1
|
Guan Z, Xiao M, Hu S, Li Y, Mo C, Yin Y, Li R, Zhang Z, Zhang X, Liao M. Proteomic study of localized tissue necrosis by Naja atra venom. Toxicon 2024; 247:107829. [PMID: 38925341 DOI: 10.1016/j.toxicon.2024.107829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 06/23/2024] [Accepted: 06/24/2024] [Indexed: 06/28/2024]
Abstract
Naja atra bites often result in immediate and severe illness. The venom of N. atra contains a complex mixture of toxins that can cause significant damage to the patient's skin tissue. If left untreated, this condition can progress to localized necrosis, potentially resulting in impairment or even amputation in severe cases. Despite the known effects of the venom, the exact mechanisms underlying this tissue necrosis are not fully understood. This study aimed to investigate the protein components responsible for tissue necrosis induced by N. atra venom at both the organism-wide and molecular levels. To achieve this, venom was injected into Bama miniature pigs to cause ulcers, and exudate samples were collected at various time points after injection. Label-free proteomics analysis identified 1119, 1016, 938, 864, and 855 proteins in the exudate at 6, 12, 24, 36, and 48 h post-injection, respectively. Further analysis revealed 431 differentially expressed proteins, with S100A8, MMP-2, MIF, and IDH2 identified as proteins associated with local tissue necrosis. In this study, we established a Bama miniature pig model for N. atra venom injection and performed proteomic analysis of the wound exudate, which provides important insights into the molecular pathology of snakebite-induced tissue necrosis and potential theoretical bases for clinical treatment. Proteomic data from this study can be accessed through ProteomeXchange using the identifier PXD052498.
Collapse
Affiliation(s)
- Zhezhe Guan
- Institute of Life Sciences of Guangxi Medical University, Nanning, 530021, PR China; Laboratory of Clinical Medicine, Air Force Medical Center, Air Force Medical University, Beijing, 100142, PR China
| | - Manqi Xiao
- Institute of Life Sciences of Guangxi Medical University, Nanning, 530021, PR China
| | - Shaocong Hu
- Institute of Life Sciences of Guangxi Medical University, Nanning, 530021, PR China
| | - Yalan Li
- Institute of Life Sciences of Guangxi Medical University, Nanning, 530021, PR China
| | - Caifeng Mo
- Institute of Life Sciences of Guangxi Medical University, Nanning, 530021, PR China
| | - Yalong Yin
- First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, PR China
| | - Ruopeng Li
- Department of Dioptometry of Shanxi Aier Eye Hospital, Shanxi, 030000, PR China
| | - Ziyan Zhang
- School of Basic Medicine of Guangxi Medical University, Nanning, 530021, PR China
| | - Xuerong Zhang
- Institute of Life Sciences of Guangxi Medical University, Nanning, 530021, PR China
| | - Ming Liao
- Institute of Life Sciences of Guangxi Medical University, Nanning, 530021, PR China.
| |
Collapse
|
2
|
Phan P, Deshwal A, McMahon TA, Slikas M, Andrews E, Becker B, Kumar TKS. A Review of Rattlesnake Venoms. Toxins (Basel) 2023; 16:2. [PMID: 38276526 PMCID: PMC10818703 DOI: 10.3390/toxins16010002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/08/2023] [Accepted: 12/12/2023] [Indexed: 01/27/2024] Open
Abstract
Venom components are invaluable in biomedical research owing to their specificity and potency. Many of these components exist in two genera of rattlesnakes, Crotalus and Sistrurus, with high toxicity and proteolytic activity variation. This review focuses on venom components within rattlesnakes, and offers a comparison and itemized list of factors dictating venom composition, as well as presenting their known characteristics, activities, and significant applications in biosciences. There are 64 families and subfamilies of proteins present in Crotalus and Sistrurus venom. Snake venom serine proteases (SVSP), snake venom metalloproteases (SVMP), and phospholipases A2 (PLA2) are the standard components in Crotalus and Sistrurus venom. Through this review, we highlight gaps in the knowledge of rattlesnake venom; there needs to be more information on the venom composition of three Crotalus species and one Sistrurus subspecies. We discuss the activity and importance of both major and minor components in biomedical research and drug development.
Collapse
Affiliation(s)
- Phuc Phan
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR 72701, USA;
| | - Anant Deshwal
- Department of Biology, Bradley University, Peoria, IL 61625, USA; (T.A.M.); (M.S.); (E.A.)
| | - Tyler Anthony McMahon
- Department of Biology, Bradley University, Peoria, IL 61625, USA; (T.A.M.); (M.S.); (E.A.)
| | - Matthew Slikas
- Department of Biology, Bradley University, Peoria, IL 61625, USA; (T.A.M.); (M.S.); (E.A.)
| | - Elodie Andrews
- Department of Biology, Bradley University, Peoria, IL 61625, USA; (T.A.M.); (M.S.); (E.A.)
| | - Brian Becker
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR 72701, USA;
| | | |
Collapse
|
3
|
Fu K, Cao L, Tang Y, Zhao J, Xiong K, Hong C, Huang C. The anti-myotoxic effects and mechanisms of Sinonatrix annularis serum and a novel plasma metalloproteinase inhibitor towards Deinagkistrodon acutus envenomation. Toxicol Lett 2023; 388:13-23. [PMID: 37805084 DOI: 10.1016/j.toxlet.2023.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 09/30/2023] [Accepted: 10/04/2023] [Indexed: 10/09/2023]
Abstract
Non-venomous snakes commonly evolve natural resistance to venom to escape predators. Sinonatrix annularis serum has been shown to inhibit Deinagkistrodon acutus venom-induced hemorrhage and upregulation of serum CK, CK-MB, LDH, AST and ALT levels. Using TMT-labeled proteomics analysis, 168 proteins were found to be altered significantly in the envenomed gastrocnemius muscle and categorized into pathways such as complement and coagulation cascades, leukocyte transendothelial migration, and JAK/STAT signaling. These alterations were mitigated by S. annularis serum. Subsequently, a novel metalloproteinase inhibitor, SaMPI, was isolated from S. annularis serum by two-step chromatography. It showed strong antidotal effects against D. acutus envenomation, including inhibition of subcutaneous bleeding caused by crude venom and DaMP (a metalloproteinase derived from D. acutus) activity in a 1:1 ratio. Histology and immunoblotting analyses demonstrated that SaMPI mitigated myonecrosis, reduced neutrophil infiltration and local inflammatory factor release, and retarded JAK/STAT and MAPK signaling activation. Analysis of the SaMPI gene cloned by 5'-RACE revealed a shared sequence identity of 58-79% with other SVMP inhibitors. These findings demonstrate the protective effects of SaMPI and indicate its potential value as a candidate for viper bite adjuvant therapy.
Collapse
Affiliation(s)
- Kepu Fu
- College of Basic Medical Sciences, Nanchang University, Nanchang 330006, Jiangxi, China
| | - Liyun Cao
- Reproductive Medicine Center, Jiangxi Maternal and Child Health Hospital, Nanchang 330038, Jiangxi, China
| | - Yitao Tang
- College of Basic Medical Sciences, Nanchang University, Nanchang 330006, Jiangxi, China
| | - Jianqi Zhao
- College of Basic Medical Sciences, Nanchang University, Nanchang 330006, Jiangxi, China
| | - Kejia Xiong
- College of Basic Medical Sciences, Nanchang University, Nanchang 330006, Jiangxi, China
| | - Congjiang Hong
- Department of Breast Surgery, Ganxi Cancer Hospital, Pingxiang 337099, Jiangxi, China
| | - Chunhong Huang
- College of Basic Medical Sciences, Nanchang University, Nanchang 330006, Jiangxi, China.
| |
Collapse
|
4
|
Smith CF, Brandehoff NP, Pepin L, McCabe MC, Castoe TA, Mackessy SP, Nemkov T, Hansen KC, Saviola AJ. Feasibility of detecting snake envenomation biomarkers from dried blood spots. ANALYTICAL SCIENCE ADVANCES 2023; 4:26-36. [PMID: 38715579 PMCID: PMC10989584 DOI: 10.1002/ansa.202200050] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/24/2023] [Accepted: 02/05/2023] [Indexed: 11/17/2024]
Abstract
Biofluid proteomics is a sensitive and high throughput technique that provides vast amounts of molecular data for biomarker discovery. More recently, dried blood spots (DBS) have gained traction as a stable, noninvasive, and relatively cheap source of proteomic data for biomarker identification in disease and injury. Snake envenomation is responsible for significant morbidity and mortality worldwide; however, much remains unknown about the systemic molecular response to envenomation and acquiring biological samples for analysis is a major hurdle. In this study, we utilized DBS acquired from a case of lethal rattlesnake envenomation to determine the feasibility of discovering biomarkers associated with human envenomation. We identified proteins that were either unique or upregulated in envenomated blood compared to non-envenomated blood and evaluated if physiological response pathways and protein markers that correspond to the observed syndromes triggered by envenomation could be detected. We demonstrate that DBS provide useful proteomic information on the systemic processes that resulted from envenomation in this case and find evidence for a massive and systemic inflammatory cascade, combined with coagulation dysregulation, complement system activation, hypoxia response activation, and apoptosis. We also detected potential markers indicative of lethal anaphylaxis, cardiac arrest, and brain death. Ultimately, DBS proteomics has the potential to provide stable and sensitive molecular data on envenomation syndromes and response pathways, which is particularly relevant in low-resource areas which may lack the materials for biofluid processing and storage.
Collapse
Affiliation(s)
- Cara F. Smith
- Department of Biochemistry and Molecular GeneticsUniversity of Colorado DenverAuroraCOUSA
| | | | - Lesley Pepin
- Rocky Mountain Poison and Drug Safety, Denver Health and Hospital AuthorityDenverCOUSA
| | - Maxwell C. McCabe
- Department of Biochemistry and Molecular GeneticsUniversity of Colorado DenverAuroraCOUSA
| | - Todd A. Castoe
- Department of BiologyUniversity of Texas at ArlingtonArlingtonTXUSA
| | - Stephen P. Mackessy
- Department of Biological SciencesUniversity of Northern ColoradoGreeleyCOUSA
| | - Travis Nemkov
- Department of Biochemistry and Molecular GeneticsUniversity of Colorado DenverAuroraCOUSA
| | - Kirk C. Hansen
- Department of Biochemistry and Molecular GeneticsUniversity of Colorado DenverAuroraCOUSA
| | - Anthony J. Saviola
- Department of Biochemistry and Molecular GeneticsUniversity of Colorado DenverAuroraCOUSA
| |
Collapse
|
5
|
Biological and Medical Aspects Related to South American Rattlesnake Crotalus durissus (Linnaeus, 1758): A View from Colombia. Toxins (Basel) 2022; 14:toxins14120875. [PMID: 36548772 PMCID: PMC9784998 DOI: 10.3390/toxins14120875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/25/2022] [Accepted: 12/03/2022] [Indexed: 12/16/2022] Open
Abstract
In Colombia, South America, there is a subspecies of the South American rattlesnake Crotalus durissus, C. d. cumanensis, a snake of the Viperidae family, whose presence has been reduced due to the destruction of its habitat. It is an enigmatic snake from the group of pit vipers, venomous, with large articulated front fangs, special designs on its body, and a characteristic rattle on its tail. Unlike in Brazil, the occurrence of human envenomation by C. durisus in Colombia is very rare and contributes to less than 1% of envenomation caused by snakes. Its venom is a complex cocktail of proteins with different biological effects, which evolved with the purpose of paralyzing the prey, killing it, and starting its digestive process, as well as having defense functions. When its venom is injected into humans as the result of a bite, the victim presents with both local tissue damage and with systemic involvement, including a diverse degree of neurotoxic, myotoxic, nephrotoxic, and coagulopathic effects, among others. Its biological effects are being studied for use in human health, including the possible development of analgesic, muscle relaxant, anti-inflammatory, immunosuppressive, anti-infection, and antineoplastic drugs. Several groups of researchers in Brazil are very active in their contributions in this regard. In this work, a review is made of the most relevant biological and medical aspects related to the South American rattlesnake and of what may be of importance for a better understanding of the snake C. d. cumanensis, present in Colombia and Venezuela.
Collapse
|