1
|
Perić I, Lješević M, Beškoski V, Nikolić M, Filipović D. Metabolomic profiling relates tianeptine effectiveness with hippocampal GABA, myo-inositol, cholesterol, and fatty acid metabolism restoration in socially isolated rats. Psychopharmacology (Berl) 2022; 239:2955-2974. [PMID: 35776189 DOI: 10.1007/s00213-022-06180-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 06/16/2022] [Indexed: 12/28/2022]
Abstract
RATIONALE Discovering biomarkers of major depressive disorder (MDD) can give a deeper understanding of this mood disorder and improve the ability to screen for, diagnose, and treat MDD. OBJECTIVES In this study, metabolomics was used in unraveling metabolite fluctuations of MDD and drug outcome by creating specific metabolomic fingerprints. We report metabolomic patterns of change of the hippocampus of adult male Wistar rats following chronic social isolation (CSIS) (6 weeks), an animal model of depression, and/or chronic tianeptine (Tian) treatment (10 mg kg-1 per day) (lasting 3 weeks of 6-week CSIS), monitored by using comprehensive GC × GC-MS. RESULTS The comparative metabolomic analysis highlighted the role of gamma aminobutyric acid (GABA), iso-allocholate, and unsaturated fatty acid metabolism alterations following the CSIS, which was corroborated with moderate to strong negative Pearson's correlation of GABA, docosahexaenoic, 9-hexadecenoic acid, 5,8,11,14-eicosatetraynoic, and arachidonic acids with immobility behavior in the forced swim test. The antidepressant effect of Tian restored GABA levels, which was absent in Tian resilient rats. Tian decreased myo-inositol and increased TCA cycle intermediates, amino acids, and cholesterol and its metabolite. As key molecules of divergence between Tian effectiveness and resilience, metabolomics revealed myo-inositol, GABA, cholesterol, and its metabolite. A significant moderate positive correlation between myo-inositol and immobility was revealed. Tian probably acted by upregulating NMDAR's and α2 adrenergic receptors (AR) or norepinephrine transporter in both control and stressed animals. CONCLUSION Metabolomics revealed several dysregulations underlying CSIS-induced depressive-like behavior and responsiveness to Tian, predominantly converging into NMDAR-mediated glutamate and myo-inositol signalization and GABA inhibitory pathways.
Collapse
Affiliation(s)
- Ivana Perić
- Department of Molecular Biology and Endocrinology, "VINČA" Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Mike Petrovića Alasa 12-14, 11351, Vinča, Belgrade, Serbia
| | - Marija Lješević
- Institute of Chemistry, Technology and Metallurgy, University of Belgrade, Njegoševa 12, 11000, Belgrade, Serbia
| | - Vladimir Beškoski
- Department of Biochemistry, University of Belgrade - Faculty of Chemistry, Studentski trg 12-16, 11000, Belgrade, Serbia
| | - Milan Nikolić
- Department of Biochemistry, University of Belgrade - Faculty of Chemistry, Studentski trg 12-16, 11000, Belgrade, Serbia
| | - Dragana Filipović
- Department of Molecular Biology and Endocrinology, "VINČA" Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Mike Petrovića Alasa 12-14, 11351, Vinča, Belgrade, Serbia.
| |
Collapse
|
2
|
Turck CW, Webhofer C, Reckow S, Moy J, Wang M, Guillermier C, Poczatek JC, Filiou MD. Antidepressant treatment effects on hippocampal protein turnover: Molecular and spatial insights from mass spectrometry. Proteomics 2022; 22:e2100244. [PMID: 35355420 DOI: 10.1002/pmic.202100244] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 03/04/2022] [Accepted: 03/04/2022] [Indexed: 11/12/2022]
Abstract
A major challenge in managing depression is that antidepressant drugs take a long time to exert their therapeutic effects. For the development of faster acting therapies, it is crucial to get an improved understanding of the molecular mechanisms underlying antidepressant mode of action. Here, we used a novel mass spectrometry-based workflow to investigate how antidepressant treatment affects brain protein turnover at single cell and subcellular resolution. We combined stable isotope metabolic labeling, quantitative Tandem Mass Spectrometry (qTMS) and Multi-isotope Imaging Mass Spectrometry (MIMS) to simultaneously quantify and image protein synthesis and turnover in hippocampi of mice treated with the antidepressant paroxetine. We identified changes in turnover of individual hippocampal proteins that reveal altered metabolism-mitochondrial processes and report on subregion-specific turnover patterns upon paroxetine treatment. This workflow can be used to investigate brain protein turnover changes upon pharmacological interventions at a resolution and precision that has not been possible with other methods to date. Our results reveal acute paroxetine effects on brain protein turnover and shed light on antidepressant mode of action. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
| | - Christian Webhofer
- Max Planck Institute of Psychiatry, Munich, Germany.,Present address: Amgen Research GmbH, Munich, Germany
| | | | - Jeffrey Moy
- Division of Genetics, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.,National Resource for Imaging Mass Spectrometry (NRIMS), Cambridge, MA, USA
| | - Mei Wang
- Division of Genetics, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.,National Resource for Imaging Mass Spectrometry (NRIMS), Cambridge, MA, USA
| | - Christelle Guillermier
- Division of Genetics, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.,National Resource for Imaging Mass Spectrometry (NRIMS), Cambridge, MA, USA
| | - J Collin Poczatek
- Division of Genetics, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.,National Resource for Imaging Mass Spectrometry (NRIMS), Cambridge, MA, USA
| | - Michaela D Filiou
- Max Planck Institute of Psychiatry, Munich, Germany.,Department of Biological Applications and Technology, School of Health Sciences, University of Ioannina, Ioannina, Greece.,Biomedical Research Institute, Foundation for Research and Technology-Hellas (FORTH), Ioannina, Greece
| |
Collapse
|
3
|
Multi-Omics Analysis Reveals Myelin, Presynaptic and Nicotinate Alterations in the Hippocampus of G72/G30 Transgenic Mice. J Pers Med 2022; 12:jpm12020244. [PMID: 35207732 PMCID: PMC8878587 DOI: 10.3390/jpm12020244] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/20/2022] [Accepted: 01/25/2022] [Indexed: 01/15/2023] Open
Abstract
The primate-specific G72/G30 gene locus has been associated with major psychiatric disorders, such as schizophrenia and bipolar disorder. We have previously generated transgenic mice which carry the G72/G30 locus and express the longest G72 splice variant (LG72) protein encoded by this locus with schizophrenia-related symptoms. Here, we used a multi-omics approach, including quantitative proteomics and metabolomics to investigate molecular alterations in the hippocampus of G72/G30 transgenic (G72Tg) mice. Our proteomics analysis revealed decreased expression of myelin-related proteins and NAD-dependent protein deacetylase sirtuin-2 (Sirt2) as well as increased expression of the scaffolding presynaptic proteins bassoon (Bsn) and piccolo (Pclo) and the cytoskeletal protein plectin (Plec1) in G72Tg compared to wild-type (WT) mice. Metabolomics analysis indicated decreased levels of nicotinate in G72Tg compared to WT hippocampi. Decreased hippocampal protein expression for selected proteins, namely myelin oligodentrocyte glycoprotein (Mog), Cldn11 and myelin proteolipid protein (Plp), was confirmed with Western blot in a larger population of G72Tg and WT mice. The identified molecular pathway alterations shed light on the hippocampal function of LG72 protein in the context of neuropsychiatric phenotypes.
Collapse
|
4
|
An Z, Wang X, Li P, He J, Liu L. Exploring the metabolic characteristics and pharmacokinetic variation of paroxetine in healthy volunteers using a pharmacometabonomic approach. J Pharm Biomed Anal 2021; 204:114224. [PMID: 34265484 DOI: 10.1016/j.jpba.2021.114224] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 06/17/2021] [Accepted: 06/19/2021] [Indexed: 01/07/2023]
Abstract
The pharmacokinetic parameters of paroxetine vary between individuals, leading to differences in efficacy. The focus of our research was to predict responses to paroxetine using a pharmacometabonomic approach combining metabolic phenotypes and pharmacokinetic parameters. The pharmacokinetics of 12 healthy volunteers treated with paroxetine over two cycles was determined using high-performance liquid chromatography tandem mass spectrometry. Metabolic profiling and phenotyping were performed on the blood samples that remained after pharmacokinetic studies, using ultra-high-performance liquid chromatography coupled with high-resolution mass spectrometry. Thirty-nine metabolites (p < 0.05) increased or decreased after treatment with paroxetine. Vitamin B6 metabolism; valine, leucine, and isoleucine biosynthesis; phenylalanine metabolism; pantothenate and coenzyme A biosynthesis; tyrosine metabolism; and glyoxylate and dicarboxylate metabolism were likely to be relevant for the effects of paroxetine. The two-stage partial least squares (PLS) strategy was used to screen potential biomarkers and predict the pharmacokinetic parameters of paroxetine. An orthogonal PLS discriminant analysis strategy was then applied to separate the high- and low-value groups based on the screened biomarkers. Pearson correlation test and receiver operating characteristic curve analysis confirmed the key prediction biomarkers. Seven common biomarkers were able to predict both the area under the curve (AUC) and the maximum concentration (Cmax): cortisone, l-tyrosine, phenylpyruvate, l-valine, 2-oxoglutarate, l-lactate, and glycerate. Furthermore, homoprotocatechuate and l-glutamate were unique biomarkers for AUC, and citicoline and fumarate were unique biomarkers for Cmax. The selected biomarkers were able to predict the AUC and Cmax and discriminate good responders from poor responders to paroxetine treatment. This trial was registered with http://www.chinadrugtrials.org.cn/ (no. CTR20171590).
Collapse
Affiliation(s)
- Zhuoling An
- Pharmacy Department of Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, PR China
| | - Xiangyi Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100050, PR China
| | - Pengfei Li
- Pharmacy Department of Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, PR China
| | - Jiuming He
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100050, PR China.
| | - Lihong Liu
- Pharmacy Department of Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, PR China.
| |
Collapse
|
5
|
Krajčíková K, Semančíková E, Zakutanská K, Kondrakhova D, Mašlanková J, Stupák M, Talian I, Tomašovičová N, Kimáková T, Komanický V, Dubayová K, Breznoščáková D, Pálová E, Semančík J, Tomečková V. Tear fluid biomarkers in major depressive disorder: Potential of spectral methods in biomarker discovery. J Psychiatr Res 2021; 138:75-82. [PMID: 33836432 DOI: 10.1016/j.jpsychires.2021.03.038] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 03/09/2021] [Accepted: 03/19/2021] [Indexed: 12/22/2022]
Abstract
Spectroscopic methods represent a group of analytical methods that demonstrate high potential in providing clinically relevant diagnostic information, such as biochemical, functional or structural changes of macromolecular complexes that might occur due to pathological processes or therapeutic intervention. Although application of these methods in the field of psychiatric research is still relatively recent, the preliminary results show that they have the capacity to detect subtle neurobiological abnormalities in major depressive disorder (MDD). Methods of mass spectrometry (MALDI-TOF MS), zymography, synchronous fluorescence spectroscopy (SFS), circular dichroism (CD) spectroscopy, Fourier-transform infrared (FTIR) spectroscopy and atomic force microscopy (AFM) were used to analyze the human tear fluid of subjects with MDD. Using MALDI-TOF MS, two diagnostically significant peaks (3747 and 16 411 m/z) were identified with an AUC value of 0.89 and 0.92 in tear fluid of subjects with MDD vs controls, respectively. We also identified various forms of matrix metalloproteinase 9 in subjects with MDD using zymography and synchronous fluorescence spectra (SFS) showed a significant increase in fluorescence intensity at 280 nm. CD spectra were redshifted in tear fluid of subjects with MDD vs healthy controls. FTIR spectroscopy showed changes in the positions of peaks for amide A, I, II in tear fluid of subjects with MDD vs controls. Moreover, atomic force microscopy (AFM) showed different pattern in the crystal structures of tear fluid components in subjects with MDD. SFS, CD, FTIR spectroscopy, AFM and MALDI-TOF MS confirmed, that the human tear fluid proteome could be helpful in discriminating between the group of subjects with MDD and healthy controls. These preliminary findings suggest that spectral methods could represent a useful tool in clinical psychiatry, especially in establishing differential diagnosis, monitoring illness progression and the effect of psychiatric treatment.
Collapse
Affiliation(s)
- Kristína Krajčíková
- Department of Medical and Clinical Biochemistry, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, Trieda SNP 1, Košice, 040 11, Slovakia
| | - Erika Semančíková
- 2(nd) Department of Psychiatry, L. Pasteur University Hospital, Rastislavova 43, Košice, 040 11, Slovakia; EPAMED s.r.o., Private Psychiatric Practice, Hlavná 68, Košice, 040 01, Slovakia.
| | - Katarína Zakutanská
- Institute of Experimental Physics, Department of Magnetism, Slovak Academy of Sciences, Watsonova 47, Košice, 040 01, Slovakia
| | - Daria Kondrakhova
- Institute of Physics, Department of Condensed Matter Physics, Faculty of Science, Pavol Jozef Šafárik University in Košice, Park Angelinum 9, Košice, 041 54, Slovakia
| | - Jana Mašlanková
- Department of Medical and Clinical Biochemistry, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, Trieda SNP 1, Košice, 040 11, Slovakia
| | - Marek Stupák
- Department of Medical and Clinical Biochemistry, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, Trieda SNP 1, Košice, 040 11, Slovakia
| | - Ivan Talian
- Department of Medical and Clinical Biophysics, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, Trieda SNP 1, Košice, 040 11, Slovakia
| | - Natália Tomašovičová
- Institute of Experimental Physics, Department of Magnetism, Slovak Academy of Sciences, Watsonova 47, Košice, 040 01, Slovakia
| | - Tatiana Kimáková
- Department of Public Health and Hygiene, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, Šrobárová 2, 041 80, Košice, Slovakia
| | - Vladimír Komanický
- Institute of Physics, Department of Condensed Matter Physics, Faculty of Science, Pavol Jozef Šafárik University in Košice, Park Angelinum 9, Košice, 041 54, Slovakia
| | - Katarína Dubayová
- Department of Medical and Clinical Biochemistry, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, Trieda SNP 1, Košice, 040 11, Slovakia
| | - Dagmar Breznoščáková
- 1(st) Department of Psychiatry, L. Pasteur University Hospital, Trieda SNP 1, Košice, 040 11, Slovakia
| | - Eva Pálová
- EPAMED s.r.o., Private Psychiatric Practice, Hlavná 68, Košice, 040 01, Slovakia; 1(st) Department of Psychiatry, L. Pasteur University Hospital, Trieda SNP 1, Košice, 040 11, Slovakia
| | - Juraj Semančík
- 4(th) Clinic of Internal Medicine, L. Pasteur University Hospital, Trieda SNP 1, Košice, 040 11, Slovakia
| | - Vladimíra Tomečková
- Department of Medical and Clinical Biochemistry, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, Trieda SNP 1, Košice, 040 11, Slovakia
| |
Collapse
|
6
|
Park DI, Novak B, Yan Y, Kaya ME, Turck CW. Paroxetine binding and activation of phosphofructokinase implicates energy metabolism in antidepressant mode of action. J Psychiatr Res 2020; 129:8-14. [PMID: 32540574 DOI: 10.1016/j.jpsychires.2020.05.033] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 05/30/2020] [Accepted: 05/31/2020] [Indexed: 12/16/2022]
Abstract
Selective serotonin reuptake inhibitors (SSRIs) are the predominant drugs prescribed for Major Depressive Disorder. The immediate pharmacological target of SSRIs is the serotonin transporter. However, the delayed therapeutic effect and high rate of patient non-response make it highly likely that SSRIs also have other molecular targets that are yet to be identified. Cellular thermal shift assay (CETSA) is a method based on thermal stabilization of target proteins upon drug binding. In the present study, we show that the SSRI paroxetine binds to phosphofructokinase (PFK) protein using CETSA. We found that mouse brain PFK and recombinant human PFK proteins are stabilized by paroxetine incubation. Chronic paroxetine treatment also significantly increased mouse brain PFK thermal stability. Paroxetine significantly elevated in vitro and in vivo PFK activity. Levels of several metabolites in glutamate- and energy metabolism-related pathways are significantly correlated with PFK activity in mouse hippocampus. Our data show that paroxetine can bind to PFK and affect its activity. Implications of these results for the antidepressant mode of action of paroxetine are discussed.
Collapse
Affiliation(s)
- Dong Ik Park
- Max Planck Institute of Psychiatry, Department of Translational Research in Psychiatry, 80804, Munich, Germany; Danish Research Institute of Translational Neuroscience (DANDRITE), Department of Biomedicine, Aarhus University, Aarhus, Denmark; The Danish National Research Foundation Center, PROMEMO, Department of Biomedicine, Aarhus University, Aarhus, Denmark.
| | - Božidar Novak
- Max Planck Institute of Psychiatry, Department of Translational Research in Psychiatry, 80804, Munich, Germany
| | - Yu Yan
- Max Planck Institute of Psychiatry, Department of Translational Research in Psychiatry, 80804, Munich, Germany
| | - Melahat Ezgi Kaya
- Max Planck Institute of Psychiatry, Department of Translational Research in Psychiatry, 80804, Munich, Germany
| | - Christoph W Turck
- Max Planck Institute of Psychiatry, Department of Translational Research in Psychiatry, 80804, Munich, Germany
| |
Collapse
|
7
|
Characterization of Tear Immunoglobulins in a Small-Cohort of Keratoconus Patients. Sci Rep 2020; 10:9426. [PMID: 32523038 PMCID: PMC7287105 DOI: 10.1038/s41598-020-66442-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 04/29/2020] [Indexed: 12/31/2022] Open
Abstract
Keratoconus (KC) is classically considered a non-inflammatory condition caused by central corneal thinning that leads to astigmatism and reduced visual acuity. Previous studies have identified increased systemic levels of pro-inflammatory factors, including interleukin-6, tumor necrosis factor-α, and matrix metalloproteinase-9, suggesting that KC may have an inflammatory component in at least a subset of patients. In this study, we evaluated the levels of different immunoglobulins (light and heavy chains) based on Ig α, Ig λ, Ig κ, Ig µ, and Ig heavy chain subunits in non-KC tears (n = 7 control individuals) and KC tears (n = 7 KC patients) using tandem-liquid chromatography mass spectrometry. The most abundant Ig heavy chains detected in both control individuals and KC patients were Ig α-1 and Ig α-2 likely correlating to the higher IgA levels reported in human tears. We identified significant differences in immunoglobulin κ-chain V-II levels in KC patients compared to control individuals with no significant difference in Ig κ/Ig λ ratios or heavy chain levels. Our study supports previous findings suggesting that KC possesses a systemic component that may contribute to the KC pathology. Further studies are required to define causality and establish a role for systemic immune system-dependent factors and pro-inflammatory processes in KC development or progression.
Collapse
|
8
|
Dethloff F, Vargas F, Elijah E, Quinn R, Park DI, Herzog DP, Müller MB, Gentry EC, Knight R, Gonzalez A, Dorrestein PC, Turck CW. Paroxetine Administration Affects Microbiota and Bile Acid Levels in Mice. Front Psychiatry 2020; 11:518. [PMID: 32581888 PMCID: PMC7287167 DOI: 10.3389/fpsyt.2020.00518] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 05/20/2020] [Indexed: 12/12/2022] Open
Abstract
Recent interest in the role of microbiota in health and disease has implicated gut microbiota dysbiosis in psychiatric disorders including major depressive disorder. Several antidepressant drugs that belong to the class of selective serotonin reuptake inhibitors have been found to display antimicrobial activities. In fact, one of the first antidepressants discovered serendipitously in the 1950s, the monoamine-oxidase inhibitor Iproniazid, was a drug used for the treatment of tuberculosis. In the current study we chronically treated DBA/2J mice for 2 weeks with paroxetine, a selective serotonin reuptake inhibitor, and collected fecal pellets as a proxy for the gut microbiota from the animals after 7 and 14 days. Behavioral testing with the forced swim test revealed significant differences between paroxetine- and vehicle-treated mice. Untargeted mass spectrometry and 16S rRNA profiling of fecal pellet extracts showed several primary and secondary bile acid level, and microbiota alpha diversity differences, respectively between paroxetine- and vehicle-treated mice, suggesting that microbiota functions are altered by the drug. In addition to their lipid absorbing activities bile acids have important signaling activities and have been associated with gastrointestinal diseases and colorectal cancer. Antidepressant drugs like paroxetine should therefore be used with caution to prevent undesirable side effects.
Collapse
Affiliation(s)
- Frederik Dethloff
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
| | - Fernando Vargas
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA , United States
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, United States
- Division of Biological Science, University of California, San Diego, La Jolla, CA, United States
| | - Emmanuel Elijah
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA , United States
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, United States
| | - Robert Quinn
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA , United States
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, United States
| | - Dong Ik Park
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
| | - David P. Herzog
- Laboratory of Translational Psychiatry, Department of Psychiatry and Psychotherapy & Focus Program Translational Neuroscience, Johannes Gutenberg University Medical Center, Mainz, Germany
| | - Marianne B. Müller
- Laboratory of Translational Psychiatry, Department of Psychiatry and Psychotherapy & Focus Program Translational Neuroscience, Johannes Gutenberg University Medical Center, Mainz, Germany
| | - Emily C. Gentry
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA , United States
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, United States
| | - Rob Knight
- Department of Pediatrics, Bioengineering and Computer Science and Engineering, and Center for Microbiome Innovation, University of California, San Diego, La Jolla, CA, United States
| | - Antonio Gonzalez
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, United States
| | - Pieter C. Dorrestein
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA , United States
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, United States
| | - Christoph W. Turck
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
| |
Collapse
|
9
|
Wang W, Wang T, Bai S, Chen Z, Qi X, Xie P. Dl-3-n-butylphthalide attenuates mouse behavioral deficits to chronic social defeat stress by regulating energy metabolism via AKT/CREB signaling pathway. Transl Psychiatry 2020; 10:49. [PMID: 32066705 PMCID: PMC7026059 DOI: 10.1038/s41398-020-0731-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 01/03/2020] [Accepted: 01/13/2020] [Indexed: 12/27/2022] Open
Abstract
Major depressive disorder (MDD) is a severe mental disorder associated with high rates of morbidity and mortality. Current first-line pharmacotherapies for MDD are based on enhancement of monoaminergic neurotransmission, but these antidepressants are still insufficient and produce significant side-effects. Consequently, the development of novel antidepressants and therapeutic targets is desired. Dl-3-n-butylphthalide (NBP) is a compound with proven efficacy in treating ischemic stroke, yet its therapeutic effects and mechanisms for depression remain unexplored. The aim of this study was to investigate the effect of NBP in a chronic social defeat stress model of depression and its underlying molecular mechanisms. Here, we examined depression-related behavior and performed a targeted metabolomics analysis. Real-time quantitative polymerase chain reaction and western blotting were used to examine key genes and proteins involved in energy metabolism and the AKT/cAMP response element-binding protein (CREB) signaling pathway. Our results reveal NBP attenuates stress-induced social deficits, anxiety-like behavior and despair behavior, and alters metabolite levels of glycolysis and tricarboxylic acid (TCA) cycle components. NBP affected gene expression of key enzymes of the TCA cycle, as well as protein expression of p-AKT and p-CREB. Our findings provide the first evidence showing that NBP can attenuate stress-induced behavioral deficits by modulating energy metabolism by regulating activation of the AKT/CREB signaling pathway.
Collapse
Affiliation(s)
- Wei Wang
- grid.452206.7NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China ,0000 0000 8653 0555grid.203458.8Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, China ,grid.452206.7Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ting Wang
- grid.452206.7NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China ,0000 0000 8653 0555grid.203458.8Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, China ,0000 0000 8653 0555grid.203458.8Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Shunjie Bai
- grid.452206.7NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China ,0000 0000 8653 0555grid.203458.8Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, China ,grid.452206.7Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhi Chen
- grid.452206.7NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China ,0000 0000 8653 0555grid.203458.8Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, China
| | - Xunzhong Qi
- grid.452206.7NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China ,0000 0000 8653 0555grid.203458.8Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, China
| | - Peng Xie
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China. .,Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, China. .,Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China. .,Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, China. .,Chongqing Key Laboratory of Neurobiology, Chongqing, China. .,Chongqing Key Laboratory of Cerebrovascular Disease Research, Chongqing, China.
| |
Collapse
|
10
|
Zygmunt M, Piechota M, Rodriguez Parkitna J, Korostyński M. Decoding the transcriptional programs activated by psychotropic drugs in the brain. GENES BRAIN AND BEHAVIOR 2018; 18:e12511. [PMID: 30084543 DOI: 10.1111/gbb.12511] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 07/25/2018] [Accepted: 08/03/2018] [Indexed: 01/01/2023]
Abstract
Analysis of drug-induced gene expression in the brain has long held the promise of revealing the molecular mechanisms of drug actions as well as predicting their long-term clinical efficacy. However, despite some successes, this promise has yet to be fulfilled. Here, we present an overview of the current state of understanding of drug-induced gene expression in the brain and consider the obstacles to achieving a robust prediction of the properties of psychoactive compounds based on gene expression profiles. We begin with a comprehensive overview of the mechanisms controlling drug-inducible transcription and the complexity resulting from expression of noncoding RNAs and alternative gene isoforms. Particular interest is placed on studies that examine the associations within drug classes with regard to the effects on gene transcription, alterations in cell signaling and neuropharmacological drug properties. While the ability of gene expression signatures to distinguish specific clinical classes of psychotropic and addictive drugs remains unclear, some reports show that under specific constraints, drug properties can be predicted based on gene expression. Such signatures offer a simple and effective way to classify psychotropic drugs and screen novel psychoactive compounds. Finally, we note that the amount of data regarding molecular programs activated in the brain by drug treatment has grown exponentially in recent years and that future advances may therefore come in large part from integrating the currently available high-throughput data sets.
Collapse
Affiliation(s)
- Magdalena Zygmunt
- Department of Molecular Neuropharmacology, Institute of Pharmacology of the Polish Academy of Sciences, Krakow, Poland
| | - Marcin Piechota
- Department of Molecular Neuropharmacology, Institute of Pharmacology of the Polish Academy of Sciences, Krakow, Poland
| | - Jan Rodriguez Parkitna
- Department of Molecular Neuropharmacology, Institute of Pharmacology of the Polish Academy of Sciences, Krakow, Poland
| | - Michał Korostyński
- Department of Molecular Neuropharmacology, Institute of Pharmacology of the Polish Academy of Sciences, Krakow, Poland
| |
Collapse
|
11
|
Blood plasma/IgG N-glycome biosignatures associated with major depressive disorder symptom severity and the antidepressant response. Sci Rep 2018; 8:179. [PMID: 29317657 PMCID: PMC5760622 DOI: 10.1038/s41598-017-17500-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 11/27/2017] [Indexed: 12/14/2022] Open
Abstract
While N-linked glycosylation has been extensively studied in the context of inflammatory and metabolic disorders, its relationship with major depressive disorder (MDD) and antidepressant treatment response has not been investigated. In our exploratory study, we analysed N-glycan profiles in blood plasma samples collected from MDD patients (n = 18) and found gender-dependent correlations with severity of depressive symptoms prior to initiating antidepressant treatment. In addition, several N-glycosylation traits showed gender-dependent associations with clinical antidepressant response. Follow up proteomics analysis in peripheral blood mononuclear cells (PBMCs) collected from MDD patients (n = 20) identified baseline and post-antidepressant treatment pathway differences between responder and non-responder patients. Reactome data analysis further delineated potential biological reaction differences between responder and non-responder patients. Our preliminary results suggest that specific glycosylation traits are associated with depressive symptom severity and antidepressant response and may be of use as biomarkers.
Collapse
|
12
|
Weckmann K, Deery MJ, Howard JA, Feret R, Asara JM, Dethloff F, Filiou MD, Iannace J, Labermaier C, Maccarrone G, Webhofer C, Teplytska L, Lilley K, Müller MB, Turck CW. Ketamine's antidepressant effect is mediated by energy metabolism and antioxidant defense system. Sci Rep 2017; 7:15788. [PMID: 29150633 PMCID: PMC5694011 DOI: 10.1038/s41598-017-16183-x] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 11/08/2017] [Indexed: 01/23/2023] Open
Abstract
Fewer than 50% of all patients with major depressive disorder (MDD) treated with currently available antidepressants (ADs) show full remission. Moreover, about one third of the patients suffering from MDD does not respond to conventional ADs and develop treatment-resistant depression (TRD). Ketamine, a non-competitive, voltage-dependent N-Methyl-D-aspartate receptor (NMDAR) antagonist, has been shown to have a rapid antidepressant effect, especially in patients suffering from TRD. Hippocampi of ketamine-treated mice were analysed by metabolome and proteome profiling to delineate ketamine treatment-affected molecular pathways and biosignatures. Our data implicate mitochondrial energy metabolism and the antioxidant defense system as downstream effectors of the ketamine response. Specifically, ketamine tended to downregulate the adenosine triphosphate (ATP)/adenosine diphosphate (ADP) metabolite ratio which strongly correlated with forced swim test (FST) floating time. Furthermore, we found increased levels of enzymes that are part of the ‘oxidative phosphorylation’ (OXPHOS) pathway. Our study also suggests that ketamine causes less protein damage by rapidly decreasing reactive oxygen species (ROS) production and lend further support to the hypothesis that mitochondria have a critical role for mediating antidepressant action including the rapid ketamine response.
Collapse
Affiliation(s)
- Katja Weckmann
- Max Planck Institute of Psychiatry, Department of Translational Research in Psychiatry, Munich, Germany.,Institute of Pathobiochemistry, Johannes Gutenberg University, Medical School, Mainz, Germany
| | - Michael J Deery
- Cambridge Centre for Proteomics, Cambridge System Biology Centre, University of Cambridge, Cambridge, UK
| | - Julie A Howard
- Cambridge Centre for Proteomics, Cambridge System Biology Centre, University of Cambridge, Cambridge, UK
| | - Renata Feret
- Cambridge Centre for Proteomics, Cambridge System Biology Centre, University of Cambridge, Cambridge, UK
| | - John M Asara
- Division of Signal Transduction, Beth Israel Deaconess Medical Center and Department of Medicine, Harvard Medical School, Boston, USA
| | - Frederik Dethloff
- Max Planck Institute of Psychiatry, Department of Translational Research in Psychiatry, Munich, Germany
| | - Michaela D Filiou
- Max Planck Institute of Psychiatry, Department of Stress Neurobiology and Neurogenetics, Munich, Germany
| | - Jamie Iannace
- Max Planck Institute of Psychiatry, Department of Translational Research in Psychiatry, Munich, Germany
| | - Christiana Labermaier
- Max Planck Institute of Psychiatry, Department of Translational Research in Psychiatry, Munich, Germany
| | - Giuseppina Maccarrone
- Max Planck Institute of Psychiatry, Department of Translational Research in Psychiatry, Munich, Germany
| | - Christian Webhofer
- Max Planck Institute of Psychiatry, Department of Translational Research in Psychiatry, Munich, Germany
| | - Larysa Teplytska
- Max Planck Institute of Psychiatry, Department of Translational Research in Psychiatry, Munich, Germany
| | - Kathryn Lilley
- Cambridge Centre for Proteomics, Cambridge System Biology Centre, University of Cambridge, Cambridge, UK
| | - Marianne B Müller
- Experimental Psychiatry, Department of Psychiatry and Psychotherapy & Focus Program Translational Neuroscience, Johannes Gutenberg University Medical Center, Mainz, Germany.
| | - Christoph W Turck
- Max Planck Institute of Psychiatry, Department of Translational Research in Psychiatry, Munich, Germany.
| |
Collapse
|
13
|
Park DI, Dournes C, Sillaber I, Ising M, Asara JM, Webhofer C, Filiou MD, Müller MB, Turck CW. Delineation of molecular pathway activities of the chronic antidepressant treatment response suggests important roles for glutamatergic and ubiquitin-proteasome systems. Transl Psychiatry 2017; 7:e1078. [PMID: 28375208 PMCID: PMC5416684 DOI: 10.1038/tp.2017.39] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 12/28/2016] [Accepted: 01/17/2017] [Indexed: 12/11/2022] Open
Abstract
The aim of this study was to identify molecular pathways related to antidepressant response. We administered paroxetine to the DBA/2J mice for 28 days. Following the treatment, the mice were grouped into responders or non-responders depending on the time they spent immobile in the forced swim test. Hippocampal metabolomics and proteomics analyses revealed that chronic paroxetine treatment affects glutamate-related metabolite and protein levels differentially in the two groups. We found significant differences in the expression of N-methyl-d-aspartate receptor and neuronal nitric oxide synthase proteins between the two groups, without any significant alterations in the respective transcript levels. In addition, we found that chronic paroxetine treatment altered the levels of proteins associated with the ubiquitin-proteasome system (UPS). The soluble guanylate cyclase-β1, proteasome subunit α type-2 and ubiquitination levels were also affected in peripheral blood mononuclear cells from antidepressant responder and non-responder patients suffering from major depressive disorder. We submit that the glutamatergic system and UPS have a crucial role in the antidepressant treatment response in both mice and humans.
Collapse
Affiliation(s)
- D I Park
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
| | - C Dournes
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | | | - M Ising
- Department of Clinical Research, Max Planck Institute of Psychiatry, Munich, Germany
| | - J M Asara
- Division of Signal Transduction, Beth Israel Deaconess Medical Center, Boston, MA, USA,Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - C Webhofer
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
| | - M D Filiou
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - M B Müller
- Division of Experimental Psychiatry, Focus Program Translational Neuroscience, Department of Psychiatry and Psychotherapy, Johannes Gutenberg University Medical Center, Mainz, Germany,Division of Experimental Psychiatry, Focus Program Translational Neuroscience, Department of Psychiatry and Psychotherapy, Johannes Gutenberg University Medical Center, 55128 Mainz, Germany or , Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Kraepelinstrasse 2-10, 80804 Munich, Germany. E-mail: or
| | - C W Turck
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany,Division of Experimental Psychiatry, Focus Program Translational Neuroscience, Department of Psychiatry and Psychotherapy, Johannes Gutenberg University Medical Center, 55128 Mainz, Germany or , Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Kraepelinstrasse 2-10, 80804 Munich, Germany. E-mail: or
| |
Collapse
|
14
|
Priyadarsini S, Sarker-Nag A, Rowsey TG, Ma JX, Karamichos D. Establishment of a 3D In Vitro Model to Accelerate the Development of Human Therapies against Corneal Diabetes. PLoS One 2016; 11:e0168845. [PMID: 28005998 PMCID: PMC5179241 DOI: 10.1371/journal.pone.0168845] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 12/07/2016] [Indexed: 11/18/2022] Open
Abstract
PURPOSE To establish an in vitro model that would mirror the in vivo corneal stromal environment in diabetes (DM) patients. METHODS Human corneal fibroblasts from Healthy (HCFs), Type 1DM (T1DM) and Type 2DM (T2DM) donors were isolated and cultured for 4 weeks with Vitamin C stimulation in order to allow for extracellular matrix (ECM) secretion and assembly. RESULTS Our data indicated altered cellular morphology, increased cellular migration, increased ECM assembly, and severe mitochondrial damage in both T1DM and T2DMs when compared to HCFs. Furthermore, we found significant downregulation of Collagen I and Collagen V expression in both T1DM and T2DMs. Furthermore, a significant up regulation of fibrotic markers was seen, including α-smooth muscle actin in T2DM and Collagen III in both T1DM and T2DMs. Metabolic analysis suggested impaired Glycolysis and Tricarboxylic acid cycle (TCA) pathway. CONCLUSION DM has significant effects on physiological and clinical aspects of the human cornea. The benefits in developing and fully characterizing our 3D in vitro model are enormous and might provide clues for the development of novel therapeutics.
Collapse
Affiliation(s)
- Shrestha Priyadarsini
- Department of Ophthalmology/Dean McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - Akhee Sarker-Nag
- Department of Ophthalmology/Dean McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - Tyler G. Rowsey
- Department of Biology and Chemistry, East Central University, Ada, Oklahoma, United States of America
| | - Jian-Xing Ma
- Department of Physiology Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - Dimitrios Karamichos
- Department of Ophthalmology/Dean McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
- * E-mail:
| |
Collapse
|
15
|
Park DI, Dournes C, Sillaber I, Uhr M, Asara JM, Gassen NC, Rein T, Ising M, Webhofer C, Filiou MD, Müller MB, Turck CW. Purine and pyrimidine metabolism: Convergent evidence on chronic antidepressant treatment response in mice and humans. Sci Rep 2016; 6:35317. [PMID: 27731396 PMCID: PMC5059694 DOI: 10.1038/srep35317] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 08/24/2016] [Indexed: 12/13/2022] Open
Abstract
Selective Serotonin Reuptake Inhibitors (SSRIs) are commonly used drugs for the treatment of psychiatric diseases including major depressive disorder (MDD). For unknown reasons a substantial number of patients do not show any improvement during or after SSRI treatment. We treated DBA/2J mice for 28 days with paroxetine and assessed their behavioral response with the forced swim test (FST). Paroxetine-treated long-time floating (PLF) and paroxetine-treated short-time floating (PSF) groups were stratified as proxies for drug non-responder and responder mice, respectively. Proteomics and metabolomics profiles of PLF and PSF groups were acquired for the hippocampus and plasma to identify molecular pathways and biosignatures that stratify paroxetine-treated mouse sub-groups. The critical role of purine and pyrimidine metabolisms for chronic paroxetine treatment response in the mouse was further corroborated by pathway protein expression differences in both mice and patients that underwent chronic antidepressant treatment. The integrated -omics data indicate purine and pyrimidine metabolism pathway activity differences between PLF and PSF mice. Furthermore, the pathway protein levels in peripheral specimens strongly correlated with the antidepressant treatment response in patients. Our results suggest that chronic SSRI treatment differentially affects purine and pyrimidine metabolisms, which may explain the heterogeneous antidepressant treatment response and represents a potential biosignature.
Collapse
Affiliation(s)
- Dong Ik Park
- Max Planck Institute of Psychiatry, Department of Translational Research in Psychiatry, 80804, Munich, Germany
| | - Carine Dournes
- Max Planck Institute of Psychiatry, Department of Stress Neurobiology and Neurogenetics, 80804 Munich, Germany
| | | | - Manfred Uhr
- Max Planck Institute of Psychiatry, Department of Clinical Research, 80804 Munich, Germany
| | - John M Asara
- Division of Signal Transduction, Beth Israel Deaconess Medical Center, and Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Nils C Gassen
- Max Planck Institute of Psychiatry, Department of Stress Neurobiology and Neurogenetics, 80804 Munich, Germany
| | - Theo Rein
- Max Planck Institute of Psychiatry, Department of Stress Neurobiology and Neurogenetics, 80804 Munich, Germany
| | - Marcus Ising
- Max Planck Institute of Psychiatry, Department of Clinical Research, 80804 Munich, Germany
| | - Christian Webhofer
- Max Planck Institute of Psychiatry, Department of Translational Research in Psychiatry, 80804, Munich, Germany
| | - Michaela D Filiou
- Max Planck Institute of Psychiatry, Department of Stress Neurobiology and Neurogenetics, 80804 Munich, Germany
| | - Marianne B Müller
- Max Planck Institute of Psychiatry, Department of Translational Research in Psychiatry, 80804, Munich, Germany.,Experimental Psychiatry, Department of Psychiatry and Psychotherapy &Focus Program Translational Neuroscience, Johannes Gutenberg University Medical Center, 55128 Mainz, Germany
| | - Christoph W Turck
- Max Planck Institute of Psychiatry, Department of Translational Research in Psychiatry, 80804, Munich, Germany
| |
Collapse
|
16
|
Priyadarsini S, McKay TB, Sarker-Nag A, Allegood J, Chalfant C, Ma JX, Karamichos D. Complete metabolome and lipidome analysis reveals novel biomarkers in the human diabetic corneal stroma. Exp Eye Res 2016; 153:90-100. [PMID: 27742548 DOI: 10.1016/j.exer.2016.10.010] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 10/03/2016] [Accepted: 10/07/2016] [Indexed: 01/05/2023]
Abstract
Prolonged hyperglycemia during diabetes mellitus can cause severe ophthalmic complications affecting both the anterior and posterior ocular segments leading to impaired vision or blindness. Diabetes-induced corneal pathologies are associated with decreased wound healing capacity, corneal edema, and altered epithelial basement membrane. The mechanism by which diabetes modulates structure and function within the corneal stroma are unknown. In our study, we characterized the effects of diabetes on extracellular matrix, lipid transport, and cellular metabolism by defining the entire metabolome and lipidome of Type 1 and Type 2 human diabetic corneal stroma. Significant increases in Collagen I and III were found in diabetic corneas suggesting that diabetes promotes defects in matrix structure leading to scarring. Furthermore, increased lipid content, including sphingosine-1-phosphate and dihydrosphingosine, in diabetic corneas compared to healthy controls were measured suggesting altered lipid retention. Metabolomics analysis identified elevated tryptophan metabolites, independent of glucose metabolism, which correlated with upregulation of the Kynurenine pathway in diabetic corneas. We also found significant upregulation of novel biomarkers aminoadipic acid, D,L-pipecolic acid, and dihydroorotate. Our study links aberrant tryptophan metabolism to end-stage pathologies associated with diabetes indicating the potential of the Kynurenine pathway as a therapeutic target for inhibiting diabetes-associated defects in the eye.
Collapse
Affiliation(s)
- Shrestha Priyadarsini
- Department of Ophthalmology/Dean McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Tina B McKay
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Akhee Sarker-Nag
- Department of Ophthalmology/Dean McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Jeremy Allegood
- Hunter Holmes McGuire Veterans Administration Medical Center, Richmond, VA, USA; Department of Biochemistry and Molecular Biology, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA; The VCU Johnson Center, Richmond, VA, USA; The VCU Massey Cancer Center, Richmond, VA, USA
| | - Charles Chalfant
- Hunter Holmes McGuire Veterans Administration Medical Center, Richmond, VA, USA; Department of Biochemistry and Molecular Biology, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA; The VCU Johnson Center, Richmond, VA, USA; The VCU Massey Cancer Center, Richmond, VA, USA
| | - Jian-Xing Ma
- Department of Physiology Harold Hamm Diabetes Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Dimitrios Karamichos
- Department of Ophthalmology/Dean McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA; Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA.
| |
Collapse
|
17
|
Nussbaumer M, Asara JM, Teplytska L, Murphy MP, Logan A, Turck CW, Filiou MD. Selective Mitochondrial Targeting Exerts Anxiolytic Effects In Vivo. Neuropsychopharmacology 2016; 41:1751-8. [PMID: 26567514 PMCID: PMC4869042 DOI: 10.1038/npp.2015.341] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 10/22/2015] [Accepted: 11/08/2015] [Indexed: 12/31/2022]
Abstract
Current treatment strategies for anxiety disorders are predominantly symptom-based. However, a third of anxiety patients remain unresponsive to anxiolytics highlighting the need for more effective, mechanism-based therapeutic approaches. We have previously compared high vs low anxiety mice and identified changes in mitochondrial pathways, including oxidative phosphorylation and oxidative stress. In this work, we show that selective pharmacological targeting of these mitochondrial pathways exerts anxiolytic effects in vivo. We treated high anxiety-related behavior (HAB) mice with MitoQ, an antioxidant that selectively targets mitochondria. MitoQ administration resulted in decreased anxiety-related behavior in HAB mice. This anxiolytic effect was specific for high anxiety as MitoQ treatment did not affect the anxiety phenotype of C57BL/6N and DBA/2J mouse strains. We furthermore investigated the molecular underpinnings of the MitoQ-driven anxiolytic effect and found that MitoQ treatment alters the brain metabolome and that the response to MitoQ treatment is characterized by distinct molecular signatures. These results indicate that a mechanism-driven approach based on selective mitochondrial targeting has the potential to attenuate the high anxiety phenotype in vivo, thus paving the way for translational implementation as long-term MitoQ administration is well-tolerated with no reported side effects in mice and humans.
Collapse
Affiliation(s)
| | - John M Asara
- Division of Signal Transduction, Beth Israel Deaconess Medical Center, Department of Medicine, Harvard Medical School, Boston, MA, USA
| | | | | | | | | | - Michaela D Filiou
- Max Planck Institute of Psychiatry, Munich, Germany,Proteomics and Biomarkers, Max Planck Institute of Psychiatry, Kraepelinstr. 2, Munich 80804, Germany, Tel: +49 89 30622 506, Fax: +49 89 30622 200, E-mail:
| |
Collapse
|
18
|
Kao CY, He Z, Henes K, Asara JM, Webhofer C, Filiou MD, Khaitovich P, Wotjak CT, Turck CW. Fluoxetine Treatment Rescues Energy Metabolism Pathway Alterations in a Posttraumatic Stress Disorder Mouse Model. MOLECULAR NEUROPSYCHIATRY 2016; 2:46-59. [PMID: 27606320 DOI: 10.1159/000445377] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 03/11/2016] [Indexed: 12/13/2022]
Abstract
Posttraumatic stress disorder (PTSD) is a prevalent psychiatric disorder. Several studies have attempted to characterize molecular alterations associated with PTSD, but most findings were limited to the investigation of specific cellular markers in the periphery or defined brain regions. In the current study, we aimed to unravel affected molecular pathways/mechanisms in the fear circuitry associated with PTSD. We interrogated a foot shock-induced PTSD mouse model by integrating proteomics and metabolomics profiling data. Alterations at the proteome level were analyzed using in vivo (15)N metabolic labeling combined with mass spectrometry in the prelimbic cortex (PrL), anterior cingulate cortex (ACC), basolateral amygdala, central nucleus of the amygdala and CA1 of the hippocampus between shocked and nonshocked (control) mice, with and without fluoxetine treatment. In silico pathway analyses revealed an upregulation of the citric acid cycle pathway in PrL, and downregulation in ACC and nucleus accumbens (NAc). Chronic fluoxetine treatment prevented decreased citric acid cycle activity in NAc and ACC and ameliorated conditioned fear response in shocked mice. Our results shed light on the role of energy metabolism in PTSD pathogenesis and suggest potential therapy through mitochondrial targeting.
Collapse
Affiliation(s)
- Chi-Ya Kao
- Departments of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany; Graduate School of Systemic Neurosciences, Ludwig Maximilians University Munich, Planegg-Martinsried, Germany
| | - Zhisong He
- CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, PR China
| | - Kathrin Henes
- Departments of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - John M Asara
- Division of Signal Transduction, Beth Israel Deaconess Medical Center, and Department of Medicine, Harvard Medical School, Boston, Mass., USA
| | - Christian Webhofer
- Departments of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
| | - Michaela D Filiou
- Departments of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
| | - Philipp Khaitovich
- CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, PR China
| | - Carsten T Wotjak
- Departments of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany; Graduate School of Systemic Neurosciences, Ludwig Maximilians University Munich, Planegg-Martinsried, Germany
| | - Christoph W Turck
- Departments of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany; Graduate School of Systemic Neurosciences, Ludwig Maximilians University Munich, Planegg-Martinsried, Germany
| |
Collapse
|
19
|
Shao WH, Chen JJ, Fan SH, Lei Y, Xu HB, Zhou J, Cheng PF, Yang YT, Rao CL, Wu B, Liu HP, Xie P. Combined Metabolomics and Proteomics Analysis of Major Depression in an Animal Model: Perturbed Energy Metabolism in the Chronic Mild Stressed Rat Cerebellum. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2016; 19:383-92. [PMID: 26134254 DOI: 10.1089/omi.2014.0164] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Major depressive disorder (MDD) is a highly prevalent, debilitating mental illness of importance for global health. However, its molecular pathophysiology remains poorly understood. Combined proteomics and metabolomics approaches should provide a comprehensive understanding of MDD's etiology. The present study reports novel "-omics" insights from a rodent model of MDD. Cerebellar samples from chronic mild stressed (CMS)-treated depressed rats and controls were compared with a focus on the differentially expressed proteins and metabolites using isobaric tags for relative and absolute quantitation (iTRAQ)-based proteomics and gas chromotography/mass spectrometry (GC-MS) metabolomics techniques, respectively. The combined analyses found significant alterations associated with cerebellar energy metabolism, as indicated by (1) abnormal amino acid metabolism accompanied by corresponding metabolic enzymatic alterations and disturbed protein turnover, (2) increased glycolytic and tricarboxylic acid (TCA) cycle enzyme levels paralleled by changes in the concentrations of associated metabolites, and (3) perturbation of ATP biosynthesis through adenosine accompanied by perturbation of the mitochondrial respiratory chain. To the best of our knowledge, this study is the first to integrate proteomics and metabolomics analyses to examine the pathophysiological mechanism(s) underlying MDD in a CMS rodent model of depression. These results can offer important insights into the pathogenesis of MDD.
Collapse
Affiliation(s)
- Wei-hua Shao
- 1 Department of Respiratory Medicine, First Affiliated Hospital of Chongqing Medical University , Chongqing, China .,3 Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University , Chongqing, China .,4 Chongqing Key Laboratory of Neurobiology , Chongqing, China
| | - Jian-jun Chen
- 3 Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University , Chongqing, China .,4 Chongqing Key Laboratory of Neurobiology , Chongqing, China
| | - Song-hua Fan
- 2 Department of Neurology, First Affiliated Hospital of Chongqing Medical University , Chongqing, China .,3 Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University , Chongqing, China .,4 Chongqing Key Laboratory of Neurobiology , Chongqing, China
| | - Yang Lei
- 2 Department of Neurology, First Affiliated Hospital of Chongqing Medical University , Chongqing, China .,3 Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University , Chongqing, China .,4 Chongqing Key Laboratory of Neurobiology , Chongqing, China
| | - Hong-bo Xu
- 2 Department of Neurology, First Affiliated Hospital of Chongqing Medical University , Chongqing, China .,3 Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University , Chongqing, China .,4 Chongqing Key Laboratory of Neurobiology , Chongqing, China
| | - Jian Zhou
- 3 Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University , Chongqing, China .,4 Chongqing Key Laboratory of Neurobiology , Chongqing, China
| | - Peng-fei Cheng
- 2 Department of Neurology, First Affiliated Hospital of Chongqing Medical University , Chongqing, China .,3 Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University , Chongqing, China .,4 Chongqing Key Laboratory of Neurobiology , Chongqing, China
| | - Yong-tao Yang
- 2 Department of Neurology, First Affiliated Hospital of Chongqing Medical University , Chongqing, China .,3 Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University , Chongqing, China .,4 Chongqing Key Laboratory of Neurobiology , Chongqing, China
| | - Cheng-long Rao
- 3 Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University , Chongqing, China .,4 Chongqing Key Laboratory of Neurobiology , Chongqing, China
| | - Bo Wu
- 3 Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University , Chongqing, China .,4 Chongqing Key Laboratory of Neurobiology , Chongqing, China
| | - Hai-peng Liu
- 2 Department of Neurology, First Affiliated Hospital of Chongqing Medical University , Chongqing, China .,3 Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University , Chongqing, China .,4 Chongqing Key Laboratory of Neurobiology , Chongqing, China
| | - Peng Xie
- 2 Department of Neurology, First Affiliated Hospital of Chongqing Medical University , Chongqing, China .,3 Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University , Chongqing, China .,4 Chongqing Key Laboratory of Neurobiology , Chongqing, China
| |
Collapse
|
20
|
Breitkopf SB, Yuan M, Helenius KP, Lyssiotis CA, Asara JM. Triomics Analysis of Imatinib-Treated Myeloma Cells Connects Kinase Inhibition to RNA Processing and Decreased Lipid Biosynthesis. Anal Chem 2015; 87:10995-1006. [PMID: 26434776 PMCID: PMC5585869 DOI: 10.1021/acs.analchem.5b03040] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The combination of metabolomics, lipidomics, and phosphoproteomics that incorporates triple stable isotope labeling by amino acids in cell culture (SILAC) protein labeling, as well as (13)C in vivo metabolite labeling, was demonstrated on BCR-ABL-positive H929 multiple myeloma cells. From 11 880 phosphorylation sites, we confirm that H929 cells are primarily signaling through the BCR-ABL-ERK pathway, and we show that imatinib treatment not only downregulates phosphosites in this pathway but also upregulates phosphosites on proteins involved in RNA expression. Metabolomics analyses reveal that BCR-ABL-ERK signaling in H929 cells drives the pentose phosphate pathway (PPP) and RNA biosynthesis, where pathway inhibition via imatinib results in marked PPP impairment and an accumulation of RNA nucleotides and negative regulation of mRNA. Lipidomics data also show an overall reduction in lipid biosynthesis and fatty acid incorporation with a significant decrease in lysophospholipids. RNA immunoprecipitation studies confirm that RNA degradation is inhibited with short imatinib treatment and transcription is inhibited upon long imatinib treatment, validating the triomics results. These data show the utility of combining mass spectrometry-based "-omics" technologies and reveals that kinase inhibitors may not only downregulate phosphorylation of their targets but also induce metabolic events via increased phosphorylation of other cellular components.
Collapse
Affiliation(s)
- Susanne B. Breitkopf
- Division of Signal Transduction, Beth Israel Deaconess Medical Center, Boston, Massachusetts 02115, United States
- Department of Medicine, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Min Yuan
- Division of Signal Transduction, Beth Israel Deaconess Medical Center, Boston, Massachusetts 02115, United States
| | - Katja P. Helenius
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Costas A. Lyssiotis
- Department of Molecular and Integrative Physiology and Division of Gastroenterology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - John M. Asara
- Division of Signal Transduction, Beth Israel Deaconess Medical Center, Boston, Massachusetts 02115, United States
- Department of Medicine, Harvard Medical School, Boston, Massachusetts 02115, United States
| |
Collapse
|
21
|
Bergman N, Bergquist J. Recent developments in proteomic methods and disease biomarkers. Analyst 2015; 139:3836-51. [PMID: 24975697 DOI: 10.1039/c4an00627e] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Proteomic methodologies for identification and analysis of biomarkers have gained more attention during recent years and have evolved rapidly. Identification and detection of disease biomarkers are important to foresee outbreaks of certain diseases thereby avoiding surgery and other invasive and expensive medical treatments for patients. Thus, more research into discovering new biomarkers and new methods for faster and more accurate detection is needed. It is often difficult to detect and measure biomarkers because of their low concentrations and the complexity of their respective matrices. Therefore it is hard to find and validate methods for accurate screening methods suitable for clinical use. The most recent developments during the last three years and also some historical considerations of proteomic methodologies for identification and validation of disease biomarkers are presented in this review.
Collapse
Affiliation(s)
- Nina Bergman
- Analytical Chemistry, BMC, Department of Chemistry, Uppsala University, Sweden.
| | | |
Collapse
|
22
|
Turck CW, Filiou MD. What Have Mass Spectrometry-Based Proteomics and Metabolomics (Not) Taught Us about Psychiatric Disorders? MOLECULAR NEUROPSYCHIATRY 2015; 1:69-75. [PMID: 27602358 PMCID: PMC4996030 DOI: 10.1159/000381902] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 03/25/2015] [Indexed: 12/16/2022]
Abstract
Understanding the molecular causes and finding appropriate therapies for psychiatric disorders are challenging tasks for research; -omics technologies are used to elucidate the molecular mechanisms underlying brain dysfunction in a hypothesis-free manner. In this review, we will focus on mass spectrometry-based proteomics and metabolomics and address how these approaches have contributed to our understanding of psychiatric disorders. Specifically, we will discuss what we have learned from mass spectrometry-based proteomics and metabolomics studies in rodent models and human cohorts, outline current limitations and discuss the potential of these methods for future applications in psychiatry.
Collapse
|
23
|
Bai S, Zhou C, Cheng P, Fu Y, Fang L, Huang W, Yu J, Shao W, Wang X, Liu M, Zhou J, Xie P. 1H NMR-based metabolic profiling reveals the effects of fluoxetine on lipid and amino acid metabolism in astrocytes. Int J Mol Sci 2015; 16:8490-504. [PMID: 25884334 PMCID: PMC4425092 DOI: 10.3390/ijms16048490] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 04/02/2015] [Accepted: 04/08/2015] [Indexed: 01/23/2023] Open
Abstract
Fluoxetine, a selective serotonin reuptake inhibitor (SSRI), is a prescribed and effective antidepressant and generally used for the treatment of depression. Previous studies have revealed that the antidepressant mechanism of fluoxetine was related to astrocytes. However, the therapeutic mechanism underlying its mode of action in astrocytes remains largely unclear. In this study, primary astrocytes were exposed to 10 µM fluoxetine; 24 h post-treatment, a high-resolution proton nuclear magnetic resonance (1H NMR)-based metabolomic approach coupled with multivariate statistical analysis was used to characterize the metabolic variations of intracellular metabolites. The orthogonal partial least-squares discriminant analysis (OPLS-DA) score plots of the spectra demonstrated that the fluoxetine-treated astrocytes were significantly distinguished from the untreated controls. In total, 17 differential metabolites were identified to discriminate the two groups. These key metabolites were mainly involved in lipids, lipid metabolism-related molecules and amino acids. This is the first study to indicate that fluoxetine may exert antidepressant action by regulating the astrocyte’s lipid and amino acid metabolism. These findings should aid our understanding of the biological mechanisms underlying fluoxetine therapy.
Collapse
Affiliation(s)
- Shunjie Bai
- Department of Neurology, Yongchuan Hospital, Chongqing Medical University, Chongqing 402460, China.
- Chongqing Key Laboratory of Neurobiology, Chongqing 400016, China.
- Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing 400016, China.
- Key Laboratory of Laboratory Medical Diagnostics of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China.
| | - Chanjuan Zhou
- Chongqing Key Laboratory of Neurobiology, Chongqing 400016, China.
- Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing 400016, China.
| | - Pengfei Cheng
- Chongqing Key Laboratory of Neurobiology, Chongqing 400016, China.
- Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing 400016, China.
| | - Yuying Fu
- Chongqing Key Laboratory of Neurobiology, Chongqing 400016, China.
- Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing 400016, China.
| | - Liang Fang
- Chongqing Key Laboratory of Neurobiology, Chongqing 400016, China.
- Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing 400016, China.
| | - Wen Huang
- Department of Neurology, Xinqiao Hospital, Third Military Medical University, Chongqing 400016, China.
| | - Jia Yu
- Department of Neurology, Yongchuan Hospital, Chongqing Medical University, Chongqing 402460, China.
- Chongqing Key Laboratory of Neurobiology, Chongqing 400016, China.
- Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing 400016, China.
- Key Laboratory of Laboratory Medical Diagnostics of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China.
| | - Weihua Shao
- Chongqing Key Laboratory of Neurobiology, Chongqing 400016, China.
- Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing 400016, China.
| | - Xinfa Wang
- Chongqing Key Laboratory of Neurobiology, Chongqing 400016, China.
- Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing 400016, China.
| | - Meiling Liu
- Chongqing Key Laboratory of Neurobiology, Chongqing 400016, China.
- Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing 400016, China.
| | - Jingjing Zhou
- Chongqing Key Laboratory of Neurobiology, Chongqing 400016, China.
- Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing 400016, China.
| | - Peng Xie
- Department of Neurology, Yongchuan Hospital, Chongqing Medical University, Chongqing 402460, China.
- Chongqing Key Laboratory of Neurobiology, Chongqing 400016, China.
- Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing 400016, China.
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
24
|
Wagner KV, Hartmann J, Labermaier C, Häusl AS, Zhao G, Harbich D, Schmid B, Wang XD, Santarelli S, Kohl C, Gassen NC, Matosin N, Schieven M, Webhofer C, Turck CW, Lindemann L, Jaschke G, Wettstein JG, Rein T, Müller MB, Schmidt MV. Homer1/mGluR5 activity moderates vulnerability to chronic social stress. Neuropsychopharmacology 2015; 40:1222-33. [PMID: 25409593 PMCID: PMC4367467 DOI: 10.1038/npp.2014.308] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 11/03/2014] [Accepted: 11/04/2014] [Indexed: 12/28/2022]
Abstract
Stress-induced psychiatric disorders, such as depression, have recently been linked to changes in glutamate transmission in the central nervous system. Glutamate signaling is mediated by a range of receptors, including metabotropic glutamate receptors (mGluRs). In particular, mGluR subtype 5 (mGluR5) is highly implicated in stress-induced psychopathology. The major scaffold protein Homer1 critically interacts with mGluR5 and has also been linked to several psychopathologies. Yet, the specific role of Homer1 in this context remains poorly understood. We used chronic social defeat stress as an established animal model of depression and investigated changes in transcription of Homer1a and Homer1b/c isoforms and functional coupling of Homer1 to mGluR5. Next, we investigated the consequences of Homer1 deletion, overexpression of Homer1a, and chronic administration of the mGluR5 inverse agonist CTEP (2-chloro-4-((2,5-dimethyl-1-(4-(trifluoromethoxy)phenyl)-1H-imidazol-4-yl)ethynyl)pyridine) on the effects of chronic stress. In mice exposed to chronic stress, Homer1b/c, but not Homer1a, mRNA was upregulated and, accordingly, Homer1/mGluR5 coupling was disrupted. We found a marked hyperactivity behavior as well as a dysregulated hypothalamic-pituitary-adrenal axis activity in chronically stressed Homer1 knockout (KO) mice. Chronic administration of the selective and orally bioavailable mGluR5 inverse agonist, CTEP, was able to recover behavioral alterations induced by chronic stress, whereas overexpression of Homer1a in the hippocampus led to an increased vulnerability to chronic stress, reflected in an increased physiological response to stress as well as enhanced depression-like behavior. Overall, our results implicate the glutamatergic system in the emergence of stress-induced psychiatric disorders, and support the Homer1/mGluR5 complex as a target for the development of novel antidepressant agents.
Collapse
Affiliation(s)
- Klaus V Wagner
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - Jakob Hartmann
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - Christiana Labermaier
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - Alexander S Häusl
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - Gengjing Zhao
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - Daniela Harbich
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - Bianca Schmid
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - Xiao-Dong Wang
- Department of Neurobiology, Key Laboratory of Medical Neurobiology of Ministry of Health of China, Zhejiang Province Key Laboratory of Neurobiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Sara Santarelli
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - Christine Kohl
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - Nils C Gassen
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - Natalie Matosin
- Faculty of Science, Medicine and Health and Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, Australia,Schizophrenia Research Institute, Sydney NSW, Australia
| | - Marcel Schieven
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - Christian Webhofer
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - Christoph W Turck
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - Lothar Lindemann
- Roche Pharmaceutical Research and Early Development, Neuroscience, Ophthalmology, and Rare Diseases Translational Area (NORD), Basel, Switzerland
| | - Georg Jaschke
- Roche Pharmaceutical Research and Early Development, Discovery Chemistry, Basel, Switzerland
| | - Joseph G Wettstein
- Roche Pharmaceutical Research and Early Development, Neuroscience, Ophthalmology, and Rare Diseases Translational Area (NORD), Basel, Switzerland
| | - Theo Rein
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - Marianne B Müller
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - Mathias V Schmidt
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany,Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Kraepelinstrasse 2-10, 80804 Munich, Germany, Tel: +49 89 30622 519, Fax: +49 89 30622 610, E-mail:
| |
Collapse
|
25
|
Andrews PW, Bharwani A, Lee KR, Fox M, Thomson JA. Is serotonin an upper or a downer? The evolution of the serotonergic system and its role in depression and the antidepressant response. Neurosci Biobehav Rev 2015; 51:164-88. [DOI: 10.1016/j.neubiorev.2015.01.018] [Citation(s) in RCA: 169] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Revised: 01/08/2015] [Accepted: 01/15/2015] [Indexed: 12/17/2022]
|
26
|
Filiou MD, Soukupova M, Rewerts C, Webhofer C, Turck CW, Maccarrone G. Variability assessment of (15)N metabolic labeling-based proteomics workflow in mouse plasma and brain. MOLECULAR BIOSYSTEMS 2015; 11:1536-42. [PMID: 25782008 DOI: 10.1039/c4mb00702f] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
(15)N metabolic labeling-based quantitative proteomics is used for the identification of disease- and phenotype-related alterations in live organisms. The variability of (15)N metabolic labeling proteomics workflows has been assessed in plants and bacteria. However, no study has addressed this topic in mice. We have investigated the repeatability of a quantitative in vivo(15)N metabolic labeling proteomics workflow in mice by assessing LC variability, peptide and protein profiling characteristics and overall (15)N/(14)N protein quantification accuracy in technical replicates of plasma and brain specimens. We furthermore examined how sample preparation affects these parameters in plasma and brain. We found that specimen type (i.e. plasma or brain) influences the variability of the (15)N metabolic labeling workflow in an LC-independent manner.
Collapse
Affiliation(s)
- Michaela D Filiou
- Max Planck Institute of Psychiatry, Kraepelinstr. 2, Munich, 80804, Germany.
| | | | | | | | | | | |
Collapse
|
27
|
Carboni L. The contribution of proteomic studies in humans, animal models, and after antidepressant treatments to investigate the molecular neurobiology of major depression. Proteomics Clin Appl 2015; 9:889-98. [PMID: 25488430 DOI: 10.1002/prca.201400139] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Revised: 11/03/2014] [Accepted: 12/02/2014] [Indexed: 11/07/2022]
Abstract
The neurobiological basis of major depressive disorder (MDD) is only partially understood. The proposed hypotheses postulate dysregulations of monoaminergic and other neurotransmitter pathways, impaired stress responses, insufficient neurogenetic and neurotrophic processes generating maladaptive neuroplasticity, inappropriate inflammatory and metabolic responses. Proteomic approaches can provide useful contributions to the investigation of the molecular neurobiology of MDD due to their open-ended nature. Studies performed in brain regions of MDD patients which had received antidepressant (AD) treatment showed that affected proteins mainly belonged to energy pathways, transport of molecules, signaling, and synaptic transmission. Studies performed in animal models offer the advantage of more controlled experimental conditions at the expense of potential loss in relevance. The design of proteomic investigations included experiments carried out in MDD models, in naive animals treated with ADs, and in animal models subjected to AD treatments. A comparison of results suggested an overlap of several modulated pathways between MDD patients and animal models. Examples include the regulation of energy metabolism, especially oxidative phosphorylation and glycolysis, signal transduction pathways, including calcium-calmodulin kinase II, synaptic proteins, and cytoskeletal proteins. Nevertheless, the paucity of studies performed in human brains requires additional studies to confirm the correspondence.
Collapse
Affiliation(s)
- Lucia Carboni
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, Bologna, Italy
| |
Collapse
|
28
|
Metabolomic identification of biochemical changes induced by fluoxetine and imipramine in a chronic mild stress mouse model of depression. Sci Rep 2015; 5:8890. [PMID: 25749400 PMCID: PMC4352870 DOI: 10.1038/srep08890] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Accepted: 02/10/2015] [Indexed: 02/07/2023] Open
Abstract
Metabolomics was applied to a C57BL/6N mouse model of chronic unpredictable mild stress (CMS). Such mice were treated with two antidepressants from different categories: fluoxetine and imipramine. Metabolic profiling of the hippocampus was performed using gas chromatography-mass spectrometry analysis on samples prepared under optimized conditions, followed by principal component analysis, partial least squares-discriminant analysis, and pair-wise orthogonal projections to latent structures discriminant analyses. Body weight measurement and behavior tests including an open field test and the forced swimming test were completed with the mice as a measure of the phenotypes of depression and antidepressive effects. As a result, 23 metabolites that had been differentially expressed among the control, CMS, and antidepressant-treated groups demonstrated that amino acid metabolism, energy metabolism, adenosine receptors, and neurotransmitters are commonly perturbed by drug treatment. Potential predictive markers for treatment effect were identified: myo-inositol for fluoxetine and lysine and oleic acid for imipramine. Collectively, the current study provides insights into the molecular mechanisms of the antidepressant effects of two widely used medications.
Collapse
|
29
|
Hertz L, Rothman DL, Li B, Peng L. Chronic SSRI stimulation of astrocytic 5-HT2B receptors change multiple gene expressions/editings and metabolism of glutamate, glucose and glycogen: a potential paradigm shift. Front Behav Neurosci 2015; 9:25. [PMID: 25750618 PMCID: PMC4335176 DOI: 10.3389/fnbeh.2015.00025] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 01/23/2015] [Indexed: 11/13/2022] Open
Abstract
It is firmly believed that the mechanism of action of SSRIs in major depression is to inhibit the serotonin transporter, SERT, and increase extracellular concentration of serotonin. However, this undisputed observation does not prove that SERT inhibition is the mechanism, let alone the only mechanism, by which SSRI's exert their therapeutic effects. It has recently been demonstrated that 5-HT2B receptor stimulation is needed for the antidepressant effect of fluoxetine in vivo. The ability of all five currently used SSRIs to stimulate the 5-HT2B receptor equipotentially in cultured astrocytes has been known for several years, and increasing evidence has shown the importance of astrocytes and astrocyte-neuronal interactions for neuroplasticity and complex brain activity. This paper reviews acute and chronic effects of 5-HT2B receptor stimulation in cultured astrocytes and in astrocytes freshly isolated from brains of mice treated with fluoxetine for 14 days together with effects of anti-depressant therapy on turnover of glutamate and GABA and metabolism of glucose and glycogen. It is suggested that these events are causally related to the mechanism of action of SSRIs and of interest for development of newer antidepressant drugs.
Collapse
Affiliation(s)
- Leif Hertz
- Laboratory of Brain Metabolic Diseases, Institute of Metabolic Disease Research and Drug Development, China Medical University Shenyang, China
| | - Douglas L Rothman
- Magnetic Resonance Research Center, Diagnostic Radiology and Biomedical Engineering, Yale University New Haven, CT, USA
| | - Baoman Li
- Laboratory of Brain Metabolic Diseases, Institute of Metabolic Disease Research and Drug Development, China Medical University Shenyang, China
| | - Liang Peng
- Laboratory of Brain Metabolic Diseases, Institute of Metabolic Disease Research and Drug Development, China Medical University Shenyang, China
| |
Collapse
|
30
|
Karamichos D, Zieske JD, Sejersen H, Sarker-Nag A, Asara JM, Hjortdal J. Tear metabolite changes in keratoconus. Exp Eye Res 2015; 132:1-8. [PMID: 25579606 DOI: 10.1016/j.exer.2015.01.007] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 01/05/2015] [Accepted: 01/07/2015] [Indexed: 11/18/2022]
Abstract
While efforts have been made over the years, the exact cause of keratoconus (KC) remains unknown. The aim of this study was to identify alterations in endogenous metabolites in the tears of KC patients compared with age-matched healthy subjects. Three groups were tested: 1) Age-matched controls with no eye disease (N = 15), 2) KC - patients wearing Rigid Gas permeable lenses (N = 16), and 3) KC - No Correction (N = 14). All samples were processed for metabolomics analysis using LC-MS/MS. We identified a total of 296 different metabolites of which >40 were significantly regulated between groups. Glycolysis and gluconeogenesis had significant changes, such as 3-phosphoglycerate and 1,3 diphosphateglycerate. As a result the citric acid cycle (TCA) was also affected with notable changes in Isocitrate, aconitate, malate, and acetylphosphate, up regulated in Group 2 and/or 3. Urea cycle was also affected, especially in Group 3 where ornithine and aspartate were up-regulated by at least 3 fold. The oxidation state was also severely affected. Groups 2 and 3 were under severe oxidative stress causing multiple metabolites to be regulated when compared to Group 1. Group 2 and 3, both showed significant down regulation in GSH-to-GSSG ratio when compared to Group 1. Another indicator of oxidative stress, the ratio of lactate - pyruvate was also affected with Groups 2 and 3 showing at least a 2-fold up regulation. Overall, our data indicate that levels of metabolites related to urea cycle, TCA cycle and oxidative stress are highly altered in KC patients.
Collapse
Affiliation(s)
- D Karamichos
- Ophthalmology, University of Oklahoma - Dean McGee Eye Institute, Oklahoma City, OK, USA.
| | - J D Zieske
- Schepens Eye Research Institute/Massachusetts Eye and Ear and the Department of Ophthalmology Harvard Medical School, 20 Staniiford Street, Boston, MA, USA.
| | - H Sejersen
- Department of Ophthalmology, Aarhus University Hospital, Aarhus C, Denmark.
| | - A Sarker-Nag
- Ophthalmology, University of Oklahoma - Dean McGee Eye Institute, Oklahoma City, OK, USA.
| | - John M Asara
- Division of Signal Transduction/Mass Spectrometry Core, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| | - J Hjortdal
- Department of Ophthalmology, Aarhus University Hospital, Aarhus C, Denmark.
| |
Collapse
|
31
|
Glaviano A, O'Donovan SM, Ryan K, O'Mara S, Dunn MJ, McLoughlin DM. Acute phase plasma proteins are altered by electroconvulsive stimulation. J Psychopharmacol 2014; 28:1125-34. [PMID: 25271216 DOI: 10.1177/0269881114552742] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Electroconvulsive therapy (ECT) is an effective antidepressant treatment, but its molecular mechanisms of action remain to be fully elucidated. To better understand the effects of ECT, we conducted a proteomic study to characterize global changes in plasma protein abundance induced by electroconvulsive stimulation (ECS) in the animal model equivalent of ECT. Male Sprague-Dawley rats were administered a single or repeat (10 sessions) course of ECS, and compared with sham-ECS administered animals. Quantitative differential protein expression analysis was performed, using 2-dimensional difference in gel electrophoresis (2D DiGE), on immunodepleted plasma. Proteins were selected for identification by liquid chromatography tandem mass spectrometry (LC-MS/MS): 150 protein spots were significantly altered following a single ECS and 178, following repeated ECS. In total, 18 proteins were identified by LC-MS/MS. Many of these were acute-phase response proteins, previously reported to be increased in depressed patients. Changes in the abundance of two proteins of interest were confirmed by other measures. Repeat ECS was found to significantly reduce plasma levels of haptoglobin and apolipoprotein A-IV, although these changes were no longer evident 4 weeks after the repeated ECS. Our results implicate the immune system-induced acute phase protein response in ECS action while identifying potential plasma biomarkers for ECS.
Collapse
Affiliation(s)
- Antonino Glaviano
- Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - Sinead M O'Donovan
- Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - Karen Ryan
- Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - Shane O'Mara
- Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - Michael J Dunn
- Conway Institute of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
| | - Declan M McLoughlin
- Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland Department of Psychiatry, Saint Patrick's University Hospital, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
32
|
Gross cystic disease fluid protein-15/prolactin-inducible protein as a biomarker for keratoconus disease. PLoS One 2014; 9:e113310. [PMID: 25405607 PMCID: PMC4236164 DOI: 10.1371/journal.pone.0113310] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 10/21/2014] [Indexed: 12/14/2022] Open
Abstract
Keratoconus (KC) is a bilateral degenerative disease of the cornea characterized by corneal bulging, stromal thinning, and scarring. The etiology of the disease is unknown. In this study, we identified a new biomarker for KC that is present in vivo and in vitro. In vivo, tear samples were collected from age-matched controls with no eye disease (n = 36) and KC diagnosed subjects (n = 17). Samples were processed for proteomics using LC-MS/MS. In vitro, cells were isolated from controls (Human Corneal Fibroblasts-HCF) and KC subjects (Human Keratoconus Cells-HKC) and stimulated with a Vitamin C (VitC) derivative for 4 weeks, and with one of the three transforming growth factor-beta (TGF-β) isoforms. Samples were analyzed using real-time PCR and Western Blots. By using proteomics analysis, the Gross cystic disease fluid protein-15 (GCDFP-15) or prolactin-inducible protein (PIP) was found to be the best independent biomarker able to discriminate between KC and controls. The intensity of GCDFP-15/PIP was significantly higher in healthy subjects compared to KC-diagnosed. Similar findings were seen in vitro, using a 3D culture model. All three TGF-β isoforms significantly down-regulated the expression of GCDFP-15/PIP. Zinc-alpha-2-glycoprotein (AZGP1), a protein that binds to PIP, was identified by proteomics and cell culture to be highly regulated. In this study by different complementary techniques we confirmed the potential role of GCDFP-15/PIP as a novel biomarker for KC disease. It is likely that exploring the GCDFP-15/PIP-AZGP1 interactions will help better understand the mechanism of KC disease.
Collapse
|
33
|
Weckmann K, Labermaier C, Asara JM, Müller MB, Turck CW. Time-dependent metabolomic profiling of Ketamine drug action reveals hippocampal pathway alterations and biomarker candidates. Transl Psychiatry 2014; 4:e481. [PMID: 25386958 PMCID: PMC4259990 DOI: 10.1038/tp.2014.119] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 09/12/2014] [Accepted: 09/28/2014] [Indexed: 12/17/2022] Open
Abstract
Ketamine, an N-methyl-D-aspartate receptor (NMDAR) antagonist, has fast-acting antidepressant activities and is used for major depressive disorder (MDD) patients who show treatment resistance towards drugs of the selective serotonin reuptake inhibitor (SSRI) type. In order to better understand Ketamine's mode of action, a prerequisite for improved drug development efforts, a detailed understanding of the molecular events elicited by the drug is mandatory. In the present study we have carried out a time-dependent hippocampal metabolite profiling analysis of mice treated with Ketamine. After a single injection of Ketamine, our metabolomics data indicate time-dependent metabolite level alterations starting already after 2 h reflecting the fast antidepressant effect of the drug. In silico pathway analyses revealed that several hippocampal pathways including glycolysis/gluconeogenesis, pentose phosphate pathway and citrate cycle are affected, apparent by changes not only in metabolite levels but also connected metabolite level ratios. The results show that a single injection of Ketamine has an impact on the major energy metabolism pathways. Furthermore, seven of the identified metabolites qualify as biomarkers for the Ketamine drug response.
Collapse
Affiliation(s)
- K Weckmann
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
| | - C Labermaier
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
| | - J M Asara
- Division of Signal Transduction, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - M B Müller
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
| | - C W Turck
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany,Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Kraepelinstrasse 2–10, Munich 80804, Germany. E-mail:
| |
Collapse
|
34
|
Behavioral extremes of trait anxiety in mice are characterized by distinct metabolic profiles. J Psychiatr Res 2014; 58:115-22. [PMID: 25124548 DOI: 10.1016/j.jpsychires.2014.07.019] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Revised: 07/17/2014] [Accepted: 07/22/2014] [Indexed: 01/14/2023]
Abstract
No comprehensive metabolic profile of trait anxiety is to date available. To identify metabolic biosignatures for different anxiety states, we compared mice selectively inbred for ∼ 40 generations for high (HAB), normal (NAB) or low (LAB) anxiety-related behavior. Using a mass spectrometry-based targeted metabolomics approach, we quantified the levels of 257 unique metabolites in the cingulate cortex and plasma of HAB, NAB and LAB mice. We then pinpointed affected molecular systems in anxiety-related behavior by an in silico pathway and network prediction analysis followed by validation of in silico predicted alterations with molecular assays. We found distinct metabolic profiles for different trait anxiety states and detected metabolites with altered levels both in cingulate cortex and plasma. Metabolomics data revealed common candidate biomarkers in cingulate cortex and plasma for anxiety traits and in silico pathway analysis implicated amino acid metabolism, pyruvate metabolism, oxidative stress and apoptosis in the regulation of anxiety-related behavior. We report characteristic biosignatures for trait anxiety states and provide a network map of pathways involved in anxiety-related behavior. Pharmacological targeting of these pathways will enable a mechanism-based approach for identifying novel therapeutic targets for anxiety disorders.
Collapse
|
35
|
Karamichos D, Hutcheon AEK, Rich CB, Trinkaus-Randall V, Asara JM, Zieske JD. In vitro model suggests oxidative stress involved in keratoconus disease. Sci Rep 2014; 4:4608. [PMID: 24714342 PMCID: PMC3980225 DOI: 10.1038/srep04608] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Accepted: 03/20/2014] [Indexed: 11/09/2022] Open
Abstract
Keratoconus (KC) affects 1:2000 people and is a disorder where cornea thins and assumes a conical shape. Advanced KC requires surgery to maintain vision. The role of oxidative stress in KC remains unclear. We aimed to identify oxidative stress levels between human corneal keratocytes (HCKs), fibroblasts (HCFs) and keratoconus cells (HKCs). Cells were cultured in 2D and 3D systems. Vitamin C (VitC) and TGF-β3 (T3) were used for 4 weeks to stimulate self-assembled extracellular matrix (ECM). No T3 used as controls. Samples were analyzed using qRT-PCR and metabolomics. qRT-PCR data showed low levels of collagen I and V, as well as keratocan for HKCs, indicating differentiation to a myofibroblast phenotype. Collagen type III, a marker for fibrosis, was up regulated in HKCs. We robustly detected more than 150 metabolites of the targeted 250 by LC-MS/MS per condition and among those metabolites several were related to oxidative stress. Lactate levels, lactate/malate and lactate/pyruvate ratios were elevated in HKCs, while arginine and glutathione/oxidized glutathione ratio were reduced. Similar patterns found in both 2D and 3D. Our data shows that fibroblasts exhibit enhanced oxidative stress compared to keratocytes. Furthermore the HKC cells exhibit the greatest level suggesting they may have a myofibroblast phenotype.
Collapse
Affiliation(s)
- D Karamichos
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, USA
| | - A E K Hutcheon
- Schepens Eye Research Institute/Massachusetts Eye and Ear and the Department of Ophthalmology Harvard Medical School, Boston, MA, USA
| | - C B Rich
- Departments of Biochemistry and Ophthalmology, Boston University School of Medicine, 80 E Concord Street, Boston, MA 02118, USA
| | - V Trinkaus-Randall
- Departments of Biochemistry and Ophthalmology, Boston University School of Medicine, 80 E Concord Street, Boston, MA 02118, USA
| | - J M Asara
- Division of Signal Transduction/Mass Spectrometry Core, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - J D Zieske
- Schepens Eye Research Institute/Massachusetts Eye and Ear and the Department of Ophthalmology Harvard Medical School, Boston, MA, USA
| |
Collapse
|
36
|
Biomarkers predicting antidepressant treatment response: how can we advance the field? DISEASE MARKERS 2013; 35:23-31. [PMID: 24167346 PMCID: PMC3774965 DOI: 10.1155/2013/984845] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Accepted: 04/19/2013] [Indexed: 01/03/2023]
Abstract
Major depression, affecting an estimated 350 million people worldwide, poses a serious social and economic threat to modern societies. There are currently two major problems calling for innovative research approaches, namely, the absence of biomarkers predicting antidepressant response and the lack of conceptually novel antidepressant compounds. Both, biomarker predicting a priori whether an individual patient will respond to the treatment of choice as well as an early distinction of responders and nonresponders during antidepressant therapy can have a significant impact on improving this situation. Biosignatures predicting antidepressant response a priori or early in treatment would enable an evidence-based decision making on available treatment options. However, research to date does not identify any biologic or genetic predictors of sufficient clinical utility to inform the selection of specific antidepressant compound for an individual patient. In this review, we propose an optimized translational research strategy to overcome some of the major limitations in biomarker discovery. We are confident that early transfer and integration of data between both species, ideally leading to mutual supportive evidence from both preclinical and clinical studies, are most suitable to address some of the obstacles of current depression research.
Collapse
|
37
|
Frizzo ME. Putative role of glycogen as a peripheral biomarker of GSK3β activity. Med Hypotheses 2013; 81:376-8. [PMID: 23809426 DOI: 10.1016/j.mehy.2013.05.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Accepted: 05/19/2013] [Indexed: 11/29/2022]
Abstract
Glycogen synthase kinase 3-β (GSK3β) has a pivotal role in several intracellular signaling cascades that are involved in gene transcription, cytoskeletal reorganization, energy metabolism, cell cycle regulation, and apoptosis. This kinase has pleiotropic functions, and the importance of its activity has recently been shown in neurons and platelets. In addition to its regulatory function in several physiological events, changes in GSK3β activity have been associated with many psychiatric and neurodegenerative illnesses, such as Alzheimer's disease, schizophrenia and autism-spectrum disorders. Beside the reports of its involvement in several pathologies, it has become increasingly apparent that GSK3β might be a common therapeutic target for different classes of psychiatric drugs, and also that the GSK3β ratio may be a useful parameter to determine the biochemical changes that might occur during antidepressant treatment. Although GSK3β is commonly described as a key enzyme in a plethora of signaling cascades, originally it was identified as playing an important role in the regulation of glycogen synthesis, given its ability to inactivate glycogen synthase (GS) by phosphorylation. Acting as a constitutively active kinase, GSK3β phosphorylates GS, which results in a decrease of glycogen production. GSK3β phosphorylation increases glycogen synthesis and storage, while its dephosphorylation decreases glycogen synthesis. Inactivation of GSK3β leads to dephosphorylation of GS and increase in glycogen synthesis in the adipose tissue, muscle and liver. Glycogen levels are reduced by antidepressant treatment, and this effect seems to be related to an effect of drugs on GSK3β activity. Peripherally, glycogen is also abundantly found in platelets, where it is considered a major energy source, required for a variety of its functions, including the release reaction. Recently, analysis of platelets from patients with late-life major depression showed that active forms of GSK3β expression were upregulated by continuous treatment with sertraline. Here, we hypothesized that the quantification of glycogen in platelets might be used as a peripheral biomarker of GSK3β activity. Since it has been recently demonstrated that the modulation of GSK3β activity causes changes in glycogen stores, the glycogen levels in platelets could be used to assay the effects of drugs that have this kinase as a target, or diseases where its activity is affected. In conclusion, we hypothesized that the determination of glycogen peripherally may be useful to indicate a change in the activity of this enzyme, providing a faster and non-invasive approach to guide the therapeutic procedures for the patient.
Collapse
Affiliation(s)
- Marcos Emilio Frizzo
- Department of Morphological Sciences, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite, 500, CEP 90050-170 Porto Alegre, Brazil.
| |
Collapse
|