1
|
Chen S, Suo K, Kang Q, Zhu J, Shi Y, Yi J, Lu J. Active induction: a promising strategy for enhancing the bioactivity of lactic acid bacteria. Crit Rev Food Sci Nutr 2025:1-16. [PMID: 40114393 DOI: 10.1080/10408398.2025.2479069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
Lactic acid bacteria (LAB), as key probiotic, play crucial roles in maintaining human health. However, their survival and functionality in diverse habitats depend on their ability to sense and respond to environmental stresses. Notably, active induction has emerged as a promising strategy for regulating the biological activity of LAB, potentially enhancing their health benefits. Therefore, this review summarizes the beneficial effects of active induction, including acid, bile, oxidation, ethanol, heat, cold, and radiation induction on the functional activities of LAB. In addition, omics methods, in silico analysis, and gene editing technologies have greatly facilitated the profound exploration of the stress regulatory network in LAB, thereby aiding the identification of active components and stress adaptors. Through these advancements, LAB provide health benefits by regulating stress-related genes and proteins, as well as inducing bioactive metabolite production. As a result, they could enhance stress tolerance, cross-protection, intestinal colonization, adhesion properties, and provide antialcohol and liver protection in vitro or in vivo. This study highlights the potential of active induction strategies in enhancing the functional role of LAB in food applications.
Collapse
Affiliation(s)
- Sisi Chen
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
- Food Laboratory of Zhongyuan Zhengzhou University, Luohe, China
| | - Keke Suo
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
- Food Laboratory of Zhongyuan Zhengzhou University, Luohe, China
| | - Qiaozhen Kang
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
- Food Laboratory of Zhongyuan Zhengzhou University, Luohe, China
| | - Jiaqing Zhu
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
- Food Laboratory of Zhongyuan Zhengzhou University, Luohe, China
| | - Yanling Shi
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
- Food Laboratory of Zhongyuan Zhengzhou University, Luohe, China
| | - Juanjuan Yi
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
- Food Laboratory of Zhongyuan Zhengzhou University, Luohe, China
| | - Jike Lu
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
- Food Laboratory of Zhongyuan Zhengzhou University, Luohe, China
| |
Collapse
|
2
|
Zhang Y, Ma J, Li H, Liu P, Chen K, Ma S, Cai W. In silico Screening of Duhaldea nervosa-derived Endogenous Peptides to Predict the Potential Anticancer Mechanisms. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2025; 80:70. [PMID: 39954107 DOI: 10.1007/s11130-025-01305-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/26/2025] [Indexed: 02/17/2025]
Abstract
D. nervosa is a wild perennial herb used in traditional Chinese medicine for treating fractures, rheumatoid arthritis, and digestive disorders. Its primary bioactive components are flavonoids, phenolic acids, and sesquiterpenes. However, bioactive peptides, which exhibit a wide range of biological activities and are commonly found in both animals and plants, have not been reported in D. nervosa to date. To investigate the presence and potential bioactivities of bioactive peptides in D. nervosa, the abundance of endogenous peptides was initially analyzed using a Nano-LC-Q Exactive Plus quadrupole Orbitrap mass spectrometer. Subsequently, bioinformatics screening, computational enzyme hydrolysis, "target-pathway-disease" network prediction, molecular docking, and molecular dynamics simulations were performed to evaluate safety, biological activity prediction and investigate the potential anticancer mechanisms of D. nervosa. The results demonstrate that the simulated enzymatic hydrolysates of D. nervosa endogenous peptide target and bind to cancer pathway receptor proteins such as MMP9, MAPK1, SRC, and PI3KCA, indicating their potential anticancer activity. This study provides valuable information for further research and the development of novel anti-cancer drugs.
Collapse
Affiliation(s)
- Yanyan Zhang
- School of Food Science and Pharmacy, Xinjiang Agricultural University, Xinjiang, PR China
- School of Pharmaceutical Sciences, Hunan University of Medicine, Hunan, 418000, PR China
| | - Jieyao Ma
- School of Pharmaceutical Sciences, Hunan University of Medicine, Hunan, 418000, PR China
| | - Haixia Li
- School of Pharmaceutical Sciences, Hunan University of Medicine, Hunan, 418000, PR China
- College Pharmacy, Jiamusi University, Jiamusi, PR China
| | - Peizi Liu
- School of Pharmaceutical Sciences, Hunan University of Medicine, Hunan, 418000, PR China
| | - Keyi Chen
- School of Pharmaceutical Sciences, Hunan University of Medicine, Hunan, 418000, PR China
| | - Shengjun Ma
- School of Food Science and Pharmacy, Xinjiang Agricultural University, Xinjiang, PR China.
| | - Wei Cai
- School of Pharmaceutical Sciences, Hunan University of Medicine, Hunan, 418000, PR China.
| |
Collapse
|
3
|
Marzano V, Levi Mortera S, Putignani L. Insights on Wet and Dry Workflows for Human Gut Metaproteomics. Proteomics 2024:e202400242. [PMID: 39740098 DOI: 10.1002/pmic.202400242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 12/10/2024] [Accepted: 12/11/2024] [Indexed: 01/02/2025]
Abstract
The human gut microbiota (GM) is a community of microorganisms that resides in the gastrointestinal (GI) tract. Recognized as a critical element of human health, the functions of the GM extend beyond GI well-being to influence overall systemic health and susceptibility to disease. Among the other omic sciences, metaproteomics highlights additional facets that make it a highly valuable discipline in the study of GM. Indeed, it allows the protein inventory of complex microbial communities. Proteins with associated taxonomic membership and function are identified and quantified from their constituent peptides by liquid chromatography coupled to mass spectrometry analyses and by querying specific databases (DBs). The aim of this review was to compile comprehensive information on metaproteomic studies of the human GM, with a focus on the bacterial component, to assist newcomers in understanding the methods and types of research conducted in this field. The review outlines key steps in a metaproteomic-based study, such as protein extraction, DB selection, and bioinformatic workflow. The importance of standardization is emphasized. In addition, a list of previously published studies is provided as hints for researchers interested in investigating the role of GM in health and disease states.
Collapse
Affiliation(s)
- Valeria Marzano
- Research Unit of Microbiome, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Stefano Levi Mortera
- Research Unit of Microbiome, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Lorenza Putignani
- Unit of Microbiomics and Research Unit of Microbiome, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| |
Collapse
|
4
|
Wu E, Xu G, Xie D, Qiao L. Data-independent acquisition in metaproteomics. Expert Rev Proteomics 2024; 21:271-280. [PMID: 39152734 DOI: 10.1080/14789450.2024.2394190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 08/12/2024] [Accepted: 08/14/2024] [Indexed: 08/19/2024]
Abstract
INTRODUCTION Metaproteomics offers insights into the function of complex microbial communities, while it is also capable of revealing microbe-microbe and host-microbe interactions. Data-independent acquisition (DIA) mass spectrometry is an emerging technology, which holds great potential to achieve deep and accurate metaproteomics with higher reproducibility yet still facing a series of challenges due to the inherent complexity of metaproteomics and DIA data. AREAS COVERED This review offers an overview of the DIA metaproteomics approaches, covering aspects such as database construction, search strategy, and data analysis tools. Several cases of current DIA metaproteomics studies are presented to illustrate the procedures. Important ongoing challenges are also highlighted. Future perspectives of DIA methods for metaproteomics analysis are further discussed. Cited references are searched through and collected from Google Scholar and PubMed. EXPERT OPINION Considering the inherent complexity of DIA metaproteomics data, data analysis strategies specifically designed for interpretation are imperative. From this point of view, we anticipate that deep learning methods and de novo sequencing methods will become more prevalent in the future, potentially improving protein coverage in metaproteomics. Moreover, the advancement of metaproteomics also depends on the development of sample preparation methods, data analysis strategies, etc. These factors are key to unlocking the full potential of metaproteomics.
Collapse
Affiliation(s)
- Enhui Wu
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
- Department of Chemistry, Fudan University, Shanghai, China
| | - Guanyang Xu
- Department of Chemistry, Fudan University, Shanghai, China
| | - Dong Xie
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Liang Qiao
- Department of Chemistry, Fudan University, Shanghai, China
| |
Collapse
|
5
|
Zhang B, Feng S, Parajuli M, Xiong Y, Pan C, Guo X. SEMQuant: Extending Sipros-Ensemble with Match-Between-Runs for Comprehensive Quantitative Metaproteomics. BIOINFORMATICS RESEARCH AND APPLICATIONS : ... INTERNATIONAL SYMPOSIUM, ISBRA ... PROCEEDINGS. ISBRA (CONFERENCE) 2024; 14956:102-115. [PMID: 39465129 PMCID: PMC11507799 DOI: 10.1007/978-981-97-5087-0_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Metaproteomics, utilizing high-throughput LC-MS, offers a profound understanding of microbial communities. Quantitative metaproteomics further enriches this understanding by measuring relative protein abundance and revealing dynamic changes under different conditions. However, the challenge of missing peptide quantification persists in metaproteomics analysis, particularly in data-dependent acquisition mode, where high-intensity precursors for MS2 scans are selected. To tackle this issue, the match-between-runs (MBR) technique is used to transfer peptides between LC-MS runs. Inspired by the benefits of MBR and the need for streamlined metaproteomics data analysis, we developed SEMQuant, an end-to-end software integrating Sipros-Ensemble's robust peptide identifications with IonQuant's MBR function. The experiments show that SEMQuant consistently obtains the highest or second highest number of quantified proteins with notable precision and accuracy. This demonstrates SEMQuant's effectiveness in conducting comprehensive and accurate quantitative metaproteomics analyses across diverse datasets and highlights its potential to propel advancements in microbial community studies. SEMQuant is freely available under the GNU GPL license at https://github.com/Biocomputing-Research-Group/SEMQuant.
Collapse
Affiliation(s)
- Bailu Zhang
- Department of Computer Science and Engineering, University of North Texas, Denton, TX 76207, USA
| | - Shichao Feng
- Department of Computer Science and Engineering, University of North Texas, Denton, TX 76207, USA
| | - Manushi Parajuli
- Department of Computer Science and Engineering, University of North Texas, Denton, TX 76207, USA
| | - Yi Xiong
- School of Biological Sciences, University of Oklahoma, Norman, OK 73019, USA
| | - Chongle Pan
- School of Biological Sciences, University of Oklahoma, Norman, OK 73019, USA
- School of Computer Science, University of Oklahoma, Norman, OK 73019, USA
| | - Xuan Guo
- Department of Computer Science and Engineering, University of North Texas, Denton, TX 76207, USA
| |
Collapse
|
6
|
Holstein T, Muth T. Bioinformatic Workflows for Metaproteomics. Methods Mol Biol 2024; 2820:187-213. [PMID: 38941024 DOI: 10.1007/978-1-0716-3910-8_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
The strong influence of microbiomes on areas such as ecology and human health has become widely recognized in the past years. Accordingly, various techniques for the investigation of the composition and function of microbial community samples have been developed. Metaproteomics, the comprehensive analysis of the proteins from microbial communities, allows for the investigation of not only the taxonomy but also the functional and quantitative composition of microbiome samples. Due to the complexity of the investigated communities, methods developed for single organism proteomics cannot be readily applied to metaproteomic samples. For this purpose, methods specifically tailored to metaproteomics are required. In this work, a detailed overview of current bioinformatic solutions and protocols in metaproteomics is given. After an introduction to the proteomic database search, the metaproteomic post-processing steps are explained in detail. Ten specific bioinformatic software solutions are focused on, covering various steps including database-driven identification and quantification as well as taxonomic and functional assignment.
Collapse
Affiliation(s)
- Tanja Holstein
- Section eScience (S.3), Federal Institute for Materials Research and Testing, Berlin, Germany
- VIB-UGent Center for Medical Biotechnology, VIB and Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Data Competence Center, Robert Koch Institute, Berlin, Deutschland
| | - Thilo Muth
- Section eScience (S.3), Federal Institute for Materials Research and Testing, Berlin, Germany.
- Data Competence Center, Robert Koch Institute, Berlin, Deutschland.
| |
Collapse
|
7
|
Das A, Behera RN, Kapoor A, Ambatipudi K. The Potential of Meta-Proteomics and Artificial Intelligence to Establish the Next Generation of Probiotics for Personalized Healthcare. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:17528-17542. [PMID: 37955263 DOI: 10.1021/acs.jafc.3c03834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
The symbiosis of probiotic bacteria with humans has rendered various health benefits while providing nutrition and a suitable environment for their survival. However, the probiotics must survive unfavorable gut conditions to exert beneficial effects. The intrinsic resistance of probiotics to survive harsh conditions results from a myriad of proteins. Interaction of microbial proteins with the host is indispensable for modulating the gut microbiome, such as interaction with cell receptors and protective action against pathogens. The complex interplay of proteins should be unraveled by utilizing metaproteomic strategies. The contribution of probiotics to health is now widely accepted. However, due to the inconsistency of generalized probiotics, contemporary research toward precision probiotics has gained momentum for customized treatment. This review explores the application of metaproteomics and AI/ML algorithms in resolving multiomics data analysis and in silico prediction of microbial features for screening specific beneficial probiotic organisms. Implementing these integrative strategies could augment the potential of precision probiotics for personalized healthcare.
Collapse
Affiliation(s)
- Arpita Das
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Rama N Behera
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Ayushi Kapoor
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Kiran Ambatipudi
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, India
| |
Collapse
|
8
|
Aziz S, Rasheed F, Akhter TS, Zahra R, König S. Microbial Proteins in Stomach Biopsies Associated with Gastritis, Ulcer, and Gastric Cancer. Molecules 2022; 27:molecules27175410. [PMID: 36080177 PMCID: PMC9458002 DOI: 10.3390/molecules27175410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/12/2022] [Accepted: 08/20/2022] [Indexed: 11/24/2022] Open
Abstract
(1) Background: Gastric cancer (GC) is the fourth leading cause of cancer-related deaths worldwide. Helicobacter pylori infection is a major risk factor, but other microbial species may also be involved. In the context of an earlier proteomics study of serum and biopsies of patients with gastroduodenal diseases, we explored here a simplified microbiome in these biopsies (H. pylori, Acinetobacter baumannii, Escherichia coli, Fusobacterium nucleatum, Bacteroides fragilis) on the protein level. (2) Methods: A cohort of 75 patients was divided into groups with respect to the findings of the normal gastric mucosa (NGM) and gastroduodenal disorders such as gastritis, ulcer, and gastric cancer (GC). The H. pylori infection status was determined. The protein expression analysis of the biopsy samples was carried out using high-definition mass spectrometry of the tryptic digest (label-free data-independent quantification and statistical analysis). (3) Results: The total of 304 bacterial protein matches were detected based on two or more peptide hits. Significantly regulated microbial proteins like virulence factor type IV secretion system protein CagE from H. pylori were found with more abundance in gastritis than in GC or NGM. This finding could reflect the increased microbial involvement in mucosa inflammation in line with current hypotheses. Abundant proteins across species were heat shock proteins and elongation factors. (4) Conclusions: Next to the bulk of human proteins, a number of species-specific bacterial proteins were detected in stomach biopsies of patients with gastroduodenal diseases, some of which, like those expressed by the cag pathogenicity island, may provide gateways to disease prevention without antibacterial intervention in order to reduce antibiotic resistance.
Collapse
Affiliation(s)
- Shahid Aziz
- Patients Diagnostic Lab, Isotope Application Division, Pakistan Institute of Nuclear Science and Technology (PINSTECH), Islamabad 44000, Pakistan
- Department of Microbiology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
- IZKF Core Unit Proteomics, University of Münster, 48149 Münster, Germany
- Correspondence: or
| | - Faisal Rasheed
- Patients Diagnostic Lab, Isotope Application Division, Pakistan Institute of Nuclear Science and Technology (PINSTECH), Islamabad 44000, Pakistan
| | - Tayyab Saeed Akhter
- The Centre for Liver and Digestive Diseases, Holy Family Hospital, Rawalpindi 46300, Pakistan
| | - Rabaab Zahra
- Department of Microbiology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Simone König
- IZKF Core Unit Proteomics, University of Münster, 48149 Münster, Germany
| |
Collapse
|
9
|
Taneishi K, Tsuchiya Y. Structure-based analyses of gut microbiome-related proteins by neural networks and molecular dynamics simulations. Curr Opin Struct Biol 2022; 73:102336. [DOI: 10.1016/j.sbi.2022.102336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/18/2021] [Accepted: 01/14/2022] [Indexed: 11/03/2022]
|
10
|
Di Domenico M, Ballini A, Boccellino M, Scacco S, Lovero R, Charitos IA, Santacroce L. The Intestinal Microbiota May Be a Potential Theranostic Tool for Personalized Medicine. J Pers Med 2022; 12:523. [PMID: 35455639 PMCID: PMC9024566 DOI: 10.3390/jpm12040523] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/09/2022] [Accepted: 03/22/2022] [Indexed: 12/12/2022] Open
Abstract
The human intestine is colonized by a huge number of microorganisms from the moment of birth. This set of microorganisms found throughout the human body, is called the microbiota; the microbiome indicates the totality of genes that the microbiota can express, i.e., its genetic heritage. Thus, microbiota participates in and influences the proper functioning of the organism. The microbiota is unique for each person; it differs in the types of microorganisms it contains, the number of each microorganism, and the ratio between them, but mainly it changes over time and under the influence of many factors. Therefore, the correct functioning of the human body depends not only on the expression of its genes but also on the expression of the genes of the microorganisms it coexists with. This fact makes clear the enormous interest of community science in studying the relationship of the human microbiota with human health and the incidence of disease. The microbiota is like a unique personalized "mold" for each person; it differs quantitatively and qualitatively for the microorganisms it contains together with the relationship between them, and it changes over time and under the influence of many factors. We are attempting to modulate the microbial components in the human intestinal microbiota over time to provide positive feedback on the health of the host, from intestinal diseases to cancer. These interventions to modulate the intestinal microbiota as well as to identify the relative microbiome (genetic analysis) can range from dietary (with adjuvant prebiotics or probiotics) to fecal transplantation. This article researches the recent advances in these strategies by exploring their advantages and limitations. Furthermore, we aim to understand the relationship between intestinal dysbiosis and pathologies, through the research of resident microbiota, that would allow the personalization of the therapeutic antibiotic strategy.
Collapse
Affiliation(s)
- Marina Di Domenico
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.D.D.); (M.B.)
| | - Andrea Ballini
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.D.D.); (M.B.)
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Mariarosaria Boccellino
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.D.D.); (M.B.)
| | - Salvatore Scacco
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Roberto Lovero
- AOU Policlinico Consorziale di Bari-Ospedale Giovanni XXIII, Clinical Pathology Unit, Policlinico University Hospital of Bari, 70124 Bari, Italy;
| | - Ioannis Alexandros Charitos
- Department of Emergency and Urgency, National Poisoning Centre, Riuniti University Hospital of Foggia, 71122 Foggia, Italy;
| | - Luigi Santacroce
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy;
| |
Collapse
|