1
|
Seru LV, Forde TL, Roberto-Charron A, Mavrot F, Niu YD, Kutz SJ. Genomic characterization and virulence gene profiling of Erysipelothrix rhusiopathiae isolated from widespread muskox mortalities in the Canadian Arctic Archipelago. BMC Genomics 2024; 25:691. [PMID: 39004696 PMCID: PMC11247837 DOI: 10.1186/s12864-024-10592-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 07/03/2024] [Indexed: 07/16/2024] Open
Abstract
BACKGROUND Muskoxen are important ecosystem components and provide food, economic opportunities, and cultural well-being for Indigenous communities in the Canadian Arctic. Between 2010 and 2021, Erysipelothrix rhusiopathiae was isolated from carcasses of muskoxen, caribou, a seal, and an Arctic fox during multiple large scale mortality events in the Canadian Arctic Archipelago. A single strain ('Arctic clone') of E. rhusiopathiae was associated with the mortalities on Banks, Victoria and Prince Patrick Islands, Northwest Territories and Nunavut, Canada (2010-2017). The objectives of this study were to (i) characterize the genomes of E. rhusiopathiae isolates obtained from more recent muskox mortalities in the Canadian Arctic in 2019 and 2021; (ii) identify and compare common virulence traits associated with the core genome and mobile genetic elements (i.e. pathogenicity islands and prophages) among Arctic clone versus other E. rhusiopathiae genomes; and iii) use pan-genome wide association studies (GWAS) to determine unique genetic contents of the Arctic clone that may encode virulence traits and that could be used for diagnostic purposes. RESULTS Phylogenetic analyses revealed that the newly sequenced E. rhusiopathiae isolates from Ellesmere Island, Nunavut (2021) also belong to the Arctic clone. Of 17 virulence genes analysed among 28 Arctic clone isolates, four genes - adhesin, rhusiopathiae surface protein-A (rspA), choline binding protein-B (cbpB) and CDP-glycerol glycerophosphotransferase (tagF) - had amino acid sequence variants unique to this clone when compared to 31 other E. rhusiopathiae genomes. These genes encode proteins that facilitate E. rhusiopathiae to attach to the host endothelial cells and form biofilms. GWAS analyses using Scoary found several unique genes to be overrepresented in the Arctic clone. CONCLUSIONS The Arctic clone of E. rhusiopathiae was associated with multiple muskox mortalities spanning over a decade and multiple Arctic islands with distances over 1000 km, highlighting the extent of its spatiotemporal spread. This clone possesses unique gene content, as well as amino acid variants in multiple virulence genes that are distinct from the other closely related E. rhusiopathiae isolates. This study establishes an essential foundation on which to investigate whether these differences are correlated with the apparent virulence of this specific clone through in vitro and in vivo studies.
Collapse
Affiliation(s)
| | - Taya L Forde
- School of Biodiversity, One Health & Veterinary Medicine, University of Glasgow, Glasgow, UK.
| | | | - Fabien Mavrot
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Yan D Niu
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Susan J Kutz
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
2
|
Zubair M, Wang J, Yu Y, Faisal M, Qi M, Shah AU, Feng Z, Shao G, Wang Y, Xiong Q. Proteomics approaches: A review regarding an importance of proteome analyses in understanding the pathogens and diseases. Front Vet Sci 2022; 9:1079359. [PMID: 36601329 PMCID: PMC9806867 DOI: 10.3389/fvets.2022.1079359] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022] Open
Abstract
Proteomics is playing an increasingly important role in identifying pathogens, emerging and re-emerging infectious agents, understanding pathogenesis, and diagnosis of diseases. Recently, more advanced and sophisticated proteomics technologies have transformed disease diagnostics and vaccines development. The detection of pathogens is made possible by more accurate and time-constrained technologies, resulting in an early diagnosis. More detailed and comprehensive information regarding the proteome of any noxious agent is made possible by combining mass spectrometry with various gel-based or short-gun proteomics approaches recently. MALDI-ToF has been proved quite useful in identifying and distinguishing bacterial pathogens. Other quantitative approaches are doing their best to investigate bacterial virulent factors, diagnostic markers and vaccine candidates. Proteomics is also helping in the identification of secreted proteins and their virulence-related functions. This review aims to highlight the role of cutting-edge proteomics approaches in better understanding the functional genomics of pathogens. This also underlines the limitations of proteomics in bacterial secretome research.
Collapse
Affiliation(s)
- Muhammad Zubair
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Jia Wang
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Yanfei Yu
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China,School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China,College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Muhammad Faisal
- Division of Hematology, Department of Medicine, The Ohio State University College of Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH, United States
| | - Mingpu Qi
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Abid Ullah Shah
- National Research Centre of Engineering and Technology for Veterinary Biologicals, Institute of Veterinary Immunology and Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Zhixin Feng
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Guoqing Shao
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China,School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Yu Wang
- China Pharmaceutical University, Nanjing, China,*Correspondence: Yu Wang
| | - Qiyan Xiong
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China,College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China,School of Life Sciences, Jiangsu University, Zhenjiang, China,Qiyan Xiong
| |
Collapse
|
3
|
Boukthir S, Common H, Arvieux C, Cattoir V, Patrat-Delon S, Jolivet-Gougeon A. A recurrent prosthetic joint infection caused by Erysipelothrix rhusiopathiae: case report and literature review. J Med Microbiol 2022; 71. [PMID: 36094891 DOI: 10.1099/jmm.0.001580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Prosthetic knee joint infection caused by Erysipelothrix rhusiopathiae is uncommon and only one case of recurrent infection has previously been described. Here, we describe the case of a 77-year-old male patient who was admitted to the teaching hospital of Rennes (France) with bilateral and nocturnal gonalgia evolving for 1 month. He had bilateral knee prosthesis 10 years ago, and a history of large B-cell lymphoma in remission. A diagnosis of infective endocarditis, with prosthetic knee infection, was made, with positive cultures of synovial fluids and blood; colonies of E. rhusiopathiae were identified by MALDI-TOF MS. Initial treatment involved debridement, implant retention surgery and intravenous amoxicillin (12 g day-1) for 6 weeks with gentamicin 3 mg kg-1 day-1 added for the first 4 days. One year later, a second episode of E. rhusiopathiae infection occurred, suggesting a recurrence or reinfection due to the same bacterial species. The patient was finally cured after a two-stage exchange with a cemented articulated spacer and a 3 month course of amoxicillin (12 g day-1, iv). Different characteristics of E. rhusiopathiae infection were discussed, with a review of all cases of prosthetic joint infections caused by Erysipelothrix species. This case highlights the need for a long-term survey of patients, and a good knowledge of their environment to avoid any risk of reinfection.
Collapse
Affiliation(s)
- Sarrah Boukthir
- Bacteriology and Hygiene Department, Teaching Hospital of Rennes, 2 rue Henri-Le-Guilloux, 35033 Rennes, France
| | - Harold Common
- CRIOGO Great West Reference Centers for Complex Bone and Joint Infections (CRIOGO), Rennes, France.,Department of Orthopedic Surgery and Traumatology, Teaching Hospital of Rennes, 2 rue Henri-Le-Guilloux, 11 35033 Rennes, France
| | - Cédric Arvieux
- CRIOGO Great West Reference Centers for Complex Bone and Joint Infections (CRIOGO), Rennes, France.,Teaching Hospital of Rennes, Department of Infectious Diseases and Intensive Care Medicine, Rennes University Hospital, 2, rue Henri-Le-Guilloux, 35033 Rennes, France
| | - Vincent Cattoir
- Bacteriology and Hygiene Department, Teaching Hospital of Rennes, 2 rue Henri-Le-Guilloux, 35033 Rennes, France.,CRIOGO Great West Reference Centers for Complex Bone and Joint Infections (CRIOGO), Rennes, France.,Inserm U1230 BMR, University of Rennes 1, Rennes, France
| | - Solène Patrat-Delon
- CRIOGO Great West Reference Centers for Complex Bone and Joint Infections (CRIOGO), Rennes, France.,Teaching Hospital of Rennes, Department of Infectious Diseases and Intensive Care Medicine, Rennes University Hospital, 2, rue Henri-Le-Guilloux, 35033 Rennes, France
| | - Anne Jolivet-Gougeon
- Bacteriology and Hygiene Department, Teaching Hospital of Rennes, 2 rue Henri-Le-Guilloux, 35033 Rennes, France.,CRIOGO Great West Reference Centers for Complex Bone and Joint Infections (CRIOGO), Rennes, France.,Univ Rennes, INSERM, INRAE, CHU Rennes, Institut NUMECAN (Nutrition Metabolisms and Cancer), U1241 Microbiology, F-35000 Rennes, France
| |
Collapse
|
4
|
The C-Terminal Repeat Units of SpaA Mediate Adhesion of Erysipelothrix rhusiopathiae to Host Cells and Regulate Its Virulence. BIOLOGY 2022; 11:biology11071010. [PMID: 36101391 PMCID: PMC9311908 DOI: 10.3390/biology11071010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/22/2022] [Accepted: 06/27/2022] [Indexed: 11/17/2022]
Abstract
Simple Summary Erysipelothrix rhusiopathiae is an important zoonotic pathogen, which poses a serious harm to the pig industry. We aimed to evaluate the genomic differences between virulent and avirulent strains to study the pathogenic mechanism of Erysipelothrix rhusiopathiae. The results showed that the spaA gene of avirulent strain lacked 120bp, encoding repeat units at the C-terminal of SpaA, the virulence of the virulent strain with this 120 bp deletion was attenuated, and the mutant strain decreased adhesion to porcine iliac artery endothelial cells. Abstract Erysipelothrix rhusiopathiae is a causative agent of erysipelas in animals and erysipeloid in humans. However, current information regarding E. rhusiopathiae pathogenesis remains limited. Previously, we identified two E. rhusiopathiae strains, SE38 and G4T10, which were virulent and avirulent in pigs, respectively. Here, to further study the pathogenic mechanism of E. rhusiopathiae, we sequenced and assembled the genomes of strains SE38 and G4T10, and performed a comparative genomic analysis to identify differences or mutations in virulence-associated genes. Next, we comparatively analyzed 25 E. rhusiopathiae virulence-associated genes in SE38 and G4T10. Compared with that of SE38, the spaA gene of the G4T10 strain lacked 120 bp, encoding repeat units at the C-terminal of SpaA. To examine whether these deletions or splits influence E. rhusiopathiae virulence, these 120 bp were successfully deleted from the spaA gene in strain SE38 by homologous recombination. The mutant strain ΔspaA displayed attenuated virulence in mice and decreased adhesion to porcine iliac artery endothelial cells, which was also observed using the corresponding mutant protein SpaA’. Our results demonstrate that SpaA-mediated adhesion between E. rhusiopathiae and host cells is dependent on its C-terminal repeat units.
Collapse
|
5
|
Gil-Marqués ML, Pachón J, Smani Y. iTRAQ-Based Quantitative Proteomic Analysis of Acinetobacter baumannii under Hypoxia and Normoxia Reveals the Role of OmpW as a Virulence Factor. Microbiol Spectr 2022; 10:e0232821. [PMID: 35234505 PMCID: PMC8941935 DOI: 10.1128/spectrum.02328-21] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 02/02/2022] [Indexed: 11/20/2022] Open
Abstract
Acinetobacter baumannii needs to adapt to hypoxia during infection. Understanding its proteome regulation during infection would allow us to determine new targets to develop novel treatments. iTRAQ proteomic analysis of A549 cell infection by the ATCC 17978 strain was performed. A total of 175 proteins were differentially expressed under hypoxia versus normoxia. We selected the hypoxia-downregulated protein OmpW to analyze its role as a virulence factor. The loss of OmpW decreased the adherence and invasion of A. baumannii in these host cells, without affecting its bacterial growth. Moreover, A549 cell viability with ΔOmpW infection was higher than that with the wild-type strain. ΔOmpW presented less biofilm formation. Finally, the minimum lethal dose required by the ΔOmpW mutant was higher than that of the wild-type strain in a murine peritoneal sepsis model, with lower bacterial loads in tissues and fluids. Therefore, OmpW seems to be a virulence factor necessary for A. baumannii pathogenesis. IMPORTANCE Acinetobacter baumannii causes infections that are very difficult to treat due to the high rate of resistance to most and sometimes all of the antimicrobials used in the clinical setting. There is an important need to develop new strategies to combat A. baumannii infections. One alternative could be blocking specific bacterial virulence factors that this pathogen needs to infect cells. Pathogens modulate their protein expression as a function of the environment, and several studies have reported that hypoxia occurs in a wide range of infections. Therefore, it would be interesting to determine the proteome of A. baumannii under hypoxia in order to find new virulence factors, such as the outer membrane protein OmpW, as potential targets for the design of novel therapies.
Collapse
Affiliation(s)
- María Luisa Gil-Marqués
- Unit of Infectious Diseases, Microbiology and Preventive Medicine, Virgen del Rocío University Hospital, Seville, Spain
- Institute of Biomedicine of Seville, IBiS, University Hospital Virgen del Rocío/CSIC/University of Seville, Sevilla, Spain
| | - Jerónimo Pachón
- Institute of Biomedicine of Seville, IBiS, University Hospital Virgen del Rocío/CSIC/University of Seville, Sevilla, Spain
- Department of Medicine, University of Seville, Sevilla, Spain
| | - Younes Smani
- Unit of Infectious Diseases, Microbiology and Preventive Medicine, Virgen del Rocío University Hospital, Seville, Spain
- Institute of Biomedicine of Seville, IBiS, University Hospital Virgen del Rocío/CSIC/University of Seville, Sevilla, Spain
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
- Department of Molecular Biology and Biochemical Engineering, Andalusian Center of Developmental Biology, CSIC, University of Pablo de Olavide, Seville, Spain
| |
Collapse
|
6
|
Han LT, Wu YJ, Liu TB. The F-Box Protein Fbp1 Regulates Virulence of Cryptococcus neoformans Through the Putative Zinc-Binding Protein Zbp1. Front Cell Infect Microbiol 2022; 11:794661. [PMID: 35024357 PMCID: PMC8744115 DOI: 10.3389/fcimb.2021.794661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 12/06/2021] [Indexed: 11/13/2022] Open
Abstract
The ubiquitin-proteasome system (UPS) is the major protein turnover mechanism that plays an important role in regulating various cellular functions. F-box proteins are the key proteins of the UPS, responsible for the specific recognition and ubiquitination of downstream targets. Our previous studies showed that the F-box protein Fbp1 plays an essential role in the virulence of C. neoformans. However, the molecular mechanism of Fbp1 regulating the virulence of C. neoformans is still unclear. In this study, we analyzed the potential Fbp1 substrates using an iTRAQ-based proteomic approach and identified the zinc-binding protein Zbp1 as a substrate of Fbp1. Protein interaction and stability assays showed that Zbp1 interacts with Fbp1 and is a downstream target of Fbp1. Ubiquitination analysis in vivo showed that the ubiquitination of Zbp1 is dependent on Fbp1 in C. neoformans. Subcellular localization analysis revealed that the Zbp1 protein was localized in the nucleus of C. neoformans cells. In addition, both deletion and overexpression of the ZBP1 gene led to the reduced capsule size, while overexpression has a more significant impact on capsule size reduction. Fungal virulence assays showed that although the zbp1Δ mutants are virulent, virulence was significantly attenuated in the ZBP1 overexpression strains. Fungal load assay showed that the fungal burdens recovered from the mouse lungs decreased gradually after infection, while no yeast cells were recovered from the brains and spleens of the mice infected by ZBP1 overexpression strains. Thus, our results revealed a new determinant of fungal virulence involving the post-translational regulation of a zinc-binding protein.
Collapse
Affiliation(s)
- Lian-Tao Han
- State Key Laboratory of Silkworm Genomic Biology, Southwest University, Chongqing, China.,Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, China
| | - Yu-Juan Wu
- State Key Laboratory of Silkworm Genomic Biology, Southwest University, Chongqing, China.,Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, China
| | - Tong-Bao Liu
- State Key Laboratory of Silkworm Genomic Biology, Southwest University, Chongqing, China.,Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, China.,Medical Research Institute, Southwest University, Chongqing, China
| |
Collapse
|
7
|
Wu C, Lv C, Zhao Y, Zhu W, Liu L, Wang T, Kang C, Yang Y, Sun X, Zhang Q, Jin M. Characterization of Erysipelothrix rhusiopathiae Isolates from Diseased Pigs in 15 Chinese Provinces from 2012 to 2018. Microorganisms 2021; 9:microorganisms9122615. [PMID: 34946215 PMCID: PMC8704079 DOI: 10.3390/microorganisms9122615] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/14/2021] [Accepted: 12/15/2021] [Indexed: 12/31/2022] Open
Abstract
Erysipelothrix rhusiopathiae can cause erysipelas in animals and erysipeloid in humans. Since its recurrence in 2012, swine erysipelas has caused serious losses within the pig industry in China. The aim of this study was to perform multilocus sequence typing and understand the virulence and antimicrobial susceptibility of E. rhusiopathiae isolates in China. Multilocus sequence typing (MLST) of a total of 120 strains was performed, and as a result, three different sequence types were identified, of which ST48 was the main one. Five isolates of each MLST type were randomly selected to be used to challenge mice. ST48 was associated with a higher virulence. Antimicrobial susceptibility was tested using a microdilution technique and, to analyze the resistance mechanism, six strains were selected for genome sequencing. A comparison of the six genomes indicated the presence of a suspected macrolide resistance gene, namely, Erm(A)-like, in erythromycin-resistant strains, which increased the minimum inhibitory concentration (MIC) of erythromycin against E. coli C600 at least four-fold. In addition, three mutations (gyrA86T-I, gyrA90D-N, and parC81S-I) were observed in the quinolone resistance-determining regions (QRDRs) of gyrA and parC in quinolone-resistant strains. After the gyrA gene with the 86T-I mutation or the parC gene with the 81S-I mutation was transfected into E. coli C600, the MIC of enrofloxacin against this strain increased at least two-fold. Our findings provide a theoretical basis for developing antibacterial drugs and may contribute to the clinical prevention and control of E. rhusiopathiae.
Collapse
Affiliation(s)
- Chao Wu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (C.W.); (C.L.); (Y.Z.); (W.Z.); (L.L.); (T.W.); (C.K.); (Y.Y.); (X.S.)
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Changjie Lv
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (C.W.); (C.L.); (Y.Z.); (W.Z.); (L.L.); (T.W.); (C.K.); (Y.Y.); (X.S.)
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Ya Zhao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (C.W.); (C.L.); (Y.Z.); (W.Z.); (L.L.); (T.W.); (C.K.); (Y.Y.); (X.S.)
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Weifeng Zhu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (C.W.); (C.L.); (Y.Z.); (W.Z.); (L.L.); (T.W.); (C.K.); (Y.Y.); (X.S.)
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Liang Liu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (C.W.); (C.L.); (Y.Z.); (W.Z.); (L.L.); (T.W.); (C.K.); (Y.Y.); (X.S.)
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Ting Wang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (C.W.); (C.L.); (Y.Z.); (W.Z.); (L.L.); (T.W.); (C.K.); (Y.Y.); (X.S.)
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Chao Kang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (C.W.); (C.L.); (Y.Z.); (W.Z.); (L.L.); (T.W.); (C.K.); (Y.Y.); (X.S.)
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Ying Yang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (C.W.); (C.L.); (Y.Z.); (W.Z.); (L.L.); (T.W.); (C.K.); (Y.Y.); (X.S.)
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiaomei Sun
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (C.W.); (C.L.); (Y.Z.); (W.Z.); (L.L.); (T.W.); (C.K.); (Y.Y.); (X.S.)
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Qiang Zhang
- College of Biomedicine and Health, Huazhong Agricultural University, Wuhan 430070, China
- Correspondence: (Q.Z.); (M.J.)
| | - Meilin Jin
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (C.W.); (C.L.); (Y.Z.); (W.Z.); (L.L.); (T.W.); (C.K.); (Y.Y.); (X.S.)
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Correspondence: (Q.Z.); (M.J.)
| |
Collapse
|
8
|
First Report of Genetic Variability of Erysipelothrix sp. Strain 2 in Turkeys Associated to Vero Cells Morphometric Alteration. Pathogens 2021; 10:pathogens10020141. [PMID: 33535396 PMCID: PMC7912226 DOI: 10.3390/pathogens10020141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/23/2021] [Accepted: 01/25/2021] [Indexed: 11/17/2022] Open
Abstract
Erysipelas is a disease caused by the Erysipelothrix genus, whose main species is the E. rhusiopathiae, the causative agent of animal erysipelas and human erysipeloid. We isolated Erysipelothrix sp. strain 2 (ES2) from turkey's organs during an outbreak in Brazilian commercial and breeder flocks with sepsis and high mortality levels. We studied 18 flocks, accounting for 182 samples, being eight flocks (84 samples) as ES2 positive with individuals demonstrating clinical symptoms and high mortality. We obtained the genetic variability of 19 samples with PFGE and found two clones, both from the same flock but different samples, and two clusters. Interestingly, we found 15 strains with high genetic variability among and within flocks. We have found a positive association between the proximity of ES2 positive turkey flocks and commercial swine sites through epidemiological analysis. We infected Vero cells with two different isolates and three distinct concentrations of ES2. After performing the morphometry, we recorded enlargement of the nucleus and nucleolus. Moreover, we performed fluorescence assays that resulted in apoptotic and necrotic cells. We demonstrated that ES2 could multiply in the extracellular medium and invade and survive inside Vero cells. For the first time, our finds show that ES2 may have similar behavior as E. rhusiopathiae as a facultative intracellular microorganism, which may represent a hazard for humans.
Collapse
|
9
|
Yi L, Cui J, Hu N, Li L, Chen Y, Mu H, Yin J, Wei S, Gong Y, Wei Y, Liu B, Ding D. iTRAQ-Based Proteomic Profiling of Potential Biomarkers in Rat Serum for Uranium Tailing Suspension Intratracheal Instillation. J Proteome Res 2020; 20:995-1004. [PMID: 33151695 DOI: 10.1021/acs.jproteome.0c00766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Protection against low-dose ionizing radiation is of great significance. Uranium tailings are formed as a byproduct of uranium mining and a potential risk to organisms. In this study, we identified potential biomarkers associated with exposure to low-dose radiation from uranium tailings. We established a Wistar rat model of low dose rate irradiation by intratracheal instillation of a uranium tailing suspension. We observed pathological changes in the liver, lung, and kidney tissues of the rats. Using isobaric tags for relative and absolute quantification, we screened 17 common differentially expressed proteins in three dose groups. We chose alpha-1 antiproteinase (Serpina1), keratin 17 (Krt17), and aldehyde dehydrogenase (Aldh3a1) for further investigation. Our data showed that expression of Serpina1, Krt17, and Aldh3a1 had changed after the intratracheal instillation in rats, which may be potential biomarkers for uranium tailing low-dose irradiation. However, the underlying mechanisms require further investigation.
Collapse
Affiliation(s)
- Lan Yi
- The Hengyang Key Laboratory of Cellular Stress Biology, Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Hengyang, Hunan 421001, P. R. China.,Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan 421001, P. R. China.,Hengyang Medical College, Institute of Cytology and Genetics, University of South China, Hengyang 421001, Hunan Province, P. R. China
| | - Jian Cui
- The Hengyang Key Laboratory of Cellular Stress Biology, Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Hengyang, Hunan 421001, P. R. China.,Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan 421001, P. R. China.,Hengyang Medical College, Institute of Cytology and Genetics, University of South China, Hengyang 421001, Hunan Province, P. R. China
| | - Nan Hu
- The Hengyang Key Laboratory of Cellular Stress Biology, Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Hengyang, Hunan 421001, P. R. China
| | - Linwei Li
- The Hengyang Key Laboratory of Cellular Stress Biology, Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Hengyang, Hunan 421001, P. R. China.,Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan 421001, P. R. China.,Hengyang Medical College, Institute of Cytology and Genetics, University of South China, Hengyang 421001, Hunan Province, P. R. China
| | - Yonglin Chen
- The Hengyang Key Laboratory of Cellular Stress Biology, Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Hengyang, Hunan 421001, P. R. China.,Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan 421001, P. R. China.,Hengyang Medical College, Institute of Cytology and Genetics, University of South China, Hengyang 421001, Hunan Province, P. R. China
| | - Hongxiang Mu
- The Hengyang Key Laboratory of Cellular Stress Biology, Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Hengyang, Hunan 421001, P. R. China.,Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan 421001, P. R. China.,Hengyang Medical College, Institute of Cytology and Genetics, University of South China, Hengyang 421001, Hunan Province, P. R. China
| | - Jie Yin
- The Hengyang Key Laboratory of Cellular Stress Biology, Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Hengyang, Hunan 421001, P. R. China.,Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan 421001, P. R. China.,Hengyang Medical College, Institute of Cytology and Genetics, University of South China, Hengyang 421001, Hunan Province, P. R. China
| | - Shuang Wei
- The Hengyang Key Laboratory of Cellular Stress Biology, Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Hengyang, Hunan 421001, P. R. China.,Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan 421001, P. R. China.,Hengyang Medical College, Institute of Cytology and Genetics, University of South China, Hengyang 421001, Hunan Province, P. R. China
| | - Yaqi Gong
- The Hengyang Key Laboratory of Cellular Stress Biology, Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Hengyang, Hunan 421001, P. R. China.,Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan 421001, P. R. China.,Hengyang Medical College, Institute of Cytology and Genetics, University of South China, Hengyang 421001, Hunan Province, P. R. China
| | - Yuanyun Wei
- The Hengyang Key Laboratory of Cellular Stress Biology, Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Hengyang, Hunan 421001, P. R. China.,Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan 421001, P. R. China.,Hengyang Medical College, Institute of Cytology and Genetics, University of South China, Hengyang 421001, Hunan Province, P. R. China
| | - Bang Liu
- The Hengyang Key Laboratory of Cellular Stress Biology, Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Hengyang, Hunan 421001, P. R. China.,Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan 421001, P. R. China.,Hengyang Medical College, Institute of Cytology and Genetics, University of South China, Hengyang 421001, Hunan Province, P. R. China
| | - Dexin Ding
- The Hengyang Key Laboratory of Cellular Stress Biology, Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Hengyang, Hunan 421001, P. R. China
| |
Collapse
|
10
|
Yang L, Zhu Y, Peng Z, Ding Y, Jie K, Wang Z, Peng Y, Tang X, Wang X, Chen H, Tan C. Comparative Genome Analysis of a Pathogenic Erysipelothrix rhusiopathiae Isolate WH13013 from Pig Reveals Potential Genes Involve in Bacterial Adaptions and Pathogenesis. Vet Sci 2020; 7:vetsci7020074. [PMID: 32512708 PMCID: PMC7356198 DOI: 10.3390/vetsci7020074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/27/2020] [Accepted: 06/01/2020] [Indexed: 12/03/2022] Open
Abstract
Erysipelothrix rhusiopathiae is a common pathogen responsible for pig erysipelas. However, the molecular basis for the pathogenesis of E. rhusiopathiae remains to be elucidated. In this study, the complete genome sequence of the E. rhusiopathiae strain WH13013, a pathogenic isolate from a diseased pig, was generated using a combined strategy of PacBio RSII and Illumina sequencing technologies. The strategy finally generated a single circular chromosome of approximately 1.78 Mb in size for the complete genome of WH13013, with an average GC content of 36.49%. The genome of WH13013 encoded 1633 predicted proteins, 55 tRNAs, as well as 15 rRNAs. It contained four genomic islands and several resistance-associated genes were identified within these islands. Phylogenetic analysis revealed that WH13013 was close to many other sequenced E. rhusiopathiae virulent strains. The comprehensive comparative analysis of eight E. rhusiopathiae virulent strains, including WH13013, identified a total of 1184 core genes. A large proportion (approximately 75.31%) of these core genes participated in nutrition and energy uptake and metabolism as well as the other bioactivities that are necessary for bacterial survival and adaption. The core genes also contained those encoding proteins participating in the biosynthesis and/or the components of the proposed virulence factors of E. rhusiopathiae, including the capsule (cpsA, cpsB, cpsC), neuraminidase (nanH), hyaluronidase (hylA, hylB, hylC), and surface proteins (spaA, rspA, rspB). The obtaining of the complete genome sequence of this virulent strain, WH13013, and this comprehensive comparative genome analysis will help in further studies of the genetic basis of the pathogenesis of E. rhusiopathiae.
Collapse
Affiliation(s)
- Longsheng Yang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei, China; (L.Y.); (Y.Z.); (Z.P.); (Y.D.); (K.J.); (Z.W.); (Y.P.); (X.W.); (H.C.)
- Ministry of Education and Hubei Province Co-constructed Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, Hubei, China;
- Chia Tai Animal Husbandry Investment (Beijing) Co., Ltd., Beijing 100005, China
- State Key Laboratory of Meat Processing and Quality Control, Jiangsu Yurun Meat Group Co., Ltd., Nanjing 210000, China
| | - Yongwei Zhu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei, China; (L.Y.); (Y.Z.); (Z.P.); (Y.D.); (K.J.); (Z.W.); (Y.P.); (X.W.); (H.C.)
- Ministry of Education and Hubei Province Co-constructed Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, Hubei, China;
| | - Zhong Peng
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei, China; (L.Y.); (Y.Z.); (Z.P.); (Y.D.); (K.J.); (Z.W.); (Y.P.); (X.W.); (H.C.)
- Ministry of Education and Hubei Province Co-constructed Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, Hubei, China;
| | - Yi Ding
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei, China; (L.Y.); (Y.Z.); (Z.P.); (Y.D.); (K.J.); (Z.W.); (Y.P.); (X.W.); (H.C.)
- Ministry of Education and Hubei Province Co-constructed Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, Hubei, China;
| | - Kai Jie
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei, China; (L.Y.); (Y.Z.); (Z.P.); (Y.D.); (K.J.); (Z.W.); (Y.P.); (X.W.); (H.C.)
- Ministry of Education and Hubei Province Co-constructed Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, Hubei, China;
| | - Zijian Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei, China; (L.Y.); (Y.Z.); (Z.P.); (Y.D.); (K.J.); (Z.W.); (Y.P.); (X.W.); (H.C.)
- Ministry of Education and Hubei Province Co-constructed Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, Hubei, China;
| | - Ying Peng
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei, China; (L.Y.); (Y.Z.); (Z.P.); (Y.D.); (K.J.); (Z.W.); (Y.P.); (X.W.); (H.C.)
- Ministry of Education and Hubei Province Co-constructed Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, Hubei, China;
| | - Xibiao Tang
- Ministry of Education and Hubei Province Co-constructed Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, Hubei, China;
| | - Xiangru Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei, China; (L.Y.); (Y.Z.); (Z.P.); (Y.D.); (K.J.); (Z.W.); (Y.P.); (X.W.); (H.C.)
- Ministry of Education and Hubei Province Co-constructed Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, Hubei, China;
- Key Laboratory of Development of Veterinary Diagnostic Products of Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Huanchun Chen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei, China; (L.Y.); (Y.Z.); (Z.P.); (Y.D.); (K.J.); (Z.W.); (Y.P.); (X.W.); (H.C.)
- Ministry of Education and Hubei Province Co-constructed Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, Hubei, China;
- Key Laboratory of Development of Veterinary Diagnostic Products of Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Chen Tan
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei, China; (L.Y.); (Y.Z.); (Z.P.); (Y.D.); (K.J.); (Z.W.); (Y.P.); (X.W.); (H.C.)
- Ministry of Education and Hubei Province Co-constructed Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, Hubei, China;
- Key Laboratory of Development of Veterinary Diagnostic Products of Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, Hubei, China
- Correspondence: ; Tel.: +86-27-8728-7170
| |
Collapse
|
11
|
Zhu W, Wu C, Kang C, Cai C, Wang Y, Li J, Zhang Q, Sun X, Jin M. Evaluation of the protective efficacy of four newly identified surface proteins of Erysipelothrix rhusiopathiae. Vaccine 2018; 36:8079-8083. [PMID: 30446176 DOI: 10.1016/j.vaccine.2018.10.071] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 10/15/2018] [Accepted: 10/21/2018] [Indexed: 10/27/2022]
Abstract
Erysipelothrix rhusiopathiae is the causative agent of animal erysipelas and human erysipeloid. Bacterial surface proteins are promising vaccine candidates. We recently identified 3 E. rhusiopathiae surface proteins (GAPDH, HP0728, and HP1472) and characterized their roles as virulence factors. However, their efficacy as protective antigens is still unknown. The N-terminal region of a previously identified surface protein, CbpB (CbpB-N), is speculated to be a protective antigen, but this needs to be verified. The aim of this study was to evaluate the protective efficacy of GAPDH, HP0728, HP1472, and CbpB-N. Immunization with recombinant GAPDH provided complete protection in a mouse model, recombinant CbpB-N provided partial protection, while recombinant HP0728 and HP1472 provided no protection. Recombinant GAPDH also provided good protection in a pig model. GAPDH antiserum exhibited significant blood bactericidal activity against E. rhusiopathiae. In conclusion, GAPDH and CbpB-N were found to be protective antigens of E. rhusiopathiae, and GAPDH is a promising vaccine candidate.
Collapse
Affiliation(s)
- Weifeng Zhu
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China; Animal Infectious Disease Unit, National State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Chao Wu
- Animal Infectious Disease Unit, National State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China; Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, Wuhan, China; Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Chao Kang
- Animal Infectious Disease Unit, National State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Chengzhi Cai
- Animal Infectious Disease Unit, National State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Ya Wang
- Animal Infectious Disease Unit, National State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Jingtao Li
- Animal Infectious Disease Unit, National State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Qiang Zhang
- Animal Infectious Disease Unit, National State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China; College of Life Sciences & Technology, Huazhong Agricultural University, Wuhan, China
| | - Xiaomei Sun
- Animal Infectious Disease Unit, National State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China; Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, Wuhan, China
| | - Meilin Jin
- Animal Infectious Disease Unit, National State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China; Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, Wuhan, China; Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China.
| |
Collapse
|
12
|
Zhu W, Cai C, Huang J, Liu L, Xu Z, Sun X, Jin M. Characterization of pathogenic roles of two Erysipelothrix rhusiopathiae surface proteins. Microb Pathog 2017; 114:166-168. [PMID: 29196173 DOI: 10.1016/j.micpath.2017.11.057] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 11/27/2017] [Accepted: 11/27/2017] [Indexed: 10/18/2022]
Abstract
Erysipelothrix rhusiopathiae is the causative agent of animal erysipelas and human erysipeloid. E. rhusiopathiae HP0728 and HP1472 have been reported to be down regulated in low-virulence or avirulent strains, but their pathogenic roles are not known. In this study, it was found that E. rhusiopathiae HP0728 and HP1472 were displayed on the surface of E. rhusiopathiae. Moreover, recombinant HP1472 could adhere to pig vascular endothelial cells. Recombinant HP0728 could bind host plasminogen but could not bind fibronectin. In conclusion, our work suggested that HP0728 and HP1472 are virulence factors of E. rhusiopathiae.
Collapse
Affiliation(s)
- Weifeng Zhu
- Animal Infectious Disease Unit, National State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Chengzhi Cai
- Animal Infectious Disease Unit, National State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Jingjing Huang
- Animal Infectious Disease Unit, National State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Liang Liu
- Animal Infectious Disease Unit, National State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Zhongmin Xu
- Animal Infectious Disease Unit, National State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Xiaomei Sun
- Animal Infectious Disease Unit, National State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China; Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, Wuhan, China; Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Meilin Jin
- Animal Infectious Disease Unit, National State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China; Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, Wuhan, China; Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China.
| |
Collapse
|