabolic processes, including central carbon metabolism, lipid metabolism, photosynthesis, and starch biosynthesis. We found that charged amino acids, lysine and arginine, were the preferred residues in positions flanking the modified lysines. Highly conserved modification sites on both histone and non-histone proteins were observed among different organisms through sequence alignment analysis. More interestingly, a large number of modification sites shared by malonylation, acetylation and succinylation were identified in rice. The study presents a comprehensive understanding of malonylome in plants, which will serve as an initial platform for further investigation of the functions of lysine malonylation, especially in cereal seeds development.
Collapse
Affiliation(s)
- Hana Mujahid
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Starkville, MS 39762, USA
| | - Xiaoxi Meng
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Starkville, MS 39762, USA
| | - Shihai Xing
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Starkville, MS 39762, USA
| | - Xiaojun Peng
- Department of Bioinformatics, Jingjie PTM Biolab Co. Ltd, Hangzhou, Zhejiang 310018, China
| | - Cailin Wang
- Institute of Crop Sciences, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014, China.
| | - Zhaohua Peng
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Starkville, MS 39762, USA.
| |
Collapse
|
31
|
Ramírez C, Romero J. Fine Flounder ( Paralichthys adspersus) Microbiome Showed Important Differences between Wild and Reared Specimens. Front Microbiol 2017; 8:271. [PMID: 28286497 PMCID: PMC5324718 DOI: 10.3389/fmicb.2017.00271] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 02/08/2017] [Indexed: 02/04/2023] Open
Abstract
The intestinal microbiota is involved in a wide range of biological processes that benefit the host, including providing nutrition and modulating the immune system. Fine flounder (Paralichthys adspersus) is a flatfish of commercial interest that is native to the Chilean coast. The high value of this flatfish has prompted the development of stock enhancement and aquaculture activities. Knowledge of microbiota may help to improve the cultivation of this species; however, few comparative studies have evaluated the intestinal microbiota composition in farmed versus wild fishes. Intestinal contents from wild and aquaculture fish were collected, and DNA was extracted. Subsequently, the V3-region of 16S rRNA was PCR amplified and sequenced using the Ion Torrent platform. The comparison between wild and aquaculture specimens revealed important differences in the composition of the microbiota. The most abundant phylum in wild flounder was Proteobacteria, with an average relative abundance of 68.1 ± 15.4%; in contrast, in aquaculture flounder, this phylum had an average relative abundance of 30.8 ± 24.1%. Reciprocally, the most abundant phylum in flounder aquaculture was Firmicutes, averaging 61.2 ± 28.4%; in contrast, this phylum showed low abundance in wild flounder, in which it averaged 4.7 ± 4%. The phylum Actinobacteria showed greater abundance in wild flounder, ranging from 21.7 ± 18.8%, whereas, it averaged only 2.7 ± 3.8% in aquaculture fish. Specific taxa that were differentially distributed between wild and aquaculture flounder were identified using a statistical approach. At the genus level, a total of four genera were differentially represented between the two conditions. Bacillus and Pseudomonas were more highly represented in aquaculture flounder, whereas Arthrobacter and Psychrobacter were observed in wild flounder. Furthermore, in both cases, predicted functions (metabolic pathways) indicated that those microbiota might provide beneficial effects for the host, but wild flounder showed more noteworthy pathways (EPA/DHA, SCFA, biotin). Our results highlight the differences in the microbiota composition between wild and reared fish. Knowing the composition of the intestinal microbiota of P. adspersus is the first step toward exploring the proper management of this species, as well as toward the development of probiotics and functional foods based on their requirements.
Collapse
Affiliation(s)
- Carolina Ramírez
- Unidad de Alimentos, Laboratorio de Biotecnología de los Alimentos, Instituto de Nutrición y Tecnología de los Alimentos, Universidad de Chile Santiago, Chile
| | - Jaime Romero
- Unidad de Alimentos, Laboratorio de Biotecnología de los Alimentos, Instituto de Nutrición y Tecnología de los Alimentos, Universidad de Chile Santiago, Chile
| |
Collapse
|
32
|
Fan B, Li YL, Li L, Peng XJ, Bu C, Wu XQ, Borriss R. Malonylome of the plant growth promoting rhizobacterium with potent biocontrol activity, Bacillus amyloliquefaciens FZB42. Data Brief 2016; 10:548-550. [PMID: 28070544 PMCID: PMC5219606 DOI: 10.1016/j.dib.2016.12.029] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2016] [Revised: 12/09/2016] [Accepted: 12/14/2016] [Indexed: 01/13/2023] Open
Abstract
The data presented in this article are related to the publication entitled "Malonylome analysis of rhizobacterium Bacillus amyloliquefaciens FZB42 reveals involvement of lysine malonylation in polyketide synthesis and plant-bacteria interactions"(doi:10.1016/j.jprot.2016.11.022) (B. Fan, Y. Li, L. Li et al.) [1]. This article presented the raw information of all malonyllysine sites identified by LC-MS/MS in the Bacillus amyloliquefaciens FZB42. Further, the functional features and conservation of the malonylated peptide/proteins were analyzed and made publicly available to enable critical or extended analyses.
Collapse
Affiliation(s)
- Ben Fan
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, 210037 Nanjing, China
| | - Yu-Long Li
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, 210037 Nanjing, China
| | - Lei Li
- RNA Biology Group, Institute for Molecular Infection Biology, University of Würzburg, 97080 Würzburg, Germany
| | - Xiao-Jun Peng
- Jingjie PTM Biolabs (Hangzhou) Co. Ltd., Hangzhou 310018, China
| | - Chen Bu
- Jingjie PTM Biolabs (Hangzhou) Co. Ltd., Hangzhou 310018, China
| | - Xiao-Qin Wu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, 210037 Nanjing, China
| | - Rainer Borriss
- Fachgebiet Phytomedizin, Albrecht Daniel Thaer Institut für Agrar- und Gartenbauwissenschaften, Lebenswissenschaftliche Fakultät, Humboldt Universität zu Berlin, 14195 Berlin, Germany
| |
Collapse
|