1
|
Nagel M, Pence V, Ballesteros D, Lambardi M, Popova E, Panis B. Plant Cryopreservation: Principles, Applications, and Challenges of Banking Plant Diversity at Ultralow Temperatures. ANNUAL REVIEW OF PLANT BIOLOGY 2024; 75:797-824. [PMID: 38211950 DOI: 10.1146/annurev-arplant-070623-103551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
Progressive loss of plant diversity requires the protection of wild and agri-/horticultural species. For species whose seeds are extremely short-lived, or rarely or never produce seeds, or whose genetic makeup must be preserved, cryopreservation offers the only possibility for long-term conservation. At temperatures below freezing, most vegetative plant tissues suffer severe damage from ice crystal formation and require protection. In this review, we describe how increasing the concentration of cellular solutes by air drying or adding cryoprotectants, together with rapid cooling, results in a vitrified, highly viscous state in which cells can remain viable and be stored. On this basis, a range of dormant bud-freezing, slow-cooling, and (droplet-)vitrification protocols have been developed, but few are used to cryobank important agricultural/horticultural/timber and threatened species. To improve cryopreservation efficiency, the effects of cryoprotectants and molecular processes need to be understood and the costs for cryobanking reduced. However, overall, the long-term costs of cryopreservation are low, while the benefits are huge.
Collapse
Affiliation(s)
- Manuela Nagel
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Seeland, Germany;
| | - Valerie Pence
- Lindner Center for Conservation and Research of Endangered Wildlife (CREW), Cincinnati Zoo & Botanical Garden, Cincinnati, Ohio, USA
| | - Daniel Ballesteros
- Department of Botany and Geology, Universitat de València, Burjassot, Spain
- Royal Botanic Gardens, Kew, Wakehurst Place, West Sussex, United Kingdom
| | - Maurizio Lambardi
- Institute of BioEconomy (IBE), National Research Council (CNR), Florence, Italy
| | - Elena Popova
- Department of Cell Biology and Biotechnology, K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Moscow, Russia
| | - Bart Panis
- The Alliance of Bioversity International and the International Center for Tropical Agriculture (CIAT), KU Leuven, Leuven, Belgium
| |
Collapse
|
2
|
Gill RA, Ahmar S, Ali B, Saleem MH, Khan MU, Zhou W, Liu S. The Role of Membrane Transporters in Plant Growth and Development, and Abiotic Stress Tolerance. Int J Mol Sci 2021; 22:12792. [PMID: 34884597 PMCID: PMC8657488 DOI: 10.3390/ijms222312792] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 11/18/2021] [Accepted: 11/22/2021] [Indexed: 11/16/2022] Open
Abstract
The proteins of membrane transporters (MTs) are embedded within membrane-bounded organelles and are the prime targets for improvements in the efficiency of water and nutrient transportation. Their function is to maintain cellular homeostasis by controlling ionic movements across cellular channels from roots to upper plant parts, xylem loading and remobilization of sugar molecules from photosynthesis tissues in the leaf (source) to roots, stem and seeds (sink) via phloem loading. The plant's entire source-to-sink relationship is regulated by multiple transporting proteins in a highly sophisticated manner and driven based on different stages of plant growth and development (PG&D) and environmental changes. The MTs play a pivotal role in PG&D in terms of increased plant height, branches/tiller numbers, enhanced numbers, length and filled panicles per plant, seed yield and grain quality. Dynamic climatic changes disturbed ionic balance (salt, drought and heavy metals) and sugar supply (cold and heat stress) in plants. Due to poor selectivity, some of the MTs also uptake toxic elements in roots negatively impact PG&D and are later on also exported to upper parts where they deteriorate grain quality. As an adaptive strategy, in response to salt and heavy metals, plants activate plasma membranes and vacuolar membrane-localized MTs that export toxic elements into vacuole and also translocate in the root's tips and shoot. However, in case of drought, cold and heat stresses, MTs increased water and sugar supplies to all organs. In this review, we mainly review recent literature from Arabidopsis, halophytes and major field crops such as rice, wheat, maize and oilseed rape in order to argue the global role of MTs in PG&D, and abiotic stress tolerance. We also discussed gene expression level changes and genomic variations within a species as well as within a family in response to developmental and environmental cues.
Collapse
Affiliation(s)
- Rafaqat Ali Gill
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, The Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan 430062, China;
| | - Sunny Ahmar
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (S.A.); (M.H.S.)
| | - Basharat Ali
- Department of Agronomy, University of Agriculture, Faisalabad 38040, Pakistan;
| | - Muhammad Hamzah Saleem
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (S.A.); (M.H.S.)
| | - Muhammad Umar Khan
- Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| | - Weijun Zhou
- Institute of Crop Science, The Ministry of Agriculture and Rural Affairs Key Laboratory of Spectroscopy Sensing, Zhejiang University, Hangzhou 310058, China;
| | - Shengyi Liu
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, The Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan 430062, China;
| |
Collapse
|
3
|
Wu T, Kerbler SM, Fernie AR, Zhang Y. Plant cell cultures as heterologous bio-factories for secondary metabolite production. PLANT COMMUNICATIONS 2021; 2:100235. [PMID: 34746764 PMCID: PMC8554037 DOI: 10.1016/j.xplc.2021.100235] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 07/27/2021] [Accepted: 08/19/2021] [Indexed: 05/06/2023]
Abstract
Synthetic biology has been developing rapidly in the last decade and is attracting increasing attention from many plant biologists. The production of high-value plant-specific secondary metabolites is, however, limited mostly to microbes. This is potentially problematic because of incorrect post-translational modification of proteins and differences in protein micro-compartmentalization, substrate availability, chaperone availability, product toxicity, and cytochrome p450 reductase enzymes. Unlike other heterologous systems, plant cells may be a promising alternative for the production of high-value metabolites. Several commercial plant suspension cell cultures from different plant species have been used successfully to produce valuable metabolites in a safe, low cost, and environmentally friendly manner. However, few metabolites are currently being biosynthesized using plant platforms, with the exception of the natural pigment anthocyanin. Both Arabidopsis thaliana and Nicotiana tabacum cell cultures can be developed by multiple gene transformations and CRISPR-Cas9 genome editing. Given that the introduction of heterologous biosynthetic pathways into Arabidopsis and N. tabacum is not widely used, the biosynthesis of foreign metabolites is currently limited; however, therein lies great potential. Here, we discuss the exemplary use of plant cell cultures and prospects for using A. thaliana and N. tabacum cell cultures to produce valuable plant-specific metabolites.
Collapse
Affiliation(s)
- Tong Wu
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Sandra M. Kerbler
- Leibniz-Institute für Gemüse- und Zierpflanzenbau, Theodor-Echtermeyer-Weg 1, 14979 Groβbeeren, Germany
| | - Alisdair R. Fernie
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
- Center of Plant Systems Biology and Biotechnology, 4000 Plovdiv, Bulgaria
| | - Youjun Zhang
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
- Center of Plant Systems Biology and Biotechnology, 4000 Plovdiv, Bulgaria
| |
Collapse
|
4
|
Juurakko CL, Bredow M, Nakayama T, Imai H, Kawamura Y, diCenzo GC, Uemura M, Walker VK. The Brachypodium distachyon cold-acclimated plasma membrane proteome is primed for stress resistance. G3-GENES GENOMES GENETICS 2021; 11:6321953. [PMID: 34544140 PMCID: PMC8661430 DOI: 10.1093/g3journal/jkab198] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 06/04/2021] [Indexed: 11/25/2022]
Abstract
In order to survive subzero temperatures, some plants undergo cold acclimation (CA) where low, nonfreezing temperatures, and/or shortened day lengths allow cold-hardening and survival during subsequent freeze events. Central to this response is the plasma membrane (PM), where low temperature is perceived and cellular homeostasis must be preserved by maintaining membrane integrity. Here, we present the first PM proteome of cold-acclimated Brachypodium distachyon, a model species for the study of monocot crops. A time-course experiment investigated CA-induced changes in the proteome following two-phase partitioning PM enrichment and label-free quantification by nano-liquid chromatography-mass spectrophotometry. Two days of CA were sufficient for membrane protection as well as an initial increase in sugar levels and coincided with a significant change in the abundance of 154 proteins. Prolonged CA resulted in further increases in soluble sugars and abundance changes in more than 680 proteins, suggesting both a necessary early response to low-temperature treatment, as well as a sustained CA response elicited over several days. A meta-analysis revealed that the identified PM proteins have known roles in low-temperature tolerance, metabolism, transport, and pathogen defense as well as drought, osmotic stress, and salt resistance suggesting crosstalk between stress responses, such that CA may prime plants for other abiotic and biotic stresses. The PM proteins identified here present keys to an understanding of cold tolerance in monocot crops and the hope of addressing economic losses associated with modern climate-mediated increases in frost events.
Collapse
Affiliation(s)
- Collin L Juurakko
- Department of Biology, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Melissa Bredow
- Department of Biology, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Takato Nakayama
- Department of Plant-Bioscience, Faculty of Agriculture, Iwate University, Morioka, Iwate 020-8550, Japan
| | - Hiroyuki Imai
- United Graduate School of Agricultural Sciences, Iwate University, Morioka, Iwate 020-8550, Japan
| | - Yukio Kawamura
- Department of Plant-Bioscience, Faculty of Agriculture, Iwate University, Morioka, Iwate 020-8550, Japan.,United Graduate School of Agricultural Sciences, Iwate University, Morioka, Iwate 020-8550, Japan
| | - George C diCenzo
- Department of Biology, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Matsuo Uemura
- Department of Plant-Bioscience, Faculty of Agriculture, Iwate University, Morioka, Iwate 020-8550, Japan.,United Graduate School of Agricultural Sciences, Iwate University, Morioka, Iwate 020-8550, Japan
| | - Virginia K Walker
- Department of Biology, Queen's University, Kingston, ON K7L 3N6, Canada.,Department of Biomedical and Molecular Sciences, School of Environmental Studies, Queen's University, Kingston, ON K7L 3N6, Canada
| |
Collapse
|
5
|
Jorrin Novo JV. Proteomics and plant biology: contributions to date and a look towards the next decade. Expert Rev Proteomics 2021; 18:93-103. [PMID: 33770454 DOI: 10.1080/14789450.2021.1910028] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
INTRODUCTION This review presents the view of the author, that is opinionable and even speculative, on the field of proteomics, its application to plant biology knowledge, and translation to biotechnology. Written in a more academic than scientific style, it is based on past original and review articles by the author´s group, and those published by leading scientists in the last two years. AREAS COVERED Starting with a general definition and references to historical milestones, it covers sections devoted to the different platforms employed, the plant biology discourse in the protein language, challenges and future prospects, ending with the author opinion. EXPERT OPINION In 25 years, five proteomics platform generations have appeared. We are now moving from proteomics to Systems Biology. While feasible with model organisms, proteomics of orphan species remains challenging. Proteomics, even in its simplest approach, sheds light on plant biological processes, central dogma, and molecular bases of phenotypes of interest, and it can be translated to areas such as food traceability and allergen detection. Proteomics should be validated and optimized to each experimental system, objectives, and hypothesis. It has limitations, artifacts, and biases. We should not blindly accept proteomics data and just create a list of proteins, networks, and avoid speculative biological interpretations. From the hundred to thousand proteins identified and quantified, it is important to obtain a focus and validate some of them, otherwise it is merely. We are starting to have the protein pieces, so let, from now, build the proteomics and biological puzzle.
Collapse
Affiliation(s)
- J V Jorrin Novo
- Dpt. Biochemistry and Molecular Biology, Agroforestry and Plant Biochemistry, Proteomics and Systems Biology, ETSIAM, University of Cordoba, Cordoba , Spain
| |
Collapse
|
6
|
Kamal MM, Ishikawa S, Takahashi F, Suzuki K, Kamo M, Umezawa T, Shinozaki K, Kawamura Y, Uemura M. Large-Scale Phosphoproteomic Study of Arabidopsis Membrane Proteins Reveals Early Signaling Events in Response to Cold. Int J Mol Sci 2020; 21:E8631. [PMID: 33207747 PMCID: PMC7696906 DOI: 10.3390/ijms21228631] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/12/2020] [Accepted: 11/13/2020] [Indexed: 12/22/2022] Open
Abstract
Cold stress is one of the major factors limiting global crop production. For survival at low temperatures, plants need to sense temperature changes in the surrounding environment. How plants sense and respond to the earliest drop in temperature is still not clearly understood. The plasma membrane and its adjacent extracellular and cytoplasmic sites are the first checkpoints for sensing temperature changes and the subsequent events, such as signal generation and solute transport. To understand how plants respond to early cold exposure, we used a mass spectrometry-based phosphoproteomic method to study the temporal changes in protein phosphorylation events in Arabidopsis membranes during 5 to 60 min of cold exposure. The results revealed that brief cold exposures led to rapid phosphorylation changes in the proteins involved in cellular ion homeostasis, solute and protein transport, cytoskeleton organization, vesical trafficking, protein modification, and signal transduction processes. The phosphorylation motif and kinase-substrate network analysis also revealed that multiple protein kinases, including RLKs, MAPKs, CDPKs, and their substrates, could be involved in early cold signaling. Taken together, our results provide a first look at the cold-responsive phosphoproteome changes of Arabidopsis membrane proteins that can be a significant resource to understand how plants respond to an early temperature drop.
Collapse
Affiliation(s)
- Md Mostafa Kamal
- United Graduate School of Agricultural Sciences, Iwate University, Morioka 020-8550, Japan; (M.M.K.); (Y.K.)
| | - Shinnosuke Ishikawa
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, Koganei 184-8588, Japan; (S.I.); (T.U.)
| | - Fuminori Takahashi
- Gene Discovery Research Group, RIKEN Center for Sustainable Resource Science, 3-1-1 Koyadai, Tsukuba 305-0074, Japan; (F.T.); (K.S.)
| | - Ko Suzuki
- Department of Biochemistry, Iwate Medical University, Yahaba 028-3694, Japan; (K.S.); (M.K.)
| | - Masaharu Kamo
- Department of Biochemistry, Iwate Medical University, Yahaba 028-3694, Japan; (K.S.); (M.K.)
| | - Taishi Umezawa
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, Koganei 184-8588, Japan; (S.I.); (T.U.)
| | - Kazuo Shinozaki
- Gene Discovery Research Group, RIKEN Center for Sustainable Resource Science, 3-1-1 Koyadai, Tsukuba 305-0074, Japan; (F.T.); (K.S.)
| | - Yukio Kawamura
- United Graduate School of Agricultural Sciences, Iwate University, Morioka 020-8550, Japan; (M.M.K.); (Y.K.)
- Department of Plant-Bioscience, Faculty of Agriculture, Iwate University, Morioka 020-8550, Japan
| | - Matsuo Uemura
- United Graduate School of Agricultural Sciences, Iwate University, Morioka 020-8550, Japan; (M.M.K.); (Y.K.)
- Department of Plant-Bioscience, Faculty of Agriculture, Iwate University, Morioka 020-8550, Japan
| |
Collapse
|