1
|
Lozano C, Armengaud J. Sample Preparation and Processing for Quick, Universal, and Insightful Microbial Proteomics. Methods Mol Biol 2025; 2884:57-69. [PMID: 39715997 DOI: 10.1007/978-1-0716-4298-6_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2024]
Abstract
Next-generation shotgun proteomics is one of the most valuable tools for gaining insight into the function of organisms. By providing a list of peptides and abundance information, proteomics enables the identification of proteins, their quantities, posttranslational modifications, and localization. The most refined shotgun proteomics workflow involves protein extraction, trypsin digestion, ultrahigh-performance liquid chromatography coupled to high-resolution tandem mass spectrometry, and confident assignment of resulting spectra to peptide sequences. In this study, we present a versatile, time- and cost-efficient experimental workflow for protein extraction, digestion, and analysis that can be applied to any type of microorganism. Our experimental procedure exhibits superior sensitivity compared to gel-based protocols and can be used for comparative microbial proteomics to highlight key players that explain phenotypic differences between conditions or for proteotyping new microbial isolates for taxonomic purposes.
Collapse
Affiliation(s)
- Clément Lozano
- Département Médicaments et Technologies pour la Santé (DMTS), SPI, Université Paris-Saclay, CEA, INRAE, Bagnols-sur-Cèze, France
| | - Jean Armengaud
- Département Médicaments et Technologies pour la Santé (DMTS), SPI, Université Paris-Saclay, CEA, INRAE, Bagnols-sur-Cèze, France.
| |
Collapse
|
2
|
Réthoré E, Pelletier S, Balliau T, Zivy M, Avelange-Macherel MH, Macherel D. Multi-scale analysis of heat stress acclimation in Arabidopsis seedlings highlights the primordial contribution of energy-transducing organelles. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:300-331. [PMID: 38613336 DOI: 10.1111/tpj.16763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 03/08/2024] [Accepted: 03/14/2024] [Indexed: 04/14/2024]
Abstract
Much progress has been made in understanding the molecular mechanisms of plant adaptation to heat stress. However, the great diversity of models and stress conditions, and the fact that analyses are often limited to a small number of approaches, complicate the picture. We took advantage of a liquid culture system in which Arabidopsis seedlings are arrested in their development, thus avoiding interference with development and drought stress responses, to investigate through an integrative approach seedlings' global response to heat stress and acclimation. Seedlings perfectly tolerate a noxious heat shock (43°C) when subjected to a heat priming treatment at a lower temperature (38°C) the day before, displaying a thermotolerance comparable to that previously observed for Arabidopsis. A major effect of the pre-treatment was to partially protect energy metabolism under heat shock and favor its subsequent rapid recovery, which was correlated with the survival of seedlings. Rapid recovery of actin cytoskeleton and mitochondrial dynamics were another landmark of heat shock tolerance. The omics confirmed the role of the ubiquitous heat shock response actors but also revealed specific or overlapping responses to priming, heat shock, and their combination. Since only a few components or functions of chloroplast and mitochondria were highlighted in these analyses, the preservation and rapid recovery of their bioenergetic roles upon acute heat stress do not require extensive remodeling of the organelles. Protection of these organelles is rather integrated into the overall heat shock response, thus allowing them to provide the energy required to elaborate other cellular responses toward acclimation.
Collapse
Affiliation(s)
- Elise Réthoré
- Univ Angers, Institut Agro Rennes-Angers, INRAE, IRHS-UMR 1345, F-49000, Angers, France
| | - Sandra Pelletier
- Univ Angers, Institut Agro Rennes-Angers, INRAE, IRHS-UMR 1345, F-49000, Angers, France
| | - Thierry Balliau
- INRAE, PAPPSO, UMR/UMR Génétique Végétale, Gif sur Yvette, France
| | - Michel Zivy
- INRAE, PAPPSO, UMR/UMR Génétique Végétale, Gif sur Yvette, France
| | | | - David Macherel
- Univ Angers, Institut Agro Rennes-Angers, INRAE, IRHS-UMR 1345, F-49000, Angers, France
| |
Collapse
|
3
|
Ngom SI, Maski S, Rached B, Chouati T, Oliveira Correia L, Juste C, Meylheuc T, Henrissat B, El Fahime E, Amar M, Béra-Maillet C. Exploring the hemicellulolytic properties and safety of Bacillus paralicheniformis as stepping stone in the use of new fibrolytic beneficial microbes. Sci Rep 2023; 13:22785. [PMID: 38129471 PMCID: PMC10740013 DOI: 10.1038/s41598-023-49724-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 12/11/2023] [Indexed: 12/23/2023] Open
Abstract
Bacillus strains from the Moroccan Coordinated Collections of Microorganisms (CCMM) were characterised and tested for fibrolytic function and safety properties that would be beneficial for maintaining intestinal homeostasis, and recommend beneficial microbes in the field of health promotion research. Forty strains were investigated for their fibrolytic activities towards complex purified polysaccharides and natural fibres representative of dietary fibres (DFs) entering the colon for digestion. We demonstrated hemicellulolytic activities for nine strains of Bacillus aerius, re-identified as Bacillus paralicheniformis and Bacillus licheniformis, using xylan, xyloglucan or lichenan as purified polysaccharides, and orange, apple and carrot natural fibres, with strain- and substrate-dependent production of glycoside hydrolases (GHs). Our combined methods, based on enzymatic assays, secretome, and genome analyses, highlighted the hemicellulolytic activities of B. paralicheniformis and the secretion of specific glycoside hydrolases, in particular xylanases, compared to B. licheniformis. Genomic features of these strains revealed a complete set of GH genes dedicated to the degradation of various polysaccharides from DFs, including cellulose, hemicellulose and pectin, which may confer on the strains the ability to digest a variety of DFs. Preliminary experiments on the safety and immunomodulatory properties of B. paralicheniformis fibrolytic strains were evaluated in light of applications as beneficial microbes' candidates for health improvement. B. paralicheniformis CCMM B969 was therefore proposed as a new fibrolytic beneficial microbe candidate.
Collapse
Affiliation(s)
- Serigne Inssa Ngom
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350, Jouy-en-Josas, France
| | - Soufiane Maski
- Laboratoire de Microbiologie et Biologie Moléculaire, Centre National pour la Recherche Scientifique et Technique, Rabat, Morocco
- Département de Biologie, Faculté des Sciences, Université Mohammed V, Rabat, Morocco
| | - Bahia Rached
- Collections Coordonnées Marocaines de Microorganismes, Centre National pour la Recherche Scientifique et Technique, Rabat, Morocco
- Plateforme Génomique Fonctionnelle, Unité d'Appui Technique à la Recherche Scientifique, Centre National pour la Recherche Scientifique et Technique, Rabat, Morocco
- Laboratoire de Chimie-Physique et Biotechnologies des Biomolécules et Matériaux/Equipe Microbiologie Biomolécules et Biotechnologies, Faculté des Sciences et Techniques, Mohammedia, Morocco
| | - Taha Chouati
- Collections Coordonnées Marocaines de Microorganismes, Centre National pour la Recherche Scientifique et Technique, Rabat, Morocco
- Plateforme Génomique Fonctionnelle, Unité d'Appui Technique à la Recherche Scientifique, Centre National pour la Recherche Scientifique et Technique, Rabat, Morocco
- Biologie médicale, Pathologie humaine et Expérimentale et Environnement, Faculté de Médecine et de pharmacie de Rabat, Rabat, Morocco
| | - Lydie Oliveira Correia
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, PAPPSO, 78350, Jouy-en-Josas, France
| | - Catherine Juste
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350, Jouy-en-Josas, France
| | - Thierry Meylheuc
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, MIMA2, 78350, Jouy en Josas, France
| | - Bernard Henrissat
- Architecture et Fonction des Macromolécules Biologiques, Centre National de la Recherche Scientifique, Aix-Marseille Université, 13288, Marseille, France
- Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Elmostafa El Fahime
- Plateforme Génomique Fonctionnelle, Unité d'Appui Technique à la Recherche Scientifique, Centre National pour la Recherche Scientifique et Technique, Rabat, Morocco
- Biologie médicale, Pathologie humaine et Expérimentale et Environnement, Faculté de Médecine et de pharmacie de Rabat, Rabat, Morocco
| | - Mohamed Amar
- Laboratoire de Microbiologie et Biologie Moléculaire, Centre National pour la Recherche Scientifique et Technique, Rabat, Morocco
- Collections Coordonnées Marocaines de Microorganismes, Centre National pour la Recherche Scientifique et Technique, Rabat, Morocco
| | - Christel Béra-Maillet
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350, Jouy-en-Josas, France.
- Laboratoire de Microbiologie et Biologie Moléculaire, Centre National pour la Recherche Scientifique et Technique, Rabat, Morocco.
| |
Collapse
|
4
|
Duruflé H, Balliau T, Blanchet N, Chaubet A, Duhnen A, Pouilly N, Blein-Nicolas M, Mangin B, Maury P, Langlade NB, Zivy M. Sunflower Hybrids and Inbred Lines Adopt Different Physiological Strategies and Proteome Responses to Cope with Water Deficit. Biomolecules 2023; 13:1110. [PMID: 37509146 PMCID: PMC10377273 DOI: 10.3390/biom13071110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/03/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
Sunflower is a hybrid crop that is considered moderately drought-tolerant and adapted to new cropping systems required for the agro-ecological transition. Here, we studied the impact of hybridity status (hybrids vs. inbred lines) on the responses to drought at the molecular and eco-physiological level exploiting publicly available datasets. Eco-physiological traits and leaf proteomes were measured in eight inbred lines and their sixteen hybrids grown in the high-throughput phenotyping platform Phenotoul-Heliaphen. Hybrids and parental lines showed different growth strategies: hybrids grew faster in the absence of water constraint and arrested their growth more abruptly than inbred lines when subjected to water deficit. We identified 471 differentially accumulated proteins, of which 256 were regulated by drought. The amplitude of up- and downregulations was greater in hybrids than in inbred lines. Our results show that hybrids respond more strongly to water deficit at the molecular and eco-physiological levels. Because of presence/absence polymorphism, hybrids potentially contain more genes than their parental inbred lines. We propose that detrimental homozygous mutations and the lower number of genes in inbred lines lead to a constitutive defense mechanism that may explain the lower growth of inbred lines under well-watered conditions and their lower reactivity to water deficit.
Collapse
Affiliation(s)
- Harold Duruflé
- INRAE UMR441, CNRS UMR2594, LIPME, Université de Toulouse, 31077 Toulouse, France
- INRAE, ONF, BioForA, 45075 Orleans, France
| | - Thierry Balliau
- AgroParisTech, GQE-Le Moulon, PAPPSO, Université Paris-Saclay, INRAE, CNRS, 91190 Gif-sur-Yvette, France
| | - Nicolas Blanchet
- INRAE UMR441, CNRS UMR2594, LIPME, Université de Toulouse, 31077 Toulouse, France
| | - Adeline Chaubet
- INRAE UMR441, CNRS UMR2594, LIPME, Université de Toulouse, 31077 Toulouse, France
| | - Alexandra Duhnen
- INRAE UMR441, CNRS UMR2594, LIPME, Université de Toulouse, 31077 Toulouse, France
| | - Nicolas Pouilly
- INRAE UMR441, CNRS UMR2594, LIPME, Université de Toulouse, 31077 Toulouse, France
| | - Mélisande Blein-Nicolas
- AgroParisTech, GQE-Le Moulon, PAPPSO, Université Paris-Saclay, INRAE, CNRS, 91190 Gif-sur-Yvette, France
| | - Brigitte Mangin
- INRAE UMR441, CNRS UMR2594, LIPME, Université de Toulouse, 31077 Toulouse, France
| | - Pierre Maury
- INRAE, INP-ENSAT Toulouse, UMR AGIR, Université de Toulouse, 31000 Toulouse, France
| | | | - Michel Zivy
- AgroParisTech, GQE-Le Moulon, PAPPSO, Université Paris-Saclay, INRAE, CNRS, 91190 Gif-sur-Yvette, France
| |
Collapse
|
5
|
Ghouili E, Sassi K, Hidri Y, M’Hamed HC, Somenahally A, Xue Q, Jebara M, Nefissi Ouertani R, Riahi J, de Oliveira AC, Abid G, Muhovski Y. Effects of Date Palm Waste Compost Application on Root Proteome Changes of Barley ( Hordeum vulgare L.). PLANTS (BASEL, SWITZERLAND) 2023; 12:526. [PMID: 36771612 PMCID: PMC9921465 DOI: 10.3390/plants12030526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 01/15/2023] [Accepted: 01/18/2023] [Indexed: 06/18/2023]
Abstract
Proteomic analysis was performed to investigate the differentially abundant proteins (DAPs) in barley roots during the tillering stage. Bioinformatic tools were used to interpret the biological function, the pathway analysis and the visualisation of the network amongst the identified proteins. A total of 72 DAPs (33 upregulated and 39 downregulated) among a total of 2580 proteins were identified in response to compost treatment, suggesting multiple pathways of primary and secondary metabolism, such as carbohydrates and energy metabolism, phenylpropanoid pathway, glycolysis pathway, protein synthesis and degradation, redox homeostasis, RNA processing, stress response, cytoskeleton organisation, and phytohormone metabolic pathways. The expression of DAPs was further validated by qRT-PCR. The effects on barley plant development, such as the promotion of root growth and biomass increase, were associated with a change in energy metabolism and protein synthesis. The activation of enzymes involved in redox homeostasis and the regulation of stress response proteins suggest a protective effect of compost, consequently improving barley growth and stress acclimation through the reduction of the environmental impact of productive agriculture. Overall, these results may facilitate a better understanding of the molecular mechanism of compost-promoted plant growth and provide valuable information for the identification of critical genes/proteins in barley as potential targets of compost.
Collapse
Affiliation(s)
- Emna Ghouili
- Laboratory of Legumes and Sustainable Agrosystems, Centre of Biotechnology of Borj-Cedria, (L2AD, CBBC), P.O. Box 901, Hammam-Lif 2050, Tunisia
| | - Khaled Sassi
- Laboratory of Agronomy, National Agronomy Institute of Tunisia (INAT), University of Carthage, Avenue Charles Nicolle, Tunis-Mahrajène, P.O. Box 43, Tunis 1082, Tunisia
| | - Yassine Hidri
- Laboratory of Integrated Olive Production in the Humid, Sub-humid and Semi-arid Region (LR16IO3), Olive Tree Institute, Cité Mahragène, P.O. Box 208, Tunis 1082, Tunisia
| | - Hatem Cheikh M’Hamed
- Agronomy Laboratory, National Institute of Agronomic Research of Tunis (INRAT), Carthage University, Hedi Karray Street, Ariana 2049, Tunisia
| | - Anil Somenahally
- Department of Soil and Crop Sciences, Texas A&M University, 370 Olsen Blvd, College Station, TX 77843-2474, USA
| | - Qingwu Xue
- Texas A&M AgriLife Research and Extension Center, Amarillo, TX 79403-6603, USA
| | - Moez Jebara
- Laboratory of Legumes and Sustainable Agrosystems, Centre of Biotechnology of Borj-Cedria, (L2AD, CBBC), P.O. Box 901, Hammam-Lif 2050, Tunisia
| | - Rim Nefissi Ouertani
- Laboratory of Plant Molecular Physiology, Centre of Biotechnology of Borj Cedria, P.O. Box 901, Hammam-Lif 2050, Tunisia
| | - Jouhaina Riahi
- Laboratory of Agronomy, National Agronomy Institute of Tunisia (INAT), University of Carthage, Avenue Charles Nicolle, Tunis-Mahrajène, P.O. Box 43, Tunis 1082, Tunisia
| | - Ana Caroline de Oliveira
- Biological Engineering Unit, Department of Life Sciences, Walloon Agricultural Research Centre, Chaussée de Charleroi, P.O. Box 234, 5030 Gembloux, Belgium
| | - Ghassen Abid
- Laboratory of Legumes and Sustainable Agrosystems, Centre of Biotechnology of Borj-Cedria, (L2AD, CBBC), P.O. Box 901, Hammam-Lif 2050, Tunisia
| | - Yordan Muhovski
- Biological Engineering Unit, Department of Life Sciences, Walloon Agricultural Research Centre, Chaussée de Charleroi, P.O. Box 234, 5030 Gembloux, Belgium
| |
Collapse
|
6
|
Label-Free Quantitative Proteomics Reveal the Involvement of PRT6 in Arabidopsis thaliana Seed Responsiveness to Ethylene. Int J Mol Sci 2022; 23:ijms23169352. [PMID: 36012613 PMCID: PMC9409418 DOI: 10.3390/ijms23169352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/11/2022] [Accepted: 08/16/2022] [Indexed: 11/17/2022] Open
Abstract
In Arabidopsis thaliana, the breaking of seed dormancy in wild type (Col-0) by ethylene at 100 μL L-1 required at least 30 h application. A mutant of the proteolytic N-degron pathway, lacking the E3 ligase PROTEOLYSIS 6 (PRT6), was investigated for its role in ethylene-triggered changes in proteomes during seed germination. Label-free quantitative proteomics was carried out on dormant wild type Col-0 and prt6 seeds treated with (+) or without (-) ethylene. After 16 h, 1737 proteins were identified, but none was significantly different in protein levels in response to ethylene. After longer ethylene treatment (30 h), 2552 proteins were identified, and 619 Differentially Expressed Proteins (DEPs) had significant differences in protein abundances between ethylene treatments and genotypes. In Col, 587 DEPs were enriched for those involved in signal perception and transduction, reserve mobilization and new material generation, which potentially contributed to seed germination. DEPs up-regulated by ethylene in Col included S-adenosylmethionine synthase 1, methionine adenosyltransferase 3 and ACC oxidase involved in ethylene synthesis and of Pyrabactin Resistance1 acting as an ABA receptor, while DEPs down-regulated by ethylene in Col included aldehyde oxidase 4 involved in ABA synthesis. In contrast, in prt6 seeds, ethylene did not result in strong proteomic changes with only 30 DEPs. Taken together, the present work demonstrates that the proteolytic N-degron pathway is essential for ethylene-mediated reprogramming of seed proteomes during germination.
Collapse
|
7
|
Ehnert S, Seehase J, Müller-Renno C, Hannig M, Ziegler C. Simultaneous quantification of total carbohydrate and protein amounts from aqueous solutions by the sulfuric acid ultraviolet absorption method (SA-UV method). Anal Chim Acta 2021; 1174:338712. [PMID: 34247739 DOI: 10.1016/j.aca.2021.338712] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 05/03/2021] [Accepted: 05/27/2021] [Indexed: 10/21/2022]
Abstract
Based on the sulfuric acid-ultraviolet assay (SA-UV, developed by Albalasmeh et al., 2013), we have further expanded this method for the simultaneous quantification of saccharides (carbohydrates) and proteins by ultraviolet spectrophotometry. The absorbance of saccharides depends on the formation of furfurals by dehydration in the presence of concentrated sulfuric acid, whereas proteins are unaffected and can be quantified by UV active peptide bonds and aromatic amino acid residues. In saccharide/protein mixtures the SA-UV assay offers a good alternative and substitutes the need for two different methods, like the phenol-sulfuric acid (PSA, developed by DuBois et al., 1951) and bicinchoninic acid (BCA, developed by Smith et al., 1985) assays. For the development of this method, we used glucose and BSA as model substrates and performed a method validation in terms of linearity, LOD, LOQ, accuracy, and precision. Simultaneous quantification in glucose/BSA mixtures is possible down to 20 mg/L from 30 μL sample volumes, and even low content mixtures with concentrations down to 2 mg/L can appropriately be quantified from higher volumes by an evaporation technique.
Collapse
Affiliation(s)
- Swen Ehnert
- Department of Physics and Research Center OPTIMAS, University of Kaiserslautern, 67663 Kaiserslautern, Germany
| | - Jürgen Seehase
- Department of Physics and Research Center OPTIMAS, University of Kaiserslautern, 67663 Kaiserslautern, Germany
| | - Christine Müller-Renno
- Department of Physics and Research Center OPTIMAS, University of Kaiserslautern, 67663 Kaiserslautern, Germany
| | - Matthias Hannig
- Clinic of Operative Dentistry, Periodontology and Preventive Dentistry, Saarland University Hospital, 66421 Homburg, Germany
| | - Christiane Ziegler
- Department of Physics and Research Center OPTIMAS, University of Kaiserslautern, 67663 Kaiserslautern, Germany.
| |
Collapse
|
8
|
Moosa JM, Guan S, Moran MF, Ma B. Repeat-Preserving Decoy Database for False Discovery Rate Estimation in Peptide Identification. J Proteome Res 2020; 19:1029-1036. [DOI: 10.1021/acs.jproteome.9b00555] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Johra Muhammad Moosa
- David R. Cheriton School of Computer Science, University of Waterloo, Waterloo N2L 3G1, Canada
| | - Shenheng Guan
- David R. Cheriton School of Computer Science, University of Waterloo, Waterloo N2L 3G1, Canada
- Program in Cell Biology and SPARC BioCentre, Hospital for Sick Children, 686 Bay St, Toronto, Ontario M5G 0A4, Canada
| | - Michael F. Moran
- Program in Cell Biology and SPARC BioCentre, Hospital for Sick Children, 686 Bay St, Toronto, Ontario M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, 686 Bay St, Toronto, Ontario M5G 0A4, Canada
| | - Bin Ma
- David R. Cheriton School of Computer Science, University of Waterloo, Waterloo N2L 3G1, Canada
| |
Collapse
|
9
|
Belouah I, Bénard C, Denton A, Blein-Nicolas M, Balliau T, Teyssier E, Gallusci P, Bouchez O, Usadel B, Zivy M, Gibon Y, Colombié S. Transcriptomic and proteomic data in developing tomato fruit. Data Brief 2020; 28:105015. [PMID: 31909114 PMCID: PMC6938935 DOI: 10.1016/j.dib.2019.105015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 11/25/2019] [Accepted: 12/10/2019] [Indexed: 01/06/2023] Open
Abstract
Transcriptomic and proteomic analyses were performed on three replicates of tomato fruit pericarp samples collected at nine developmental stages, each replicate resulting from the pooling of at least 15 fruits. For transcriptome analysis, Illumina-sequenced libraries were mapped on the tomato genome with the aim to obtain absolute quantification of mRNA abundance. To achieve this, spikes were added at the beginning of the RNA extraction procedure. From 34,725 possible transcripts identified in the tomato, 22,877 were quantified in at least one of the nine developmental stages. For the proteome analysis, label-free liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) was used. Peptide ions, and subsequently the proteins from which they were derived, were quantified by integrating the signal intensities obtained from extracted ion currents (XIC) with the MassChroQ software. Absolute concentrations of individual proteins were estimated for 2375 proteins by using a mixed effects model from log10-transformed intensities and normalized to the total protein content. Transcriptomics data are available via GEO repository with accession number GSE128739. The raw MS output files and identification data were deposited on-line using the PROTICdb database (http://moulon.inra.fr/protic/tomato_fruit_development) and MS proteomics data have also been deposited to the ProteomeXchange with the dataset identifier PXD012877. The main added value of these quantitative datasets is their use in a mathematical model to estimate protein turnover in developing tomato fruit.
Collapse
Affiliation(s)
- Isma Belouah
- UMR 1332 BFP, INRA, Univ Bordeaux, F33883, Villenave d’Ornon, France
| | - Camille Bénard
- UMR 1332 BFP, INRA, Univ Bordeaux, F33883, Villenave d’Ornon, France
| | - Alisandra Denton
- Institute for Botany and Molecular Genetics, BioEconomy Science Center, Worringer Weg 3, RWTH Aachen University, Aachen, 52074, Germany
| | - Mélisande Blein-Nicolas
- PAPPSO, GQE - Le Moulon, INRA, Univ. Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, 91190 Gif-sur-Yvette, France
| | - Thierry Balliau
- PAPPSO, GQE - Le Moulon, INRA, Univ. Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, 91190 Gif-sur-Yvette, France
| | - Emeline Teyssier
- UMR EGFV, Université de Bordeaux, Institut national de la recherche agronomique, Institut des Sciences de la Vigne et du Vin, 210 Chemin de Leysotte, CS 50008, 33882 Villenave-d’Ornon, France
| | - Philippe Gallusci
- UMR EGFV, Université de Bordeaux, Institut national de la recherche agronomique, Institut des Sciences de la Vigne et du Vin, 210 Chemin de Leysotte, CS 50008, 33882 Villenave-d’Ornon, France
| | - Olivier Bouchez
- INRA, US 1426, GeT-PlaGe, Genotoul, Castanet-Tolosan, France
| | - Björn Usadel
- Institute for Botany and Molecular Genetics, BioEconomy Science Center, Worringer Weg 3, RWTH Aachen University, Aachen, 52074, Germany
| | - Michel Zivy
- PAPPSO, GQE - Le Moulon, INRA, Univ. Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, 91190 Gif-sur-Yvette, France
| | - Yves Gibon
- UMR 1332 BFP, INRA, Univ Bordeaux, F33883, Villenave d’Ornon, France
| | - Sophie Colombié
- UMR 1332 BFP, INRA, Univ Bordeaux, F33883, Villenave d’Ornon, France
| |
Collapse
|