1
|
Zhang Y, Liu J, Basang Z, Yang Q, Chen H, Chen S, Li S, Lei C, Fang M, Liu H, Jin X, Wang Y. Shared genetic features inference among hypoxia-ischemia diseases in the presence of heterogenous omics data based on a novel risk assessment method. Front Genet 2025; 16:1587854. [PMID: 40357364 PMCID: PMC12066567 DOI: 10.3389/fgene.2025.1587854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Accepted: 04/14/2025] [Indexed: 05/15/2025] Open
Abstract
The hypoxia-ischemia (H-I) diseases share some common mechanisms which may help to delay the diseases' processing. However, the shared features are still unclear due to the lack of large scale high-quality multi - omics data that specifically target the same disease, population, and tissues/cells. In this study, we developed a novel risk assessment method to analyze four H-I diseases including eclampsia/preeclampsia (PE), pulmonary arterial hypertension (PAH), high-altitude polycythemia (HAPC), and ischemic stroke (IS). A combined new evaluation score was designed to integrate evaluation information from genomics, transcriptomics, proteomics, and metabolomics in previous researches. Genes were then divided into different groups according to their risk assessment score. The most significant group (direct biomarkers) contained genes with direct evidence of association to H-I disease: PIEZO2 and HPGD (shared), TSIX and SAA1 (PAH - specific), GSTM1, DNTT, and IGKC (HAPC - specific), LEP, SERPINA3, and ARHGEF4 (PE - specific), CD3D, ITK, and RPL18A (IS - specific). The groups 'Intermediate crucial biomarkers' contained genes played important roles in H-I disease related biological processes: CXCL8 (shared), HBG2, GRIN2A, and FGFBP1 (PAH - specific), FAM111B (HAPC - specific), C12orf39 and SLAMF1 (PE - specific). The genes lacking disease-association evidence but with similar characteristics with the above two groups were considered as 'potential minor-effect biomarkers': are SRRM2 - AS1 (shared), ATP8A1 (PAH - specific), RXFP1 and HJURP (HAPC - specific), HIST1H1T (PE - specific). With the development of biological experiments, these intermediate crucial and potential minor-effect biomarkers may be proved to be direct biomarkers in the future. Therefore, these biomarkers may serve as an entry point for subsequent research and are of great significance.
Collapse
Affiliation(s)
- Yifan Zhang
- BGI Research, Chongqing, China
- BGI Research, Shenzhen, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- Shenzhen Key Laboratory of Transomics Biotechnologies, BGI Research, Shenzhen, China
| | - Jianfeng Liu
- Department of Neurology, The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Zhuoma Basang
- High Altitude Health Science Research Center, Tibet University, Lhasa, Tibet, China
| | - Qianxun Yang
- BGI Research, Shenzhen, China
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, China
| | - Hongce Chen
- BGI Research, Shenzhen, China
- School of Life Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Shuo Chen
- BGI Research, Shenzhen, China
- College of Plant Protection, Hunan Agricultural University, Changsha, Hunan, China
| | - Shaogang Li
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | | | - Mingyan Fang
- BGI Research, Wuhan, China
- State Key Laboratory of Genome and Multi-omics Technologies, BGI Research, Shenzhen, China
| | | | - Xin Jin
- BGI Research, Chongqing, China
- BGI Research, Shenzhen, China
- Shenzhen Key Laboratory of Transomics Biotechnologies, BGI Research, Shenzhen, China
- State Key Laboratory of Genome and Multi-omics Technologies, BGI Research, Shenzhen, China
| | - Yingying Wang
- BGI Research, Shenzhen, China
- Shenzhen Key Laboratory of Transomics Biotechnologies, BGI Research, Shenzhen, China
| |
Collapse
|
2
|
Liu Q, Liu P, Li C, Zhao Z, Wang D, Liu Q, Yang H. Effects of Chinese Medicine on modulating interleukin-17-regulated macrophages in coronary heart disease. Front Pharmacol 2025; 16:1499786. [PMID: 40276600 PMCID: PMC12018881 DOI: 10.3389/fphar.2025.1499786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Accepted: 02/10/2025] [Indexed: 04/26/2025] Open
Abstract
Coronary atherosclerotic heart disease (CHD) is one of the leading causes of death from cardiovascular disease worldwide and has significant inflammatory features. Macrophages play an important role in atherosclerotic plaque formation and inflammation. IL-17, as a pro-inflammatory cytokine, further exacerbates the development of CHD by interacting with macrophages. In recent years, there has been increasing evidence that traditional Chinese medicine (CM) has a wide range of applications in regulating the immune system and treating CHD. This article reviewed the role of CM in the regulation of IL-17-regulated macrophages, discussed the core components and targets of CM in the treatment of CHD, and laid a theoretical foundation for its clinical application. The results show that CM can effectively inhibit the formation of foam cells, stabilize vulnerable plaque and delay the progression of atherosclerosis by inhibiting inflammation, regulating the polarization of macrophages and promoting cholesterol outflow. In addition, CM can also regulate the expression and signaling pathway of IL-17, further inhibit inflammatory response and improve the symptoms of CHD, providing a new idea and method for the prevention and treatment of CHD.
Collapse
Affiliation(s)
- Qingqing Liu
- Guangdong Provincial Hospital of Chinese Medicine‐Zhuhai Hospital, State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, China
| | - Peizhong Liu
- Guangdong Provincial Hospital of Chinese Medicine‐Zhuhai Hospital, State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, China
| | - Chuangpeng Li
- Guangdong Provincial Hospital of Chinese Medicine‐Zhuhai Hospital, State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, China
| | - Zhen Zhao
- Guangdong Provincial Hospital of Chinese Medicine‐Zhuhai Hospital, State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, China
| | - Dawei Wang
- Guangdong Provincial Hospital of Chinese Medicine‐Zhuhai Hospital, State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, China
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The First Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou, Guangdong, China
| | - Qing Liu
- Guangdong Provincial Hospital of Chinese Medicine‐Zhuhai Hospital, State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, China
| | - Huawei Yang
- Guangdong Provincial Hospital of Chinese Medicine‐Zhuhai Hospital, State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, China
| |
Collapse
|
3
|
Guo Q, Wang J, Ni C, Pan J, Zou J, Shi Y, Sun J, Zhang X, Wang D, Luan F. Research progress on the natural products in the intervention of myocardial infarction. Front Pharmacol 2024; 15:1445349. [PMID: 39239656 PMCID: PMC11374734 DOI: 10.3389/fphar.2024.1445349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 08/05/2024] [Indexed: 09/07/2024] Open
Abstract
Coronary heart disease is a prevalent cardiovascular ailment globally, with myocardial infarction (MI) being one of its most severe manifestations. The morbidity and mortality of MI are escalating, showing an increasing trend among younger, highly educated individuals, thereby posing a serious threat to public health. Currently, thrombolysis, percutaneous coronary intervention, and coronary artery bypass grafting are the primary clinical treatments for MI. Although these methods significantly reduce patient mortality, complications often result in poor prognoses. Due to limitations in chemical synthetic drug research, the focus has shifted towards developing herbs based on natural substances. Natural medicines represent a novel approach for safer and more effective MI management and treatment. They can control multiple pathogenic variables by targeting various pathways and systems. This paper investigates the molecular mechanisms of MI and evaluates the application of natural products and medicinal plants in MI treatment over the past 5 years, demonstrating their specific good therapeutic potential and superior tolerance. These natural therapies have been shown to mitigate myocardial cell damage caused by MI through mechanisms such as oxidative stress, inflammation, apoptosis, angiogenesis, myocardial fibrosis, autophagy, endoplasmic reticulum stress, mitophagy, and pyroptosis. This review offers the latest insights into the application of natural products and medicinal plants in MI treatment, elucidating their mechanisms of action and serving as an important reference for MI prevention.
Collapse
Affiliation(s)
- Qiuting Guo
- College of Pharmacy, Xianyang Polytechnic Institute, Xianyang, China
| | - Jinhui Wang
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, Shaanxi, China
| | - Caixia Ni
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, Sichuan, China
| | - Jiaojiao Pan
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, Shaanxi, China
| | - Junbo Zou
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, Shaanxi, China
| | - Yajun Shi
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, Shaanxi, China
| | - Jing Sun
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, Shaanxi, China
| | - Xiaofei Zhang
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, Shaanxi, China
| | - Deng Wang
- Department of Pharmacy, Xi'an No. 3 Hospital, The Affiliated Hospital of Northwest University, Xi'an, Shaanxi, China
| | - Fei Luan
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, Shaanxi, China
| |
Collapse
|
4
|
Wei B, Li Z, Wang L, Zhang H, Gou W. miR-200b-3p relieved inflammation in patients with heart failure by regulating ZEB1 expression. J Cardiothorac Surg 2024; 19:271. [PMID: 38702771 PMCID: PMC11067240 DOI: 10.1186/s13019-024-02628-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 03/09/2024] [Indexed: 05/06/2024] Open
Abstract
BACKGROUND MicroRNA-200b-3p (miR-200b-3p) plays a pivotal role in inflammatory responses and is implicated in various inflammatory disorders. In this study, we aim to explore the role of miR-200b-3p in the inflammatory response in heart failure (HF). METHODS Patients diagnosed with heart failure and age-matched healthy controls were studied. Peripheral blood samples from participants were collected for RNA-seq analysis to explore the expression profile of miR-200b-3p. The predictive value of miR-200b-3p and ZEB1 in the prognosis of heart failure was evaluated by analyzing the receiver operating characteristic (ROC) curve. Bioinformatics analysis and double luciferase reporter gene analysis were used to confirm the interaction between miR-200b-3p and ZEB1. Real-time quantitative polymerase chain reaction (QRT-PCR) was used to detect the expression levels of miR-200b-3p and ZEB1 in cardiopulmonary bypass. Additionally, the effects of miR-200b-3p on myocardial cell line (H9c2) injury were evaluated by enzyme-linked immunosorbent assay (ELISA). RESULTS In the extracardiac circulation of HF patients, miR-200b-3p expression was significantly reduced, while ZEB1 levels were notably elevated. Analysis of the ROC curve revealed that miR-200b-3p and ZEB1 have predictive value in the prognosis of HF patients. The double luciferase reporter experiment demonstrated that miR-200b-3p binds to ZEB1 and inhibits its expression. Overexpression of miR-200b-3p demonstrated a remarkable ability to alleviate inflammation and inhibit the damage to myocardial cells in vivo. CONCLUSION MiR-200b-3p can target and inhibit ZEB1, reducing the inflammatory reaction of myocardial cells. The miR-200b-3p/ZEB1 network may be helpful in preventing and treating HF.
Collapse
Affiliation(s)
- Bo Wei
- Department of Cardiology, Yongchuan Hospital Affiliated of Chongqing Medical University, No. 439, Xuanhua Road, Yongchuan District, Chongqing, 402177, China
| | - Zhiyong Li
- Department of Cardiology, Yongchuan Hospital Affiliated of Chongqing Medical University, No. 439, Xuanhua Road, Yongchuan District, Chongqing, 402177, China
| | - Li Wang
- Department of Cardiology, Yongchuan Hospital Affiliated of Chongqing Medical University, No. 439, Xuanhua Road, Yongchuan District, Chongqing, 402177, China
| | - Haitao Zhang
- Department of Cardiology, Yongchuan Hospital Affiliated of Chongqing Medical University, No. 439, Xuanhua Road, Yongchuan District, Chongqing, 402177, China
| | - Wen Gou
- Department of Cardiology, Yongchuan Hospital Affiliated of Chongqing Medical University, No. 439, Xuanhua Road, Yongchuan District, Chongqing, 402177, China.
| |
Collapse
|
5
|
Wang H, Wang B, Wu M, Lu J, Duan P. Targeting osteopontin alleviates endometriosis and inflammation by inhibiting the RhoA/ROS axis and achieves non-invasive in vitro detection via menstrual blood. Hum Reprod 2024; 39:1057-1071. [PMID: 38511216 DOI: 10.1093/humrep/deae052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 02/16/2024] [Indexed: 03/22/2024] Open
Abstract
STUDY QUESTION How does osteopontin (OPN) in endometriosis ectopic stromal cells (EESCs) participate in the pathogenesis of endometriosis and achieve non-invasive detection in vitro? SUMMARY ANSWER Targeted OPN regulates endometriosis's necroptosis and inflammatory state by inhibiting the RhoA/reactive oxygen species (ROS) axis, thereby alleviating endometriosis and enabling non-invasive detection of menstrual blood in vitro. WHAT IS KNOWN ALREADY Endometriosis is a chronic inflammatory disease. Recent studies have shown that OPN plays an important role in disease progression by regulating cell death and inflammation. STUDY DESIGN, SIZE, DURATION The study included 20 patients diagnosed with endometriosis (confirmed by laparoscopy and histology) and 10 controls without endometriosis. Endometriotic stromal cells were isolated from endometrial samples, while menstrual blood endometrial cells (MESCs) were isolated from menstrual blood. These cells were then cultured in vitro and utilized in subsequent experiments. PARTICIPANTS/MATERIALS, SETTING, METHODS OPN expression in EESCs was assessed using inflammatory factor sequencing, immunohistochemical staining (IHC), quantitative real-time PCR (qRT-PCR) analysis, and Western blotting (WB). The biological behavior of OPN and its effects on inflammatory factors were examined using EdU, wound-healing, Transwell, and ELISA assays. Necroptosis in EESCs and its impact on inflammatory factors were detected through qRT-PCR, WB, and Calcein-AM/PI fluorescence assays. The examination of mitochondrial stress in EESCs involved the use of the Mitochondrial Membrane Potential (ΔΨm) Assay, ROS detection, and Calcein-AM Loading/cobalt chloride Quenching. qRT-PCR, WB, and other experiments were conducted to verify the regulation of necroptosis and inflammatory factor levels in EESCs by OPN through the RhoA/ROS axis. Knockdown of OPN and its inhibitory effect on endometriosis lesion size were confirmed using AAV9 virus, IHC, qRT-PCR, WB, and other experiments. Additionally, OPN expression in MESCs was detected using transcriptome sequencing, RT-PCR, WB, and other experiments. MAIN RESULTS AND THE ROLE OF CHANCE In vitro assays demonstrated a significant upregulation of OPN in EESCs, and the knockdown of OPN effectively inhibited necroptosis and the release of inflammatory factors. OPN inhibited necroptosis and inflammatory factor release by mediating RhoA-dependent ROS production and blocking mixed lineage kinase domain-like protein phosphorylation at the cell membrane. In vivo, targeting of OPN can inhibit the growth of endometriosis lesions. Clinically, OPN was also significantly upregulated in the menstrual blood of patients with endometriosis. LARGE SCALE DATA N/A. LIMITATIONS, REASONS FOR CAUTION Due to limitations in obtaining surgical specimens, our study primarily involved collecting endometriosis tissues from women during the proliferative and secretory phases of the menstrual cycle. We observed a significant overexpression of OPN in the samples used for our investigation. However, the expression of OPN in endometriosis tissues during the intermenstrual phase remains unknown. WIDER IMPLICATIONS OF THE FINDINGS Our findings highlight the pivotal role of the OPN/RhoA/ROS axis in the regulation of necroptosis and the release of inflammatory factors. OPN knockdown exerts a therapeutic effect in vivo, and the high expression detection of OPN in menstrual blood in vitro. In summary, targeting OPN provides possibilities for the treatment and detection of endometriosis. STUDY FUNDING/COMPETING INTEREST(S) This study was supported by the National Natural Science Foundation of China (82071626), the Zhejiang Province Public Welfare Technology Application Research Project (LGF21H040010), and the Clinical Research project of the Second Affiliated Hospital of Wenzhou Medical University (1010293). The authors have no conflicts of interest.
Collapse
Affiliation(s)
- Han Wang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Oncology Discipline Group, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Binming Wang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Oncology Discipline Group, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Meiling Wu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Oncology Discipline Group, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jiefang Lu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Ping Duan
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Oncology Discipline Group, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
6
|
Chen XJ, Liu SY, Li SM, Feng JK, Hu Y, Cheng XZ, Hou CZ, Xu Y, Hu M, Feng L, Xiao L. The recent advance and prospect of natural source compounds for the treatment of heart failure. Heliyon 2024; 10:e27110. [PMID: 38444481 PMCID: PMC10912389 DOI: 10.1016/j.heliyon.2024.e27110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 02/15/2024] [Accepted: 02/23/2024] [Indexed: 03/07/2024] Open
Abstract
Heart failure is a continuously developing syndrome of cardiac insufficiency caused by diseases, which becomes a major disease endangering human health as well as one of the main causes of death in patients with cardiovascular diseases. The occurrence of heart failure is related to hemodynamic abnormalities, neuroendocrine hormones, myocardial damage, myocardial remodeling etc, lead to the clinical manifestations including dyspnea, fatigue and fluid retention with complex pathophysiological mechanisms. Currently available drugs such as cardiac glycoside, diuretic, angiotensin-converting enzyme inhibitor, vasodilator and β receptor blocker etc are widely used for the treatment of heart failure. In particular, natural products and related active ingredients have the characteristics of mild efficacy, low toxicity, multi-target comprehensive efficacy, and have obvious advantages in restoring cardiac function, reducing energy disorder and improving quality of life. In this review, we mainly focus on the recent advance including mechanisms and active ingredients of natural products for the treatment of heart failure, which will provide the inspiration for the development of more potent clinical drugs against heart failure.
Collapse
Affiliation(s)
- Xing-Juan Chen
- China Academy of Chinese Medical Sciences Guang’anmen Hospital, Beijing, 100053, China
| | - Si-Yuan Liu
- Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Si-Ming Li
- China Academy of Chinese Medical Sciences Guang’anmen Hospital, Beijing, 100053, China
| | | | - Ying Hu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300381, China
| | - Xiao-Zhen Cheng
- China Academy of Chinese Medical Sciences Guang’anmen Hospital, Beijing, 100053, China
| | - Cheng-Zhi Hou
- China Academy of Chinese Medical Sciences Guang’anmen Hospital, Beijing, 100053, China
| | - Yun Xu
- China Academy of Chinese Medical Sciences Guang’anmen Hospital, Beijing, 100053, China
| | - Mu Hu
- Peking University International Hospital, Beijing, 102206, China
| | - Ling Feng
- China Academy of Chinese Medical Sciences Guang’anmen Hospital, Beijing, 100053, China
| | - Lu Xiao
- China Academy of Chinese Medical Sciences Guang’anmen Hospital, Beijing, 100053, China
| |
Collapse
|
7
|
Alharbi KM, Alshehri SA, Almarwani WA, Aljohani KK, Albalawi AZ, Alatawi AS, Al-Atwi SM, Alhwyty LS, Hassan HM, Al-Gayyar MMH. Effects of Cycloastragenol on Alzheimer's Disease in Rats by Reducing Oxidative Stress, Inflammation, and Apoptosis. Curr Alzheimer Res 2024; 21:141-154. [PMID: 38766828 DOI: 10.2174/0115672050315334240508162754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/19/2024] [Accepted: 04/24/2024] [Indexed: 05/22/2024]
Abstract
BACKGROUND As individuals age, they may develop Alzheimer's disease (AD), which is characterized by difficulties in speech, memory loss, and other issues related to neural function. Cycloastragenol is an active ingredient of Astragalus trojanus and has been used to treat inflammation, aging, heart disease, and cancer. OBJECTIVES This study aimed to explore the potential therapeutic benefits of cycloastragenol in rats with experimentally induced AD. Moreover, the underlying molecular mechanisms were also evaluated by measuring Nrf2 and HO-1, which are involved in oxidative stress, NFκB and TNF-α, which are involved in inflammation, and BCL2, BAX, and caspase-3, which are involved in apoptosis. METHODS Sprague-Dawley rats were given 70 mg/kg of aluminum chloride intraperitoneally daily for six weeks to induce AD. Following AD induction, the rats were given 25 mg/kg of cycloastragenol daily by oral gavage for three weeks. Hippocampal sections were stained with hematoxylin/ eosin and with anti-caspase-3 antibodies. The Nrf2, HO-1, NFκB, TNF-α, BCL2, BAX, and caspase-3 gene expressions and protein levels in the samples were analyzed. RESULTS Cycloastragenol significantly improved rats' behavioral test performance. It also strengthened the organization of the hippocampus. Cycloastragenol significantly improved behavioral performance and improved hippocampal structure in rats. It caused a marked decrease in the expression of NFκB, TNF-α, BAX, and caspase-3, which was associated with an increase in the expression of BCL2, Nrf2, and HO-1. CONCLUSION Cycloastragenol improved the structure of the hippocampus in rats with AD. It enhanced the outcomes of behavioral tests, decreased the concentration of AChE in the brain, and exerted antioxidant and anti-inflammatory effects. Antiapoptotic effects were also noted, leading to significant improvements in cognitive function, memory, and behavior in treated rats.
Collapse
Affiliation(s)
- Kadi M Alharbi
- PharmD Program, Faculty of Pharmacy, University of Tabuk, Tabuk, 71491, Saudi Arabia
| | - Shahad A Alshehri
- PharmD Program, Faculty of Pharmacy, University of Tabuk, Tabuk, 71491, Saudi Arabia
| | - Wasayf A Almarwani
- PharmD Program, Faculty of Pharmacy, University of Tabuk, Tabuk, 71491, Saudi Arabia
| | - Khulud K Aljohani
- PharmD Program, Faculty of Pharmacy, University of Tabuk, Tabuk, 71491, Saudi Arabia
| | - Ajwan Z Albalawi
- PharmD Program, Faculty of Pharmacy, University of Tabuk, Tabuk, 71491, Saudi Arabia
| | - Areej S Alatawi
- PharmD Program, Faculty of Pharmacy, University of Tabuk, Tabuk, 71491, Saudi Arabia
| | - Shekha M Al-Atwi
- PharmD Program, Faculty of Pharmacy, University of Tabuk, Tabuk, 71491, Saudi Arabia
| | - Lama S Alhwyty
- PharmD Program, Faculty of Pharmacy, University of Tabuk, Tabuk, 71491, Saudi Arabia
| | - Hanan M Hassan
- Department of Pharmacology and Biochemistry, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa City, Egypt
| | - Mohammed M H Al-Gayyar
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Tabuk, Tabuk, 71491, Saudi Arabia
| |
Collapse
|
8
|
Zhan C, Tang T, Wu E, Zhang Y, He M, Wu R, Bi C, Wang J, Zhang Y, Shen B. From multi-omics approaches to personalized medicine in myocardial infarction. Front Cardiovasc Med 2023; 10:1250340. [PMID: 37965091 PMCID: PMC10642346 DOI: 10.3389/fcvm.2023.1250340] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 10/17/2023] [Indexed: 11/16/2023] Open
Abstract
Myocardial infarction (MI) is a prevalent cardiovascular disease characterized by myocardial necrosis resulting from coronary artery ischemia and hypoxia, which can lead to severe complications such as arrhythmia, cardiac rupture, heart failure, and sudden death. Despite being a research hotspot, the etiological mechanism of MI remains unclear. The emergence and widespread use of omics technologies, including genomics, transcriptomics, proteomics, metabolomics, and other omics, have provided new opportunities for exploring the molecular mechanism of MI and identifying a large number of disease biomarkers. However, a single-omics approach has limitations in understanding the complex biological pathways of diseases. The multi-omics approach can reveal the interaction network among molecules at various levels and overcome the limitations of the single-omics approaches. This review focuses on the omics studies of MI, including genomics, epigenomics, transcriptomics, proteomics, metabolomics, and other omics. The exploration extended into the domain of multi-omics integrative analysis, accompanied by a compilation of diverse online resources, databases, and tools conducive to these investigations. Additionally, we discussed the role and prospects of multi-omics approaches in personalized medicine, highlighting the potential for improving diagnosis, treatment, and prognosis of MI.
Collapse
Affiliation(s)
- Chaoying Zhan
- Department of Cardiology and Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Tong Tang
- Department of Cardiology and Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Erman Wu
- Department of Cardiology and Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Yuxin Zhang
- Department of Cardiology and Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- KeyLaboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Mengqiao He
- Department of Cardiology and Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Rongrong Wu
- Department of Cardiology and Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Cheng Bi
- Department of Cardiology and Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- KeyLaboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Jiao Wang
- Department of Cardiology and Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Yingbo Zhang
- Department of Cardiology and Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Bairong Shen
- Department of Cardiology and Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
9
|
Zhou Y, Huang X, Yu H, Shi H, Chen M, Song J, Tang W, Teng F, Li C, Yi L, Zhu X, Wang N, Wei Y, Wuniqiemu T, Dong J. TMT-based quantitative proteomics revealed protective efficacy of Icariside II against airway inflammation and remodeling via inhibiting LAMP2, CTSD and CTSS expression in OVA-induced chronic asthma mice. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 118:154941. [PMID: 37451150 DOI: 10.1016/j.phymed.2023.154941] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/11/2023] [Accepted: 06/20/2023] [Indexed: 07/18/2023]
Abstract
BACKGROUND Asthma is a chronic inflammatory disorder in airways with typical pathologic features of airflow limitation, airway inflammation and remodeling. Icariside II (IS), derived from herbal medicine Herba Epimedii, exerts an anti-inflammatory property. However, underlying mechanisms with specifically targeted molecular expression by IS in asthma have not been fully understood, and whether IS could inhibit remodeling and EMT still remains unclear. PURPOSE The study aimed to clarify therapeutic efficacy of IS for attenuating airway inflammation and remodeling in asthma, and illustrate IS-regulated specific pathway and target proteins through TMT-based quantitative proteomics. STUDY DESIGN AND METHODS Murine model of chronic asthma was constructed with ovalbumin (OVA) sensitization and then challenge for 8 weeks. Pulmonary function, leukocyte count in bronchoalveolar lavage fluid (BALF), lung histopathology, inflammatory and fibrotic cytokines, and markers of epithelial-mesenchymal transition (EMT) were evaluated. TMT-based quantitative proteomics were performed on lung tissues to explore IS-regulated proteins. RESULTS IS contributed to alleviative airway hyperresponsiveness (AHR) evidenced by declined RL and increased Cdyn. After IS treatment, we observed a remarked down-regulation of leukocyte count, inflammatory cytokines in BALF, and peribronchial inflammation infiltration. Goblet cell hyperplasia, mucus secretion and peribronchial collagen deposition were attenuated, with the level of TGF-β and MMP-9 in BALF declined. Furthermore, IS induced a rise of Occludin and E-cadherin and a decline of N-cadherin and α-SMA in lung tissues. These results proved the protective property of IS against airway inflammation, remodeling and EMT. To further investigate underlying mechanisms of IS in asthma treatment, TMT-based quantitative proteomics were performed and 102 overlapped DEPs regulated by IS were identified. KEGG enrichment exhibited these DEPs were enriched in lysosome, phagosome and autophagy, in which LAMP2, CTSD and CTSS were common DEPs. WB, q-PCR and IHC results proofed expressional alteration of these proteins. Besides, IS could decrease Beclin-1 and LC3B expression with increasing p62 expression thus inhibiting autophagy. CONCLUSIONS The study demonstrated IS could ameliorate AHR, airway inflammation, remodeling and EMT in OVA-induced chronic asthma mice. Our research was the first to reveal that inhibition of LAMP2, CTSD and CTSS expression in autophagy contributed to the therapeutic efficacy of IS to asthma.
Collapse
Affiliation(s)
- Yaolong Zhou
- Department of Integrative Medicine, Huashan Hospital, Fudan University, 12 Middle Urumqi Road, Shanghai 200040, China
| | - Xi Huang
- Department of Integrative Medicine, Huashan Hospital, Fudan University, 12 Middle Urumqi Road, Shanghai 200040, China; Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Hang Yu
- Department of Integrative Medicine, Huashan Hospital, Fudan University, 12 Middle Urumqi Road, Shanghai 200040, China; Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Hanlin Shi
- Department of Integrative Medicine, Huashan Hospital, Fudan University, 12 Middle Urumqi Road, Shanghai 200040, China; Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Mengmeng Chen
- Department of Integrative Medicine, Huashan Hospital, Fudan University, 12 Middle Urumqi Road, Shanghai 200040, China; Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Jingrong Song
- Department of Integrative Medicine, Huashan Hospital, Fudan University, 12 Middle Urumqi Road, Shanghai 200040, China; Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Weifeng Tang
- Department of Integrative Medicine, Huashan Hospital, Fudan University, 12 Middle Urumqi Road, Shanghai 200040, China; Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Fangzhou Teng
- Department of Integrative Medicine, Huashan Hospital, Fudan University, 12 Middle Urumqi Road, Shanghai 200040, China; Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Congcong Li
- Department of Integrative Medicine, Huashan Hospital, Fudan University, 12 Middle Urumqi Road, Shanghai 200040, China; Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - La Yi
- Department of Integrative Medicine, Huashan Hospital, Fudan University, 12 Middle Urumqi Road, Shanghai 200040, China; Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Xueyi Zhu
- Department of Integrative Medicine, Huashan Hospital, Fudan University, 12 Middle Urumqi Road, Shanghai 200040, China; Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Na Wang
- Department of Integrative Medicine, Huashan Hospital, Fudan University, 12 Middle Urumqi Road, Shanghai 200040, China; Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Ying Wei
- Department of Integrative Medicine, Huashan Hospital, Fudan University, 12 Middle Urumqi Road, Shanghai 200040, China; Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Tulake Wuniqiemu
- Department of Integrative Medicine, Huashan Hospital, Fudan University, 12 Middle Urumqi Road, Shanghai 200040, China; Institutes of Integrative Medicine, Fudan University, Shanghai, China.
| | - Jingcheng Dong
- Department of Integrative Medicine, Huashan Hospital, Fudan University, 12 Middle Urumqi Road, Shanghai 200040, China; Institutes of Integrative Medicine, Fudan University, Shanghai, China.
| |
Collapse
|
10
|
Bagalagel A, Diri R, Noor A, Almasri D, Bakhsh HT, Kutbi HI, Al-Gayyar MMH. The therapeutic effects of cycloastragenol in ulcerative colitis by modulating SphK/MIP-1α/miR-143 signalling. Basic Clin Pharmacol Toxicol 2022; 131:406-419. [PMID: 36029292 DOI: 10.1111/bcpt.13788] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 08/23/2022] [Accepted: 08/25/2022] [Indexed: 11/27/2022]
Abstract
Patients with ulcerative colitis (UC) experience diarrhoea, hematochezia, and abdominal pain. UC is a well-known health challenge affecting 200-250 per 100,000 individuals worldwide, with a similar prevalence in both sexes and elevated upon activation of gut immune responses. We evaluated the potential therapeutic effects of cycloastragenol in experimentally-induced UC rats and examined the modulation of sphingosine kinase (SphK), macrophage inflammatory protein (MIP)-1α, and miR-143. We treated UC rats with 30 mg/kg cycloastragenol and assessed gene and protein expression levels of SphK, MIP-1α, B-cell lymphoma 2 (BCL2), BCL2-associated X (BAX), miR-143, NF-κB, tumour necrosis factor (TNF)-α, and active caspase-3. Colon sections were examined using electron microscopy; additional sections were stained with hematoxylin-eosin or immunostained with anti-TNF-α and anti-caspase-3 antibodies. Electron microscopy of UC specimens revealed dark distorted goblet cell nuclei with disarranged mucus granules and a non-distinct brush border with atypical microvilli. Hematoxylin-eosin staining showed damaged intestinal glands, severe hemorrhage, and inflammatory cell infiltration. Cycloastragenol treatment improved the induced morphological changes. In UC rats, cycloastragenol significantly reduced expression levels of SphK, MIP-1α, BAX, NF-κB, TNF-α, and active caspase-3, associated with BCL2 and miR-143 overexpression. Therefore, cycloastragenol protects against UC by modulating SphK/MIP-1α/miR-143, subsequently deactivating inflammatory and apoptotic pathways.
Collapse
Affiliation(s)
- Alaa Bagalagel
- Dept. of Clinical Pharmacy, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Reem Diri
- Dept. of Clinical Pharmacy, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ahmad Noor
- Dept. of Clinical Pharmacy, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Deina Almasri
- Dept. of Clinical Pharmacy, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Hussain T Bakhsh
- Dept. of Clinical Pharmacy, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Hussam I Kutbi
- Dept. of Clinical Pharmacy, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohammed M H Al-Gayyar
- Dept. of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt.,Dept. of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia
| |
Collapse
|
11
|
Li M, Han B, Zhao H, Xu C, Xu D, Sieniawska E, Lin X, Kai G. Biological active ingredients of Astragali Radix and its mechanisms in treating cardiovascular and cerebrovascular diseases. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 98:153918. [PMID: 35104756 DOI: 10.1016/j.phymed.2021.153918] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 12/12/2021] [Accepted: 12/30/2021] [Indexed: 05/13/2023]
Abstract
BACKGROUND With the rising age of the global population, the incidence rate of cardiovascular and cerebrovascular diseases (CCVDs) is increasing, which causes serious public health burden. The efforts for new therapeutic approaches are still being sought since the treatment effects of existing therapies are not quite satisfactory. Chinese traditional medicine proved to be very efficient in the treatment of CCVDs. Well described and established in Chinese medicine, Astragali Radix, has been commonly administered in the prophylaxis and cure of CCVDs for thousands of years. PURPOSE This review summarized the action mode and mechanisms of Astragali Radix phytochemicals on CCVDs, hoping to provide valuable information for the future application, development and improvement of Astragali Radix as well as CCVDs treatment. METHODS A plenty of literature on biological active ingredients of Astragali Radix used for CCVDs treatment were retrieved from online electronic PubMed and Web of Science databases. RESULTS This review highlighted the effects of five main active components in Astragali Radix including astragaloside Ⅳ, cycloastragenol, astragalus polysaccharide, calycosin-7-O-β-d-glucoside, and calycosin on CCVDs. The mechanisms mainly involved anti-oxidative damage, anti-inflammatory, and antiapoptotic through signaling pathways such as PI3K/Akt, Nrf2/HO-1, and TLR4/NF-κB pathway. In addition, the majority active constituents in AR have no obvious toxic side effects. CONCLUSION The main active components of Astragali Radix, especially AS-IV, have been extensively summarized. It has been proved that Astragali Radix has obvious therapeutic effects on various CCVDs, including myocardial and cerebral ischemia, hypertension, atherosclerosis, cardiac hypertrophy, chronic heart failure. CAG possesses anti-ischemia activity without toxicity, indicating a worthy of further development. However, high-quality clinical and pharmacokinetic studies are required to validate the current studies.
Collapse
Affiliation(s)
- Man Li
- Laboratory for Core Technology of TCM Quality Improvement and Transformation, The Third Affiliated Hospital, School of Pharmaceutical Sciences, Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China
| | - Bing Han
- Laboratory for Core Technology of TCM Quality Improvement and Transformation, The Third Affiliated Hospital, School of Pharmaceutical Sciences, Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China
| | - Huan Zhao
- Laboratory for Core Technology of TCM Quality Improvement and Transformation, The Third Affiliated Hospital, School of Pharmaceutical Sciences, Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China
| | - Chongyi Xu
- Wenling Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Taizhou, Zhejiang, 317500, China
| | - Daokun Xu
- Wenling Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Taizhou, Zhejiang, 317500, China
| | - Elwira Sieniawska
- Department of Natural Products Chemistry, Medical University of Lublin, Chodzki 1, 20-093 Lublin, Poland
| | - Xianming Lin
- Laboratory for Core Technology of TCM Quality Improvement and Transformation, The Third Affiliated Hospital, School of Pharmaceutical Sciences, Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China.
| | - Guoyin Kai
- Laboratory for Core Technology of TCM Quality Improvement and Transformation, The Third Affiliated Hospital, School of Pharmaceutical Sciences, Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China.
| |
Collapse
|
12
|
Ali F, Shen A, Islam W, Saleem MZ, Muthu R, Xie Q, Wu M, Cheng Y, Chu J, Lin W, Peng J. Role of MicroRNAs and their corresponding ACE2/Apelin signaling pathways in hypertension. Microb Pathog 2021; 162:105361. [PMID: 34919993 DOI: 10.1016/j.micpath.2021.105361] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 12/12/2021] [Accepted: 12/12/2021] [Indexed: 11/28/2022]
Abstract
Hypertension is controlled via the alteration of microRNAs (miRNAs), their therapeutic targets angiotensin II type I receptor (AT1R) and cross talk of signaling pathways. The stimulation of the Ang II/AT1R pathway by deregulation of miRNAs, has also been linked to cardiac remodeling as well as the pathophysiology of high blood pressure. As miRNAs have been associated to ACE2/Apelin and Mitogen-activated protein kinases (MAPK) signaling, it has revealed an utmost protective impact over hypertension and cardiovascular system. The ACE2-coupled intermodulation between RAAS, Apelin system, MAPK signaling pathways, and miRNAs reveal the practicalities of high blood pressure. The research of miRNAs may ultimately lead to the expansion of an innovative treatment strategy for hypertension, which indicates the need to explore them further at the molecular level. Therefore, here we have focused on the mechanistic importance of miRNAs in hypertension, ACE2/Apelin signaling as well as their biological functions, with a focus on interplay and crosstalk between ACE2/Apelin signaling, miRNAs, and hypertension, and the progress in miRNA-based diagnostic techniques with the goal of facilitating the development of new hypertension-controlling therapeutics.
Collapse
Affiliation(s)
- Farman Ali
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Chen Keji Academic Thought Inheritance Studio, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China
| | - Aling Shen
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Chen Keji Academic Thought Inheritance Studio, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China
| | - Waqar Islam
- Xinjiang Key Laboratory of Desert Plant Roots Ecology and Vegetation Restoration, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | | | - Ragunath Muthu
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Chen Keji Academic Thought Inheritance Studio, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China
| | - Qiurong Xie
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Chen Keji Academic Thought Inheritance Studio, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China
| | - Meizhu Wu
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Chen Keji Academic Thought Inheritance Studio, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China
| | - Ying Cheng
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Chen Keji Academic Thought Inheritance Studio, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China
| | - Jiangfeng Chu
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Chen Keji Academic Thought Inheritance Studio, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China
| | - Wei Lin
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Chen Keji Academic Thought Inheritance Studio, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China
| | - Jun Peng
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Chen Keji Academic Thought Inheritance Studio, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China.
| |
Collapse
|
13
|
Kostoff RN, Briggs MB, Shores DR. Treatment repurposing for inflammatory bowel disease using literature-related discovery and innovation. World J Gastroenterol 2020; 26:4889-4899. [PMID: 32952337 PMCID: PMC7476176 DOI: 10.3748/wjg.v26.i33.4889] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 05/21/2020] [Accepted: 08/27/2020] [Indexed: 02/06/2023] Open
Abstract
Inflammatory bowel disease (IBD) incidence has been increasing steadily, most dramatically in the Western developed countries. Treatment often includes lifelong immunosuppressive therapy and surgery. There is a critical need to reduce the burden of IBD and to discover medical therapies with better efficacy and fewer potential side-effects. Repurposing of treatments originally studied in other diseases with similar pathogenesis is less costly and time intensive than de novo drug discovery. This study used a treatment repurposing methodology, the literature-related discovery and innovation (LRDI) text mining system, to identify potential treatments (developed for non-IBD diseases) with sufficient promise for extrapolation to treatment of IBD. By searching for desirable patterns of twenty key biomarkers relevant to IBD (e.g., inflammation, reactive oxygen species, autophagy, barrier function), the LRDI-based query retrieved approximately 9500 records from Medline. The most recent 350 records were further analyzed for proof-of-concept. Approximately 18% (64/350) met the criteria for discovery (not previously studied in IBD human or animal models) and relevance for application to IBD treatment. Many of the treatments were compounds derived from herbal remedies, and the majority of treatments were being studied in cancer, diabetes, and central nervous system disease, such as depression and dementia. As further validation of the search strategy, the query identified ten treatments that have just recently begun testing in IBD models in the last three years. Literature-related discovery and innovation text mining contains a unique search strategy with tremendous potential to identify treatments for repurposing. A more comprehensive query with additional key biomarkers would have retrieved many thousands more records, further increasing the yield of IBD treatment repurposing discovery.
Collapse
Affiliation(s)
- Ronald Neil Kostoff
- School of Public Policy, Georgia Institute of Technology, Gainesville, VA 20155, United States
| | | | - Darla Roye Shores
- The Hopkins Resource for Intestinal Vitality and Enhancement, the Johns Hopkins University School of Medicine, Baltimore, MD 21287, United States
| |
Collapse
|