1
|
Paramasivan S, Ashick M, Dudley KJ, Satake N, Mills PC, Sadowski P, Nagaraj SH. VPBrowse: Genome-based representation of MS/MS spectra to quantify 10,000 bovine proteins. Proteomics 2024; 24:e2300431. [PMID: 38468111 DOI: 10.1002/pmic.202300431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 02/11/2024] [Accepted: 02/26/2024] [Indexed: 03/13/2024]
Abstract
SWATH is a data acquisition strategy acclaimed for generating quantitatively accurate and consistent measurements of proteins across multiple samples. Its utility for proteomics studies in nonlaboratory animals, however, is currently compromised by the lack of sufficiently comprehensive and reliable public libraries, either experimental or predicted, and relevant platforms that support their sharing and utilization in an intuitive manner. Here we describe the development of the Veterinary Proteome Browser, VPBrowse (http://browser.proteo.cloud/), an on-line platform for genome-based representation of the Bos taurus proteome, which is equipped with an interactive database and tools for searching, visualization, and building quantitative mass spectrometry assays. In its current version (VPBrowse 1.0), it contains high-quality fragmentation spectra acquired on QToF instrument for over 36,000 proteotypic peptides, the experimental evidence for over 10,000 proteins. Data can be downloaded in different formats to enable analysis using popular software packages for SWATH data processing whilst normalization to iRT scale ensures compatibility with diverse chromatography systems. When applied to published blood plasma dataset from the biomarker discovery study, the resource supported label-free quantification of additional proteins not reported by the authors previously including PSMA4, a tissue leakage protein and a promising candidate biomarker of animal's response to dehorning-related injury.
Collapse
Affiliation(s)
- Selvam Paramasivan
- School of Veterinary Science, The University of Queensland, Gatton, Queensland, Australia
- Central Analytical Research Facility, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Mohamed Ashick
- LifeBytes India Private Limited, Bengaluru, Karnataka, India
| | - Kevin J Dudley
- Central Analytical Research Facility, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Nana Satake
- School of Veterinary Science, The University of Queensland, Gatton, Queensland, Australia
| | - Paul C Mills
- School of Veterinary Science, The University of Queensland, Gatton, Queensland, Australia
| | - Pawel Sadowski
- Central Analytical Research Facility, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Shivashankar H Nagaraj
- Centre for Genomics and Personalised Health, Queensland University of Technology, Brisbane, Queensland, Australia
- Translational Research Institute, Brisbane, Queensland, Australia
| |
Collapse
|
2
|
Turner N, Abeysinghe P, Flay H, Meier S, Sadowski P, Mitchell MD. SWATH-MS Analysis of Blood Plasma and Circulating Small Extracellular Vesicles Enables Detection of Putative Protein Biomarkers of Fertility in Young and Aged Dairy Cows. J Proteome Res 2023; 22:3580-3595. [PMID: 37830897 DOI: 10.1021/acs.jproteome.3c00406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
The development of biomarkers of fertility could provide benefits for the genetic improvement of dairy cows. Circulating small extracellular vesicles (sEVs) show promise as diagnostic or prognostic markers since their cargo reflects the metabolic state of the cell of origin; thus, they mirror the physiological status of the host. Here, we employed data-independent acquisition mass spectrometry to survey the plasma and plasma sEV proteomes of two different cohorts of Young (Peripubertal; n = 30) and Aged (Primiparous; n = 20) dairy cows (Bos taurus) of high- and low-genetic merit of fertility and known pregnancy outcomes (ProteomeXchange data set identifier PXD042891). We established predictive models of fertility status with an area under the curve of 0.97 (sEV; p value = 3.302e-07) and 0.95 (plasma; p value = 6.405e-08). Biomarker candidates unique to high-fertility Young cattle had a sensitivity of 0.77 and specificity of 0.67 (*p = 0.0287). Low-fertility biomarker candidates uniquely identified in sEVs from Young and Aged cattle had a sensitivity and specificity of 0.69 and 1.0, respectively (***p = 0.0005). Our bioinformatics pipeline enabled quantification of plasma and circulating sEV proteins associated with fertility phenotype. Further investigations are warranted to validate this research in a larger population, which may lead to improved classification of fertility status in cattle.
Collapse
Affiliation(s)
- Natalie Turner
- Centre for Children's Health Research (CCHR), Queensland University of Technology (QUT), 62 Graham Street, South Brisbane, Queensland 4101, Australia
| | - Pevindu Abeysinghe
- Centre for Children's Health Research (CCHR), Queensland University of Technology (QUT), 62 Graham Street, South Brisbane, Queensland 4101, Australia
| | - Holly Flay
- DairyNZ Limited, Private Bag 3221, Hamilton 3240, New Zealand
| | - Susanne Meier
- DairyNZ Limited, Private Bag 3221, Hamilton 3240, New Zealand
| | - Pawel Sadowski
- Central Analytical Research Facility (CARF), QUT, Gardens Point Campus, 2 George Street, Brisbane City, Queensland 4000, Australia
| | - Murray D Mitchell
- Centre for Children's Health Research (CCHR), Queensland University of Technology (QUT), 62 Graham Street, South Brisbane, Queensland 4101, Australia
| |
Collapse
|
3
|
Navone L, Moffitt K, Behrendorff J, Sadowski P, Hartley C, Speight R. Biosensor-guided rapid screening for improved recombinant protein secretion in Pichia pastoris. Microb Cell Fact 2023; 22:92. [PMID: 37138331 PMCID: PMC10155391 DOI: 10.1186/s12934-023-02089-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 04/10/2023] [Indexed: 05/05/2023] Open
Abstract
Pichia pastoris (Komagataella phaffii) is widely used for industrial production of heterologous proteins due to high secretory capabilities but selection of highly productive engineered strains remains a limiting step. Despite availability of a comprehensive molecular toolbox for construct design and gene integration, there is high clonal variability among transformants due to frequent multi-copy and off-target random integration. Therefore, functional screening of several hundreds of transformant clones is essential to identify the best protein production strains. Screening methods are commonly based on deep-well plate cultures with analysis by immunoblotting or enzyme activity assays of post-induction samples, and each heterologous protein produced may require development of bespoke assays with multiple sample processing steps. In this work, we developed a generic system based on a P. pastoris strain that uses a protein-based biosensor to identify highly productive protein secretion clones from a heterogeneous set of transformants. The biosensor uses a split green fluorescent protein where the large GFP fragment (GFP1-10) is fused to a sequence-specific protease from Tobacco Etch Virus (TEV) and is targeted to the endoplasmic reticulum. Recombinant proteins targeted for secretion are tagged with the small fragment of the split GFP (GFP11). Recombinant protein production can be measured by monitoring GFP fluorescence, which is dependent on interaction between the large and small GFP fragments. The reconstituted GFP is cleaved from the target protein by TEV protease, allowing for secretion of the untagged protein of interest and intracellular retention of the mature GFP. We demonstrate this technology with four recombinant proteins (phytase, laccase, β-casein and β-lactoglobulin) and show that the biosensor directly reports protein production levels that correlate with traditional assays. Our results confirm that the split GFP biosensor can be used for facile, generic, and rapid screening of P. pastoris clones to identify those with the highest production levels.
Collapse
Affiliation(s)
- Laura Navone
- School of Biology and Environmental Science, Faculty of Science, Queensland University of Technology (QUT), Brisbane, QLD, 4000, Australia.
- ARC Centre of Excellence in Synthetic Biology, Queensland University of Technology (QUT), Brisbane, QLD, 4000, Australia.
| | - Kaylee Moffitt
- School of Biology and Environmental Science, Faculty of Science, Queensland University of Technology (QUT), Brisbane, QLD, 4000, Australia
| | - James Behrendorff
- School of Biology and Environmental Science, Faculty of Science, Queensland University of Technology (QUT), Brisbane, QLD, 4000, Australia
- ARC Centre of Excellence in Synthetic Biology, Queensland University of Technology (QUT), Brisbane, QLD, 4000, Australia
| | - Pawel Sadowski
- Central Analytical Research Facility (CARF), Queensland University of Technology (QUT), Brisbane, QLD, 4000, Australia
| | | | - Robert Speight
- School of Biology and Environmental Science, Faculty of Science, Queensland University of Technology (QUT), Brisbane, QLD, 4000, Australia
- ARC Centre of Excellence in Synthetic Biology, Queensland University of Technology (QUT), Brisbane, QLD, 4000, Australia
| |
Collapse
|
4
|
Ravuri HG, Sadowski P, Noor Z, Satake N, Mills PC. Plasma proteomic changes in response to surgical trauma and a novel transdermal analgesic treatment in dogs. J Proteomics 2022; 265:104648. [PMID: 35691609 DOI: 10.1016/j.jprot.2022.104648] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 05/16/2022] [Accepted: 06/01/2022] [Indexed: 10/18/2022]
Abstract
Assessment of pain responses and inflammation during animal surgery is difficult because traditional methods, such as visual analogue scores, are not applicable while under anaesthesia. Acute phase proteins (APPs), such as C-reactive protein and haptoglobin, that are typically monitored in veterinary research, do not show a significant change until at least 2 h post-surgery and therefore, immediate pathophysiological changes are uncertain. The current study used sequential window acquisition of all theoretical mass spectra (SWATH-MS) to investigate plasma proteome changes that occur immediately following surgery in dogs and also to assess the efficacy of a novel transdermal ketoprofen (TK) formulation. Castration was chosen as surgical model in this study. The procedure was performed on twelve dogs (n = 6 in two groups) and blood samples were collected at 0 h, 1 and 2 h after surgery for proteomic analysis. Following surgery, there was a general downregulation of proteins, including complement C- 3, complement factor B, complement factor D, transthyretin, and proteins associated with lipid, cholesterol, and glucose metabolisms, reflecting the systemic response to surgical trauma. Many of these changes were diminished in the transdermal group (TD) since ketoprofen, a non-steroidal anti-inflammatory drug (NSAID), inhibits prostanoids and the associated chemotactic neutrophil migration to site of tissue injury. SIGNIFICANCE: SWATH-MS Proteomic analysis revealed significant changes in plasma proteins, predominantly involved in early acute phase and inflammatory response at 1 & 2 h after surgery in castrated dogs. Pre-operative application of transdermal ketoprofen formulation had reduced the systemic immune response, which was confirmed by negligible alteration of proteins in transdermal treated group. A key outcome of this experiment was studying the efficacy of a novel transdermal NSAID formulation in dogs.
Collapse
Affiliation(s)
- Halley Gora Ravuri
- School of Veterinary Science, The University of Queensland, Gatton, QLD, Australia
| | - Pawel Sadowski
- Central Analytical Research Facility, Queensland University of Technology, Brisbane, QLD, Australia
| | - Zainab Noor
- ProCan, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW, Australia
| | - Nana Satake
- School of Veterinary Science, The University of Queensland, Gatton, QLD, Australia
| | - Paul C Mills
- School of Veterinary Science, The University of Queensland, Gatton, QLD, Australia.
| |
Collapse
|
5
|
Ravuri HG, Noor Z, Mills PC, Satake N, Sadowski P. Data-Independent Acquisition Enables Robust Quantification of 400 Proteins in Non-Depleted Canine Plasma. Proteomes 2022; 10:9. [PMID: 35324581 PMCID: PMC8953371 DOI: 10.3390/proteomes10010009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/25/2022] [Accepted: 02/22/2022] [Indexed: 12/30/2022] Open
Abstract
Mass spectrometry-based plasma proteomics offers a major advance for biomarker discovery in the veterinary field, which has traditionally been limited to quantification of a small number of proteins using biochemical assays. The development of foundational data and tools related to sequential window acquisition of all theoretical mass spectra (SWATH)-mass spectrometry has allowed for quantitative profiling of a significant number of plasma proteins in humans and several animal species. Enabling SWATH in dogs enhances human biomedical research as a model species, and significantly improves diagnostic and disease monitoring capability. In this study, a comprehensive peptide spectral library specific to canine plasma proteome was developed and evaluated using SWATH for protein quantification in non-depleted dog plasma. Specifically, plasma samples were subjected to various orthogonal fractionation and digestion techniques, and peptide fragmentation data corresponding to over 420 proteins was collected. Subsequently, a SWATH-based assay was introduced that leveraged the developed resource and that enabled reproducible quantification of 400 proteins in non-depleted plasma samples corresponding to various disease conditions. The ability to profile the abundance of such a significant number of plasma proteins using a single method in dogs has the potential to accelerate biomarker discovery studies in this species.
Collapse
Affiliation(s)
- Halley Gora Ravuri
- School of Veterinary Science, The University of Queensland, Gatton, QLD 4343, Australia; (H.G.R.); (P.C.M.)
| | - Zainab Noor
- ProCan, Children’s Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW 2145, Australia;
| | - Paul C. Mills
- School of Veterinary Science, The University of Queensland, Gatton, QLD 4343, Australia; (H.G.R.); (P.C.M.)
| | - Nana Satake
- School of Veterinary Science, The University of Queensland, Gatton, QLD 4343, Australia; (H.G.R.); (P.C.M.)
| | - Pawel Sadowski
- Central Analytical Research Facility, Queensland University of Technology, Brisbane, QLD 4000, Australia
| |
Collapse
|