1
|
Lindsey B, Shaul Y, Martin J. Salivary biomarkers of tactical athlete readiness: A systematic review. PLoS One 2025; 20:e0321223. [PMID: 40299918 PMCID: PMC12040155 DOI: 10.1371/journal.pone.0321223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 03/03/2025] [Indexed: 05/01/2025] Open
Abstract
Tactical athletes must maintain high levels of physical and cognitive readiness to handle the rigorous demands of their roles. They frequently encounter acute stressors like sleep deprivation, muscle fatigue, dehydration, and harsh environmental conditions, which can impair their readiness and increase the risk of mission failure. Given the challenging conditions these athletes face, there is a vital need for non-invasive, rapidly deployable point-of-care assessments to effectively measure the impact of these stressors on their operational readiness. Salivary biomarkers are promising in this regard, as they reflect physiological changes due to stress. This systematic review aims to investigate salivary markers as potential indicators for readiness, specifically focusing on their sensitivity to acute stressors like sleep deprivation, dehydration, environmental factors, and muscle fatigue. A search was conducted using the Preferred Reporting Items for Systematic Review and Meta-Analyses (PRISMA) guidelines (PROSPERO; registration #: CRD42022370388). The primary inclusion criteria were the use of a quantitative analysis to assess salivary biomarkers changes in response to acute stressors. Risk of bias and methodological quality were evaluated with the modified Downs and Black checklist. Hormonal salivary biomarkers were the most commonly studied biomarkers. Muscle damage and fatigue were the most frequently studied acute stressors, followed by sleep deprivation, multiple stressors, dehydration, and environmental. Biomarkers such as creatine kinase, aspartate aminotransferase, uric acid, cortisol, testosterone, and the testosterone to cortisol ratio were indicative of muscle damage. Dehydration influenced osmolality, total protein, flow rate, and chloride ion concentrations. Sleep deprivation affected proteins, peptides, and alpha-amylase levels. Environmental stressors, such as hypoxia and cold temperatures, altered cortisol, pH, dehydroepiandrosterone-sulfate (DHEA-s), and salivary IgA levels. The current body of research highlights that various salivary biomarkers react to acute stressors, and proteomic panels appear promising for predicting physical and cognitive outcomes relevant to the operational readiness of tactical athletes.
Collapse
Affiliation(s)
- Bryndan Lindsey
- Research and Exploratory Development Department, Johns Hopkins Applied Physics Laboratory, Laurel, Maryland, United States of America
| | - Yosef Shaul
- Sports Medicine Assessment Research & Testing (SMART) Laboratory, George Mason University, Virginia, United States of America
| | - Joel Martin
- Sports Medicine Assessment Research & Testing (SMART) Laboratory, George Mason University, Virginia, United States of America
- Center for the Advancement of Well-Being, George Mason University, Fairfax, Virginia, United States of America
| |
Collapse
|
2
|
Chronic Training Induces Metabolic and Proteomic Response in Male and Female Basketball Players: Salivary Modifications during In-Season Training Programs. Healthcare (Basel) 2023; 11:healthcare11020241. [PMID: 36673609 PMCID: PMC9858989 DOI: 10.3390/healthcare11020241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/09/2023] [Accepted: 01/09/2023] [Indexed: 01/15/2023] Open
Abstract
The aim of this study was to characterize the salivary proteome and metabolome of highly trained female and male young basketball players, highlighting common and different traits. A total of 20 male and female basketball players (10 female and 10 male) and 20 sedentary control subjects (10 female and 10 male) were included in the study. The athletes exercised at least five times per week for 2 h per day. Saliva samples were collected mid-season, between 9:00 and 11:00 a.m. and away from sport competition. The proteome and metabolome were analyzed by using 2DE and GC-MS techniques, respectively. A computerized 2DE gel image analysis revealed 43 spots that varied in intensity among groups. Between these spots, 10 (23.2%) were differentially expressed among male athletes and controls, 22 (51.2%) between female basketball players and controls, 11 spots (25.6%) between male and female athletes, and 13 spots (30.2%) between male and female controls. Among the proteins identified were Immunoglobulin, Alpha-Amylase, and Dermcidin, which are inflammation-related proteins. In addition, several amino acids, such as glutamic acid, lysine, ornithine, glycine, tyrosine, threonine, and valine, were increased in trained athletes. In this study, we highlight that saliva is a useful biofluid to assess athlete performance and confirm that the adaptation of men and women to exercise has some common features, but also some different sex-specific behaviors, including differential amino acid utilization and expression of inflammation-related proteins, which need to be further investigated. Moreover, in the future, it will be interesting to examine the influence of sport-type on these differences.
Collapse
|
3
|
Changes in a Comprehensive Profile of Saliva Analytes in Fattening Pigs during a Complete Productive Cycle: A Longitudinal Study. Animals (Basel) 2022; 12:ani12141865. [PMID: 35883410 PMCID: PMC9312009 DOI: 10.3390/ani12141865] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 07/15/2022] [Accepted: 07/20/2022] [Indexed: 11/19/2022] Open
Abstract
Simple Summary The aim of this study was to evaluate whether a panel of 29 salivary biomarkers of stress, immunity, inflammation, redox homeostasis and other physiological functions can change in healthy fattening pigs when monitoring the different phases of their productive cycle and can be influenced by various sources of variations such as gender and performance parameters. Several analytes showed changes due to the productive cycle, with a majority of the analytes showing higher values at lactation and at the beginning of nursery. Additionally, differences were seen due to sex. These differences can be related in some cases with performance parameters and should be taken into consideration for an appropriate interpretation of the analytes. Abstract A comprehensive panel of 29 salivary analytes was measured in fattening pigs to evaluate its possible changes along their productive cycle. The identification of those changes would allow a better interpretation of the results according to the productive phase of the animal. Saliva samples were obtained from 49 Large-White pigs (24 females, 25 males) in suckling phase, at the beginning and the end of the nursery phase, and at the beginning and the end of the growing phase. Several analytes changed according to the phase of the productive cycle, with most of the analytes showing higher values at lactation and at the beginning of nursery. Additionally, differences were seen due to sex. When possible relations between performance parameters and analytes were evaluated, significant positive but weak relationships were found between weight at birth and salivary γ-glutamyl transferase, and between back-fat thickness and salivary lactate dehydrogenase. In conclusion, differences in the values of salivary analytes can be found in fattening pigs depending on the productive phase and sex of the animals.
Collapse
|
4
|
Shao D, Huang L, Wang Y, Cui X, Li Y, Wang Y, Ma Q, Du W, Cui J. HBFP: a new repository for human body fluid proteome. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2021; 2021:6395039. [PMID: 34642750 PMCID: PMC8516408 DOI: 10.1093/database/baab065] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 09/23/2021] [Accepted: 09/28/2021] [Indexed: 12/15/2022]
Abstract
Body fluid proteome has been intensively studied as a primary source for disease
biomarker discovery. Using advanced proteomics technologies, early research
success has resulted in increasingly accumulated proteins detected in different
body fluids, among which many are promising biomarkers. However, despite a
handful of small-scale and specific data resources, current research is clearly
lacking effort compiling published body fluid proteins into a centralized and
sustainable repository that can provide users with systematic analytic tools. In
this study, we developed a new database of human body fluid proteome (HBFP) that
focuses on experimentally validated proteome in 17 types of human body fluids.
The current database archives 11 827 unique proteins reported by 164
scientific publications, with a maximal false discovery rate of 0.01 on both the
peptide and protein levels since 2001, and enables users to query, analyze and
download protein entries with respect to each body fluid. Three unique features
of this new system include the following: (i) the protein annotation page
includes detailed abundance information based on relative qualitative measures
of peptides reported in the original references, (ii) a new score is calculated
on each reported protein to indicate the discovery confidence and (iii) HBFP
catalogs 7354 proteins with at least two non-nested uniquely mapping peptides of
nine amino acids according to the Human Proteome Project Data Interpretation
Guidelines, while the remaining 4473 proteins have more than two unique peptides
without given sequence information. As an important resource for human protein
secretome, we anticipate that this new HBFP database can be a powerful tool that
facilitates research in clinical proteomics and biomarker discovery. Database URL:https://bmbl.bmi.osumc.edu/HBFP/
Collapse
Affiliation(s)
- Dan Shao
- Department of Computer Science and Engineering, University of Nebraska-Lincoln, 122E Avery Hall, 1144 T St., Lincoln, NE 68588, USA.,Key Laboratory of Symbol Computation and Knowledge Engineering of Ministry of Education, College of Computer Science and Technology, Jilin University, 2699 Qianjin Street, Changchun 130012, China.,Department of Computer Science and Technology, Changchun University, 6543 Weixing Road, Changchun 130022, China
| | - Lan Huang
- Key Laboratory of Symbol Computation and Knowledge Engineering of Ministry of Education, College of Computer Science and Technology, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Yan Wang
- Key Laboratory of Symbol Computation and Knowledge Engineering of Ministry of Education, College of Computer Science and Technology, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Xueteng Cui
- Department of Computer Science and Technology, Changchun University, 6543 Weixing Road, Changchun 130022, China
| | - Yufei Li
- Department of Computer Science and Technology, Changchun University, 6543 Weixing Road, Changchun 130022, China
| | - Yao Wang
- Key Laboratory of Symbol Computation and Knowledge Engineering of Ministry of Education, College of Computer Science and Technology, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Qin Ma
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, 310G Lincoln tower, 1800 cannon drive, Columbus, OH 43210, USA
| | - Wei Du
- Key Laboratory of Symbol Computation and Knowledge Engineering of Ministry of Education, College of Computer Science and Technology, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Juan Cui
- Department of Computer Science and Engineering, University of Nebraska-Lincoln, 122E Avery Hall, 1144 T St., Lincoln, NE 68588, USA
| |
Collapse
|
5
|
Bennet D, Khorsandian Y, Pelusi J, Mirabella A, Pirrotte P, Zenhausern F. Molecular and physical technologies for monitoring fluid and electrolyte imbalance: A focus on cancer population. Clin Transl Med 2021; 11:e461. [PMID: 34185420 PMCID: PMC8214861 DOI: 10.1002/ctm2.461] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/11/2021] [Accepted: 05/29/2021] [Indexed: 12/23/2022] Open
Abstract
Several clinical examinations have shown the essential impact of monitoring (de)hydration (fluid and electrolyte imbalance) in cancer patients. There are multiple risk factors associated with (de)hydration, including aging, excessive or lack of fluid consumption in sports, alcohol consumption, hot weather, diabetes insipidus, vomiting, diarrhea, cancer, radiation, chemotherapy, and use of diuretics. Fluid and electrolyte imbalance mainly involves alterations in the levels of sodium, potassium, calcium, and magnesium in extracellular fluids. Hyponatremia is a common condition among individuals with cancer (62% of cases), along with hypokalemia (40%), hypophosphatemia (32%), hypomagnesemia (17%), hypocalcemia (12%), and hypernatremia (1-5%). Lack of hydration and monitoring of hydration status can lead to severe complications, such as nausea/vomiting, diarrhea, fatigue, seizures, cell swelling or shrinking, kidney failure, shock, coma, and even death. This article aims to review the current (de)hydration (fluid and electrolyte imbalance) monitoring technologies focusing on cancer. First, we discuss the physiological and pathophysiological implications of fluid and electrolyte imbalance in cancer patients. Second, we explore the different molecular and physical monitoring methods used to measure fluid and electrolyte imbalance and the measurement challenges in diverse populations. Hydration status is assessed in various indices; plasma, sweat, tear, saliva, urine, body mass, interstitial fluid, and skin-integration techniques have been extensively investigated. No unified (de)hydration (fluid and electrolyte imbalance) monitoring technology exists for different populations (including sports, elderly, children, and cancer). Establishing novel methods and technologies to facilitate and unify measurements of hydration status represents an excellent opportunity to develop impactful new approaches for patient care.
Collapse
Affiliation(s)
- Devasier Bennet
- Center for Applied NanoBioscience and MedicineThe University of ArizonaCollege of MedicinePhoenixUSA
| | - Yasaman Khorsandian
- Center for Applied NanoBioscience and MedicineThe University of ArizonaCollege of MedicinePhoenixUSA
| | | | | | - Patrick Pirrotte
- Collaborative Center for Translational Mass SpectrometryTranslational Genomics Research InstitutePhoenixUSA
| | - Frederic Zenhausern
- Center for Applied NanoBioscience and MedicineThe University of ArizonaCollege of MedicinePhoenixUSA
- HonorHealth Research InstituteScottsdaleUSA
- Collaborative Center for Translational Mass SpectrometryTranslational Genomics Research InstitutePhoenixUSA
| |
Collapse
|
6
|
Salivary Protein Profile and Food Intake: A Dietary Pattern Analysis. J Nutr Metab 2021; 2021:6629951. [PMID: 33953975 PMCID: PMC8064783 DOI: 10.1155/2021/6629951] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 03/25/2021] [Accepted: 03/30/2021] [Indexed: 11/29/2022] Open
Abstract
Saliva research has gained interest due to its potential as a source of biomarkers. One of the factors inducing changes in saliva, in the short term, is food intake, and evidence exist about changes in salivary proteome induced by some food components. Since this topic of research is in its early stages, it was hypothesized that saliva protein composition could be associated with different levels of adherence to dietary patterns that contain higher amounts of plant products. The aim of the present study was to test this hypothesis, in adults, by comparing salivary protein electrophoretic profiles of individuals with different diet characteristics, particularly dietary patterns (DP) that exhibit different proportions of animal and plant-based products. Dietary habits were assessed in 122 adults (61 from each sex, with ages ranging from 20 to 59 years) using Food Frequency Questionnaires. To identify the dietary patterns, a principal component analysis was used. Individual's non-stimulated saliva was evaluated for flow rate, pH, protein concentration, α-amylase activity, and electrophoretic protein profiles. Seven dietary patterns (DP) were identified. Salivary amylase enzymatic activity was positively associated with animal-based and starchy foods DP, and with plant-based fatty foods without wine DP. At the same time, protein bands containing amylase and type S cystatins were positively associated with the cheese/yoghurt and wine DP. Our results support the association of salivary proteomics and different dietary patterns and highlight the need of considering food consumption habits in studies using saliva, since this is a factor associated with variations in the composition of this fluid.
Collapse
|
7
|
Changes in Salivary Levels of Creatine Kinase, Lactate Dehydrogenase, and Aspartate Aminotransferase after Playing Rugby Sevens: The Influence of Gender. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17218165. [PMID: 33167318 PMCID: PMC7663852 DOI: 10.3390/ijerph17218165] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 11/01/2020] [Accepted: 11/02/2020] [Indexed: 01/10/2023]
Abstract
Rugby sevens is characterised by continuous exertion and great physical contact per unit of time, leading to muscle damage. It is important to identify markers that can quantify muscle damage in order to improve recovery strategies. The objective of this study was to evaluate the release dynamics of muscle damage markers creatine kinase (CK), lactate dehydrogenase (LDH), and aspartate aminotransferase (AST) in saliva samples when playing rugby sevens, analysing the influence of gender, during the rugby sevens university championship of Spain. The total sample included 27 athletes, divided into two teams of 14 men and 13 women between 18 and 31 years of age. CK, LDH, and AST were quantified from salivary samples collected from each athlete before and after three rugby sevens matches. The modified Borg scale of perceived exertion was also used after each match. When the results were analysed globally, there were no differences in CK and LDH before and after any match, but AST did show differences after two days of completing all matches. In terms of gender, the three enzymes showed different responses in men and women. Regarding the Borg scale, there were only significant differences between men and women after completing all mataches, with a greater perceived exertion in women. Based on our results, it can be stated that that serial matches of rugby sevens can cause changes of different magnitude in AST, CK and LDH activities in saliva, with AST showing the most significant variations and these changes are more pronounced in men than in women.
Collapse
|