1
|
Soporan MA, Pralea IE, Iacobescu M, Moldovan RC, Alkhzouz C, Miclea D, Iuga CA. Salivary Proteome Insights: Evaluation of Saliva Preparation Methods in Mucopolysaccharidoses Research. Biomedicines 2025; 13:662. [PMID: 40149638 PMCID: PMC11940144 DOI: 10.3390/biomedicines13030662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 02/27/2025] [Accepted: 03/04/2025] [Indexed: 03/29/2025] Open
Abstract
Background: This research aimed to compare the traditional in-solution digestion (inSol) and solid-phase-enhanced sample preparation (SP3) methods for salivary proteomics, with a focus on identifying mucopolysaccharidosis (MPS)-relevant proteins. Methods: Saliva samples were processed under multiple analytical conditions, including two precipitation methods (methanol or incubation with trichloroacetic acid), paired with either Rapigest or 8M urea/2M thiourea (UT) solubilization buffers. Additionally, the SP3 method was directly applied to raw saliva without pre-processing. Proteome coverage, reproducibility, digestion efficiency, and gene function were assessed. Results: The inSol method consistently provided superior proteome coverage, with trichloroacetic acid precipitation and Rapigest buffer yielding 74 MPS-relevant proteins, compared to 40 with SP3 MeOH UT. Both methods showed high digestion efficiency, particularly with Rapigest buffer, achieving over 80% full cleavage across conditions. Functional analysis revealed broad similarities, with protocol-specific impacts on protein classes and cellular components. Conclusions: This study is the first to compare SP3 and in-solution digestion for salivary proteomics, emphasizing the importance of method selection to address matrix-specific challenges. The results highlight the robustness of inSol for comprehensive proteome profiling and SP3's potential for streamlined clinical workflows, offering valuable insights into optimizing salivary proteomics for biomarker discovery in MPS and other diseases.
Collapse
Affiliation(s)
- Maria-Andreea Soporan
- Department of Pharmaceutical Analysis, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, Louis Pasteur Street 6, 400349 Cluj-Napoca, Romania;
- Personalized Medicine and Rare Diseases Department, MEDFUTURE—Institute for Biomedical Research, “Iuliu Hațieganu” University of Medicine and Pharmacy, Louis Pasteur Street 6, 400349 Cluj-Napoca, Romania; (I.-E.P.); (M.I.); (R.C.M.)
| | - Ioana-Ecaterina Pralea
- Personalized Medicine and Rare Diseases Department, MEDFUTURE—Institute for Biomedical Research, “Iuliu Hațieganu” University of Medicine and Pharmacy, Louis Pasteur Street 6, 400349 Cluj-Napoca, Romania; (I.-E.P.); (M.I.); (R.C.M.)
| | - Maria Iacobescu
- Personalized Medicine and Rare Diseases Department, MEDFUTURE—Institute for Biomedical Research, “Iuliu Hațieganu” University of Medicine and Pharmacy, Louis Pasteur Street 6, 400349 Cluj-Napoca, Romania; (I.-E.P.); (M.I.); (R.C.M.)
| | - Radu Cristian Moldovan
- Personalized Medicine and Rare Diseases Department, MEDFUTURE—Institute for Biomedical Research, “Iuliu Hațieganu” University of Medicine and Pharmacy, Louis Pasteur Street 6, 400349 Cluj-Napoca, Romania; (I.-E.P.); (M.I.); (R.C.M.)
| | - Camelia Alkhzouz
- Department Mother and Child, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, Calea Moților, No. 68, 400370 Cluj-Napoca, Romania; (C.A.); (D.M.)
| | - Diana Miclea
- Department Mother and Child, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, Calea Moților, No. 68, 400370 Cluj-Napoca, Romania; (C.A.); (D.M.)
- Medical Genetics Department, Clinical Emergency Hospital for Children, Calea Moților, No. 68, 400370 Cluj-Napoca, Romania
| | - Cristina-Adela Iuga
- Department of Pharmaceutical Analysis, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, Louis Pasteur Street 6, 400349 Cluj-Napoca, Romania;
- Personalized Medicine and Rare Diseases Department, MEDFUTURE—Institute for Biomedical Research, “Iuliu Hațieganu” University of Medicine and Pharmacy, Louis Pasteur Street 6, 400349 Cluj-Napoca, Romania; (I.-E.P.); (M.I.); (R.C.M.)
| |
Collapse
|
2
|
Tanca A, Deledda MA, De Diego L, Abbondio M, Uzzau S. Benchmarking low- and high-throughput protein cleanup and digestion methods for human fecal metaproteomics. mSystems 2024; 9:e0066124. [PMID: 38934547 PMCID: PMC11265449 DOI: 10.1128/msystems.00661-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
The application of fecal metaproteomics to large-scale studies of the gut microbiota requires high-throughput analysis and standardized experimental protocols. Although high-throughput protein cleanup and digestion methods are increasingly used in shotgun proteomics, no studies have yet critically compared such protocols using human fecal samples. In this study, human fecal protein extracts were processed using several different protocols based on three main approaches: filter-aided sample preparation (FASP), solid-phase-enhanced sample preparation (SP3), and suspension trapping (S-Trap). These protocols were applied in both low-throughput (i.e., microtube-based) and high-throughput (i.e., microplate-based) formats, and the final peptide mixtures were analyzed by liquid chromatography coupled to high-resolution tandem mass spectrometry. The FASP-based methods and the combination of SP3 with in-StageTips (iST) yielded the best results in terms of the number of peptides identified through a database search against gut microbiome and human sequences. The efficiency of protein digestion, the ability to preserve hydrophobic peptides and high molecular weight proteins, and the reproducibility of the methods were also evaluated for the different protocols. Other relevant variables, including interindividual variability of stool, duration of protocols, and total costs, were considered and discussed. In conclusion, the data presented here can significantly contribute to the optimization and standardization of sample preparation protocols in human fecal metaproteomics. Furthermore, the promising results obtained with the high-throughput methods are expected to encourage the development of automated workflows and their application to large-scale gut microbiome studies.IMPORTANCEFecal metaproteomics is an experimental approach that allows the investigation of gut microbial functions, which are involved in many different physiological and pathological processes. Standardization and automation of sample preparation protocols in fecal metaproteomics are essential for its application in large-scale studies. Here, we comparatively evaluated different methods, available also in a high-throughput format, enabling two key steps of the metaproteomics analytical workflow (namely, protein cleanup and digestion). The results of our study provide critical information that may be useful for the optimization of metaproteomics experimental pipelines and their implementation in laboratory automation systems.
Collapse
Affiliation(s)
- Alessandro Tanca
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
- Unit of Microbiology and Virology, University Hospital of Sassari, Sassari, Italy
| | | | - Laura De Diego
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Marcello Abbondio
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
- Unit of Microbiology and Virology, University Hospital of Sassari, Sassari, Italy
| | - Sergio Uzzau
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
- Unit of Microbiology and Virology, University Hospital of Sassari, Sassari, Italy
| |
Collapse
|
3
|
Müller Bark J, Trevisan França de Lima L, Zhang X, Broszczak D, Leo PJ, Jeffree RL, Chua B, Day BW, Punyadeera C. Proteome profiling of salivary small extracellular vesicles in glioblastoma patients. Cancer 2023; 129:2836-2847. [PMID: 37254878 PMCID: PMC10952188 DOI: 10.1002/cncr.34888] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 04/15/2023] [Accepted: 04/24/2023] [Indexed: 06/01/2023]
Abstract
BACKGROUND Extracellular vesicles (EVs) play a critical role in intercellular communication under physiological and pathological conditions, including cancer. EVs cargo reflects their cell of origin, suggesting their utility as biomarkers. EVs are detected in several biofluids, and their ability to cross the blood-brain barrier has highlighted their potential as prognostic and diagnostic biomarkers in gliomas, including glioblastoma (GBM). Studies have demonstrated the potential clinical utility of plasma-derived EVs in glioma. However, little is known about the clinical utility of saliva-derived EVs in GBM. METHODS Small EVs were isolated from whole mouth saliva of GBM patients pre- and postoperatively. Isolation was performed using differential centrifugation and/or ultracentrifugation. EVs were characterized by concentration, size, morphology, and EVs cell-surface protein markers. Protein cargo in EVs was profiled using mass spectrometry. RESULTS There were no statistically significant differences in size and concentration of EVs derived from pre- and post GBM patients' saliva samples. A higher number of proteins were detected in preoperative samples compared to postoperative samples. The authors found four highly abundant proteins (aldolase A, 14-3-3 protein ε, enoyl CoA hydratase 1, and transmembrane protease serine 11B) in preoperative saliva samples from GBM patients with poor outcomes. Functional enrichment analysis of pre- and postoperative saliva samples showed significant enrichment of several pathways, including those related to the immune system, cell cycle and programmed cell death. CONCLUSIONS This study, for the first time, demonstrates the feasibility of isolating and characterizing small EVs from pre- and postoperative saliva samples from GBM patients. Preliminary findings encourage further large cohort validation studies on salivary small EVs to evaluate prognosis in GBM.
Collapse
Affiliation(s)
- Juliana Müller Bark
- Centre for Biomedical TechnologiesThe School of Biomedical SciencesFaculty of HealthQueensland University of TechnologyBrisbaneQueenslandAustralia
- Saliva and Liquid Biopsy Translational LaboratoryGriffith Institute for Drug Discovery Griffith UniversityBrisbaneQueenslandAustralia
- Translational Research InstituteBrisbaneQueenslandAustralia
| | - Lucas Trevisan França de Lima
- Centre for Biomedical TechnologiesThe School of Biomedical SciencesFaculty of HealthQueensland University of TechnologyBrisbaneQueenslandAustralia
- Saliva and Liquid Biopsy Translational LaboratoryGriffith Institute for Drug Discovery Griffith UniversityBrisbaneQueenslandAustralia
- Translational Research InstituteBrisbaneQueenslandAustralia
- Gallipoli Medical Research InstituteGreenslopes Private HospitalBrisbaneQueenslandAustralia
| | - Xi Zhang
- Centre for Biomedical TechnologiesThe School of Biomedical SciencesFaculty of HealthQueensland University of TechnologyBrisbaneQueenslandAustralia
- Saliva and Liquid Biopsy Translational LaboratoryGriffith Institute for Drug Discovery Griffith UniversityBrisbaneQueenslandAustralia
- Translational Research InstituteBrisbaneQueenslandAustralia
| | - Daniel Broszczak
- School of Biomedical SciencesFaculty of HealthQueensland University of TechnologyBrisbaneQueenslandAustralia
| | - Paul J. Leo
- Translational Research InstituteBrisbaneQueenslandAustralia
- Translational Genomics GroupQueensland University of TechnologyTranslational Research InstituteWoolloongabbaQueenslandAustralia
| | - Rosalind L. Jeffree
- Faculty of MedicineUniversity of QueenslandBrisbaneQueenslandAustralia
- Kenneth G. Jamieson Department of NeurosurgeryRoyal Brisbane and Women's HospitalHerstonQueenslandAustralia
| | - Benjamin Chua
- Faculty of MedicineUniversity of QueenslandBrisbaneQueenslandAustralia
- Cancer Care ServicesRoyal Brisbane and Women's HospitalBrisbaneQueenslandAustralia
| | - Bryan W. Day
- Cell and Molecular Biology DepartmentSid Faithfull Brain Cancer LaboratoryQIMR Berghofer MRIBrisbaneQueenslandAustralia
| | - Chamindie Punyadeera
- Centre for Biomedical TechnologiesThe School of Biomedical SciencesFaculty of HealthQueensland University of TechnologyBrisbaneQueenslandAustralia
- Saliva and Liquid Biopsy Translational LaboratoryGriffith Institute for Drug Discovery Griffith UniversityBrisbaneQueenslandAustralia
- Menzies Health Institute (MHIQ)Griffith UniversityGold CoastQueenslandAustralia
| |
Collapse
|
4
|
Influence of different sample preparation strategies on hypothesis-driven shotgun proteomic analysis of human saliva. OPEN CHEM 2022. [DOI: 10.1515/chem-2022-0216] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Abstract
This research aimed to find an efficient and repeatable bottom-up proteolytic strategy to process the unstimulated human saliva. The focus is on monitoring immune system activation via the cytokine and interleukin signaling pathways. Carbohydrate metabolism is also being studied as a possible trigger of inflammation and joint damage in the context of the diagnostic procedure of temporomandibular joint disorder. The preparation of clean peptide mixtures for liquid chromatography–mass spectrometry analysis was performed considering different aspects of sample preparation: the filter-aided sample preparation (FASP) with different loadings of salivary proteins, the unfractionated saliva, amylase-depleted, and amylase-enriched salivary fractions. To optimize the efficiency of the FASP method, the protocols with the digestion in the presence of 80% acetonitrile and one-step digestion in the presence of 80% acetonitrile were used, omitting protein reduction and alkylation. The digestion procedures were repeated in the standard in-solution mode. Alternatively, the temperature of 24 and 37°C was examined during the trypsin digestion. DyNet analysis of the hierarchical networks of Gene Ontology terms corresponding to each sample preparation method for the bottom-up assay revealed the wide variability in protein properties. The method can easily be tailored to the specific samples and groups of proteins to be examined.
Collapse
|
5
|
Tang X, Xiao X, Sun H, Zheng S, Xiao X, Guo Z, Liu X, Sun W. 96DRA-urine: A high throughput sample preparation method for urinary proteome analysis. J Proteomics 2022; 257:104529. [PMID: 35181559 DOI: 10.1016/j.jprot.2022.104529] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 01/25/2022] [Accepted: 02/13/2022] [Indexed: 11/26/2022]
Abstract
Mass spectrometry (MS)-based urinary proteomics is increasingly used for clinical research. A critical step in urinary proteomic analysis comprises the implementation of a reliable sample preparation method with high yields of peptides and proteins. In this study, we developed a urinary sample preparation method, DRA-Urine (Direct reduction/alkylation in urine), which urinary proteins were directly reduced/alkylated in urine, and then precipitated by acetone, washed and digestion on an ultrafilter unit. The qualitative and quantitative comparison of different urinary sample preparation methods (in-solution methods and ultrafilter-assisted methods) showed that DRA-Urine could achieve better results. Adapting DRA-Urine protocol to a 96-well format, namely 96DRA-Urine, shortened the time for buffer change and improved sample preparation throughput. The results showed that 96DRA-Urine displayed similar proteomic performance to DRA-Urine. Finally, the 96DRA-Urine method was used in a label-free, small pilot biomarker discovery analysis for differential urinary proteome analysis of bladder cancer urine. The results showed that urinary proteins could differentiate bladder cancer (BCa) patients from healthy controls and distinguish high-grade BCa from low-grade BCa with area under the curve (AUC) values of 0.972 and 0.847, respectively. Consequently, the 96DRA-Urine method might be a high-throughput method for preparing body fluid samples used in clinical research but needs to be further verified.
Collapse
Affiliation(s)
- Xiaoyue Tang
- Core Facility of Instrument, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, China; Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Xiaoping Xiao
- Core Facility of Instrument, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, China; Cytology Lab, Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Peking Union Medical College, Beijing, China
| | - Haidan Sun
- Core Facility of Instrument, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, China
| | - Shuxin Zheng
- Core Facility of Instrument, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, China
| | - Xiaolian Xiao
- Core Facility of Instrument, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, China
| | - Zhengguang Guo
- Core Facility of Instrument, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, China
| | - Xiaoyan Liu
- Core Facility of Instrument, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, China
| | - Wei Sun
- Core Facility of Instrument, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, China.
| |
Collapse
|
6
|
Trevisan França de Lima L, Müller Bark J, Rasheduzzaman M, Ekanayake Weeramange C, Punyadeera C. Saliva as a matrix for measurement of cancer biomarkers. Cancer Biomark 2022. [DOI: 10.1016/b978-0-12-824302-2.00008-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
7
|
Zhang S, Li C, Feng T, Cao S, Zhou H, Li L, Hu Q, Mao X, Ji S. Proteomics analysis in the kidney of mice following oral feeding Realgar. JOURNAL OF ETHNOPHARMACOLOGY 2021; 275:114118. [PMID: 33878415 DOI: 10.1016/j.jep.2021.114118] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/03/2021] [Accepted: 04/06/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Realgar, a famous traditional Chinese mineral medicine, has been toxic to the renal system. However, the underlying mechanism of Realgar nephrotoxicity is still unclear. AIM OF THE STUDY This study aimed to investigate the potential mechanism of Realgar-induced nephrotoxicity by using a label-free quantitative proteomic method. MATERIALS AND METHODS 36 mice were randomly divided into four groups: Control group, 0.5-, 1.0, and 2.0 g/kg Realgar group. After one week, serum biochemical parameters and renal histopathological examination were performed. Label-free quantitative proteomics was used to identify differentially expressed proteins which were subsequently analyzed with bioinformatics methods. Western blot was utilized to verify the six representative protein expressions. RESULTS The results showed that 2.0 g/kg Realgar significantly increased blood urea nitrogen and induced the formation of tube cast of renal tubules, while the lower-dose of 0.5 g/kg and 1.0 g/kg Realgar showed no changes. Label-free proteomic analysis identified 3138 proteins, and 272 of those proteins were screened for significant changes in a dose-dependent manner. Functional enrichment analysis suggested that these proteins could affect the apoptotic process and oxidative stress. Representative proteins in the 2.0 g/kg Realgar group, including Cat, Bad, Cycs, Nqo1, Podxl, and Hmox1, were verified by western blot. CONCLUSIONS The results in this study suggest that apoptosis and oxidative stress might be related to the Realgar-induced nephrotoxicity in mice. Moreover, the strategy of proteomics could contribute to the understanding of the mechanisms of nephrotoxicity in mice exposed to Realgar.
Collapse
Affiliation(s)
- Sheng Zhang
- Tianjin University of Traditional Chinese Medicine, Tianjin, 300139, China; NMPA Key Laboratory for Quality Control of Traditional Chinese Medicine, Shanghai Institute for Food and Drug Control, Shanghai, 201203, China.
| | - Chao Li
- NMPA Key Laboratory for Quality Control of Traditional Chinese Medicine, Shanghai Institute for Food and Drug Control, Shanghai, 201203, China; Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Tingting Feng
- NMPA Key Laboratory for Quality Control of Traditional Chinese Medicine, Shanghai Institute for Food and Drug Control, Shanghai, 201203, China
| | - Shuai Cao
- NMPA Key Laboratory for Quality Control of Traditional Chinese Medicine, Shanghai Institute for Food and Drug Control, Shanghai, 201203, China
| | - Heng Zhou
- NMPA Key Laboratory for Quality Control of Traditional Chinese Medicine, Shanghai Institute for Food and Drug Control, Shanghai, 201203, China
| | - Liming Li
- NMPA Key Laboratory for Quality Control of Traditional Chinese Medicine, Shanghai Institute for Food and Drug Control, Shanghai, 201203, China
| | - Qing Hu
- NMPA Key Laboratory for Quality Control of Traditional Chinese Medicine, Shanghai Institute for Food and Drug Control, Shanghai, 201203, China
| | - Xiuhong Mao
- NMPA Key Laboratory for Quality Control of Traditional Chinese Medicine, Shanghai Institute for Food and Drug Control, Shanghai, 201203, China
| | - Shen Ji
- Tianjin University of Traditional Chinese Medicine, Tianjin, 300139, China; NMPA Key Laboratory for Quality Control of Traditional Chinese Medicine, Shanghai Institute for Food and Drug Control, Shanghai, 201203, China.
| |
Collapse
|
8
|
Tang KD, Wan Y, Zhang X, Bozyk N, Vasani S, Kenny L, Punyadeera C. Proteomic Alterations in Salivary Exosomes Derived from Human Papillomavirus-Driven Oropharyngeal Cancer. Mol Diagn Ther 2021; 25:505-515. [PMID: 34080172 DOI: 10.1007/s40291-021-00538-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/16/2021] [Indexed: 12/17/2022]
Abstract
BACKGROUND Increasing evidence supports the notion that human papillomavirus (HPV) DNA integration onto the human genome can influence and alter the molecular cargo in the exosomes derived from head and neck cancer cells. However, the molecular cargo of salivary exosomes derived from HPV-driven oropharyngeal cancer (HPV-driven OPC) remains unelucidated. METHODS AND MATERIALS Salivary exosomes morphology and molecular characterizations were examined using the nanoparticle tracking (NTA), western blot analysis, transmission electron microscopy (TEM) and mass spectrometry analysis. RESULTS We report that HPV16 DNA was detected (80%) in isolated salivary exosomes of HPV-driven OPC patients. Importantly, we demonstrate elevated protein levels of six main glycolytic enzymes [i.e., aldolase (ALDOA), glyceraldehye-3-phosphate dehydrogenase (GAPDH), lactate dehydrogenase A/B (LDHA and LDHB), phosphoglycerate kinase 1 (PGK1) and pyruvate kinase M1/2 (PKM)] in isolated salivary exosomes of HPV-driven OPC patients, suggesting a novel mechanism underlying the potential role of salivary exosomes in mediating the reciprocal interplay between glucose metabolism and HPV-driven OPC. CONCLUSION Our data demonstrate the potential diagnostic value of HPV16 DNA and glycolytic enzymes in salivary exosomes in discriminating healthy controls from HPV-driven OPC patients, thereby opening new avenues in the future for clinical translation studies.
Collapse
Affiliation(s)
- Kai Dun Tang
- Saliva and Liquid Biopsy Translational Laboratory, The Translational Research Institute, The School of Biomedical Sciences, Queensland University of Technology (QUT), 60 Musk Avenue, GPO Box 2434, Brisbane, QLD, 4059, Australia
| | - Yunxia Wan
- Saliva and Liquid Biopsy Translational Laboratory, The Translational Research Institute, The School of Biomedical Sciences, Queensland University of Technology (QUT), 60 Musk Avenue, GPO Box 2434, Brisbane, QLD, 4059, Australia
| | - Xi Zhang
- Saliva and Liquid Biopsy Translational Laboratory, The Translational Research Institute, The School of Biomedical Sciences, Queensland University of Technology (QUT), 60 Musk Avenue, GPO Box 2434, Brisbane, QLD, 4059, Australia
| | - Natalie Bozyk
- Saliva and Liquid Biopsy Translational Laboratory, The Translational Research Institute, The School of Biomedical Sciences, Queensland University of Technology (QUT), 60 Musk Avenue, GPO Box 2434, Brisbane, QLD, 4059, Australia
| | - Sarju Vasani
- Department of Otolaryngology, Royal Brisbane and Women's Hospital, Herston, QLD, 4029, Australia
| | - Liz Kenny
- Royal Brisbane and Women's Hospital, Central Integrated Regional Cancer Service, The University of Queensland School of Medicine, Queensland Health, Brisbane, QLD, 4029, Australia
| | - Chamindie Punyadeera
- Saliva and Liquid Biopsy Translational Laboratory, The Translational Research Institute, The School of Biomedical Sciences, Queensland University of Technology (QUT), 60 Musk Avenue, GPO Box 2434, Brisbane, QLD, 4059, Australia.
| |
Collapse
|
9
|
Aly KA, Moutaoufik MT, Phanse S, Zhang Q, Babu M. From fuzziness to precision medicine: on the rapidly evolving proteomics with implications in mitochondrial connectivity to rare human disease. iScience 2021; 24:102030. [PMID: 33521598 PMCID: PMC7820543 DOI: 10.1016/j.isci.2020.102030] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Mitochondrial (mt) dysfunction is linked to rare diseases (RDs) such as respiratory chain complex (RCC) deficiency, MELAS, and ARSACS. Yet, how altered mt protein networks contribute to these ailments remains understudied. In this perspective article, we identified 21 mt proteins from public repositories that associate with RCC deficiency, MELAS, or ARSACS, engaging in a relatively small number of protein-protein interactions (PPIs), underscoring the need for advanced proteomic and interactomic platforms to uncover the complete scope of mt connectivity to RDs. Accordingly, we discuss innovative untargeted label-free proteomics in identifying RD-specific mt or other macromolecular assemblies and mapping of protein networks in complex tissue, organoid, and stem cell-differentiated neurons. Furthermore, tag- and label-based proteomics, genealogical proteomics, and combinatorial affinity purification-mass spectrometry, along with advancements in detecting and integrating transient PPIs with single-cell proteomics and transcriptomics, collectively offer seminal follow-ups to enrich for RD-relevant networks, with implications in RD precision medicine.
Collapse
Affiliation(s)
- Khaled A. Aly
- Department of Biochemistry, University of Regina, Regina, SK, Canada
| | | | - Sadhna Phanse
- Department of Biochemistry, University of Regina, Regina, SK, Canada
| | - Qingzhou Zhang
- Department of Biochemistry, University of Regina, Regina, SK, Canada
| | - Mohan Babu
- Department of Biochemistry, University of Regina, Regina, SK, Canada
| |
Collapse
|