1
|
Canzian J, Borba JV, Resmim CM, Mohammed KA, Pretzel CW, Adedara IA, Rosemberg DB. The dopamine transporter inhibition using GBR 12909 as a novel pharmacological tool to assess bipolar disorder-like neurobehavioral phenotypes in zebrafish. Behav Brain Res 2025; 477:115302. [PMID: 39442564 DOI: 10.1016/j.bbr.2024.115302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 10/11/2024] [Accepted: 10/19/2024] [Indexed: 10/25/2024]
Abstract
Dopamine (DA) is a neurotransmitter that plays an important role in brain physiology. Changes in DA-mediated signaling have been implicated with the pathophysiology of various neuropsychiatric conditions. Bipolar disorder (BD) is a mental disorder, characterized by alterning between manic/hypomanic and depressive mood. In experimental research, the pharmacological inhibition of DA reuptake using GBR 12909 serves as a tool to elicit BD-like phenotypes. Alternative model organisms, such as the zebrafish (Danio rerio), have been considered important systems for investigating the neurobehavioral changes involved in different neuropsychiatric conditions, including BD. Here, we discuss the use of GBR 12909 as a novel pharmacological strategy to mimic BD-like phenotypes in zebrafish models. We also emphasize the well-conserved DA-mediated signaling in zebrafish and the early expression of dopaminergic biomarkers in the brain, especially focusing on dopamine transporter (DAT), the main target of GBR 12909. Finally, we discuss potential advantages and limitations in the field, the perspectives of using GBR 12909 in BD research, and how distinct validation criteria (i.e., face, predictive, and construct validity) can be assessed in translational approaches using zebrafish-based models.
Collapse
Affiliation(s)
- Julia Canzian
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil; Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil.
| | - João V Borba
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil; Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil
| | - Cássio M Resmim
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil; Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil
| | - Khadija A Mohammed
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil; Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil
| | - Camilla W Pretzel
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil
| | - Isaac A Adedara
- Department of Food Science and Technology, Center of Rural Sciences, Federal University of Santa Maria, Camobi, Santa Maria, RS 97105-900, Brazil
| | - Denis B Rosemberg
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil; Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil; The International Zebrafish Neuroscience Research Consortium (ZNRC), 309 Palmer Court, Slidell, LA 70458, USA.
| |
Collapse
|
2
|
Chaves-Filho A, Eyres C, Blöbaum L, Landwehr A, Tremblay MÈ. The emerging neuroimmune hypothesis of bipolar disorder: An updated overview of neuroimmune and microglial findings. J Neurochem 2024; 168:1780-1816. [PMID: 38504593 DOI: 10.1111/jnc.16098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 02/26/2024] [Accepted: 02/28/2024] [Indexed: 03/21/2024]
Abstract
Bipolar disorder (BD) is a severe and multifactorial disease, with onset usually in young adulthood, which follows a progressive course throughout life. Replicated epidemiological studies have suggested inflammatory mechanisms and neuroimmune risk factors as primary contributors to the onset and development of BD. While not all patients display overt markers of inflammation, significant evidence suggests that aberrant immune signaling contributes to all stages of the disease and seems to be mood phase dependent, likely explaining the heterogeneity of findings observed in this population. As the brain's immune cells, microglia orchestrate the brain's immune response and play a critical role in maintaining the brain's health across the lifespan. Microglia are also highly sensitive to environmental changes and respond to physiological and pathological events by adapting their functions, structure, and molecular expression. Recently, it has been highlighted that instead of a single population of cells, microglia comprise a heterogeneous community with specialized states adjusted according to the local molecular cues and intercellular interactions. Early evidence has highlighted the contribution of microglia to BD neuropathology, notably for severe outcomes, such as suicidality. However, the roles and diversity of microglial states in this disease are still largely undermined. This review brings an updated overview of current literature on the contribution of neuroimmune risk factors for the onset and progression of BD, the most prominent neuroimmune abnormalities (including biomarker, neuroimaging, ex vivo studies) and the most recent findings of microglial involvement in BD neuropathology. Combining these different shreds of evidence, we aim to propose a unifying hypothesis for BD pathophysiology centered on neuroimmune abnormalities and microglia. Also, we highlight the urgent need to apply novel multi-system biology approaches to characterize the diversity of microglial states and functions involved in this enigmatic disorder, which can open bright perspectives for novel biomarkers and therapeutic discoveries.
Collapse
Affiliation(s)
- Adriano Chaves-Filho
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
- Women Health Research Institute, Vancouver, British Columbia, Canada
- Brain Health Cluster at the Institute on Aging & Lifelong Health (IALH), Victoria, British Columbia, Canada
| | - Capri Eyres
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
| | - Leonie Blöbaum
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
| | - Antonia Landwehr
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
| | - Marie-Ève Tremblay
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
- Women Health Research Institute, Vancouver, British Columbia, Canada
- Brain Health Cluster at the Institute on Aging & Lifelong Health (IALH), Victoria, British Columbia, Canada
- Centre for Advanced Materials and Related Technology (CAMTEC), University of Victoria, Victoria, British Columbia, Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
- Neurology and Neurosurgery Department, McGill University, Montréal, Quebec, Canada
- Department of Molecular Medicine, Université Laval, Québec City, Quebec, Canada
| |
Collapse
|
3
|
Canzian J, Borba JV, Ames J, Silva RM, Resmim CM, Pretzel CW, Duarte MCF, Storck TR, Mohammed KA, Adedara IA, Loro VL, Gerlai R, Rosemberg DB. The influence of acute dopamine transporter inhibition on manic-, depressive-like phenotypes, and brain oxidative status in adult zebrafish. Prog Neuropsychopharmacol Biol Psychiatry 2024; 131:110961. [PMID: 38325745 DOI: 10.1016/j.pnpbp.2024.110961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/03/2024] [Accepted: 02/04/2024] [Indexed: 02/09/2024]
Abstract
Functional changes in dopamine transporter (DAT) are related to various psychiatric conditions, including bipolar disorder (BD) symptoms. In experimental research, the inhibition of DAT induces behavioral alterations that recapitulate symptoms found in BD patients, including mania and depressive mood. Thus, developing novel animal models that mimic BD-related conditions by pharmacologically modulating the dopaminergic signaling is relevant. The zebrafish (Danio rerio) has been considered a suitable vertebrate system for modeling BD-like responses, due to the well-characterized behavioral responses and evolutionarily conservation of the dopaminergic system of this species. Here, we investigate whether GBR 12909, a selective inhibitor of DAT, causes neurobehavioral alterations in zebrafish similar to those observed in BD patients. Behaviors were recorded after a single intraperitoneal (i.p.) administration of GBR 12909 at different doses (3.75, 7.5, 15 and 30 mg/kg). To observe temporal effects on behavior, swim path parameters were measured immediately after the administration period during 30 min. Locomotion, anxiety-like behavior, social preference, aggression, despair-like behavior, and oxidative stress-related biomarkers in the brain were measured 30 min post administration. GBR 12909 induced prominent effects on locomotor activity and vertical exploration during the 30-min period. Hyperactivity was observed in GBR 30 group after 25 min, while all doses markedly reduced vertical drifts. GBR 12909 elicited hyperlocomotion, anxiety-like behavior, decreased social preference, aggression, and induced depressive-like behavior in a behavioral despair task. Depending on the dose, GBR 12909 also decreased SOD activity and TBARS levels, as well as increased GR activity and NPSH content. Collectively, our novel findings show that a single GBR 12909 administration evokes neurobehavioral changes that recapitulate manic- and depressive-like states observed in rodents, fostering the use of zebrafish models to explore BD-like responses in translational neuroscience research.
Collapse
Affiliation(s)
- Julia Canzian
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS, Brazil; Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS, Brazil.
| | - João V Borba
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS, Brazil; Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS, Brazil
| | - Jaíne Ames
- Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS, Brazil; Laboratory of Aquatic Toxicology, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Rossano M Silva
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS, Brazil; Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS, Brazil
| | - Cássio M Resmim
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS, Brazil; Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS, Brazil
| | - Camilla W Pretzel
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS, Brazil
| | - Maria Cecília F Duarte
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS, Brazil
| | - Tamiris R Storck
- Graduate Program in Environmental Engineering, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS, Brazil
| | - Khadija A Mohammed
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS, Brazil; Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS, Brazil
| | - Isaac A Adedara
- Department of Food Science and Technology, Center of Rural Sciences, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS, Brazil
| | - Vania L Loro
- Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS, Brazil; Laboratory of Aquatic Toxicology, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Robert Gerlai
- Department of Psychology, University of Toronto Mississauga, Mississauga, ON, Canada; Department of Cell and System Biology, University of Toronto, Toronto, ON, Canada
| | - Denis B Rosemberg
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS, Brazil; Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS, Brazil; The International Zebrafish Neuroscience Research Consortium (ZNRC), 309 Palmer Court, Slidell, LA 70458, USA.
| |
Collapse
|
4
|
Mood and behavior regulation: interaction of lithium and dopaminergic system. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023:10.1007/s00210-023-02437-1. [PMID: 36843130 DOI: 10.1007/s00210-023-02437-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 02/20/2023] [Indexed: 02/28/2023]
Abstract
Lithium is one of the most effect mood-stabilizing drugs prescribed especially for bipolar disorder. Lithium has wide range effects on different molecular factors and neural transmission including dopaminergic signaling. On the other hand, mesolimbic and mesocortical dopaminergic signaling is significantly involved in the pathophysiology of neuropsychiatric disorders. This review article aims to study lithium therapeutic mechanisms, dopaminergic signaling, and the interaction of lithium and dopamine. We concluded that acute and chronic lithium treatments often reduce dopamine synthesis and level in the brain. However, some studies have reported conflicting results following lithium treatment, especially chronic treatment. The dosage, duration, and type of lithium administration, and the brain region selected for measuring dopamine level were not significant differences in different chronic treatments used in previous studies. It was suggested that lithium has various mechanisms affecting dopaminergic signaling and mood, and that many molecular factors can be involved, including brain-derived neurotrophic factor (BDNF), cAMP response element-binding protein (CREB), β-catenin, protein kinase B (Akt), and glycogen synthase kinase-3 beta (GSK-3β). Thus, molecular effects of lithium can be the most important mechanisms of lithium that also alter neural transmissions including dopaminergic signaling in mesolimbic and mesocortical pathways.
Collapse
|
5
|
Channer B, Matt SM, Nickoloff-Bybel EA, Pappa V, Agarwal Y, Wickman J, Gaskill PJ. Dopamine, Immunity, and Disease. Pharmacol Rev 2023; 75:62-158. [PMID: 36757901 PMCID: PMC9832385 DOI: 10.1124/pharmrev.122.000618] [Citation(s) in RCA: 91] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 08/02/2022] [Accepted: 08/04/2022] [Indexed: 12/14/2022] Open
Abstract
The neurotransmitter dopamine is a key factor in central nervous system (CNS) function, regulating many processes including reward, movement, and cognition. Dopamine also regulates critical functions in peripheral organs, such as blood pressure, renal activity, and intestinal motility. Beyond these functions, a growing body of evidence indicates that dopamine is an important immunoregulatory factor. Most types of immune cells express dopamine receptors and other dopaminergic proteins, and many immune cells take up, produce, store, and/or release dopamine, suggesting that dopaminergic immunomodulation is important for immune function. Targeting these pathways could be a promising avenue for the treatment of inflammation and disease, but despite increasing research in this area, data on the specific effects of dopamine on many immune cells and disease processes remain inconsistent and poorly understood. Therefore, this review integrates the current knowledge of the role of dopamine in immune cell function and inflammatory signaling across systems. We also discuss the current understanding of dopaminergic regulation of immune signaling in the CNS and peripheral tissues, highlighting the role of dopaminergic immunomodulation in diseases such as Parkinson's disease, several neuropsychiatric conditions, neurologic human immunodeficiency virus, inflammatory bowel disease, rheumatoid arthritis, and others. Careful consideration is given to the influence of experimental design on results, and we note a number of areas in need of further research. Overall, this review integrates our knowledge of dopaminergic immunology at the cellular, tissue, and disease level and prompts the development of therapeutics and strategies targeted toward ameliorating disease through dopaminergic regulation of immunity. SIGNIFICANCE STATEMENT: Canonically, dopamine is recognized as a neurotransmitter involved in the regulation of movement, cognition, and reward. However, dopamine also acts as an immune modulator in the central nervous system and periphery. This review comprehensively assesses the current knowledge of dopaminergic immunomodulation and the role of dopamine in disease pathogenesis at the cellular and tissue level. This will provide broad access to this information across fields, identify areas in need of further investigation, and drive the development of dopaminergic therapeutic strategies.
Collapse
Affiliation(s)
- Breana Channer
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania (B.C., S.M.M., E.A.N-B., Y.A., J.W., P.J.G.); and The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania (V.P.)
| | - Stephanie M Matt
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania (B.C., S.M.M., E.A.N-B., Y.A., J.W., P.J.G.); and The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania (V.P.)
| | - Emily A Nickoloff-Bybel
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania (B.C., S.M.M., E.A.N-B., Y.A., J.W., P.J.G.); and The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania (V.P.)
| | - Vasiliki Pappa
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania (B.C., S.M.M., E.A.N-B., Y.A., J.W., P.J.G.); and The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania (V.P.)
| | - Yash Agarwal
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania (B.C., S.M.M., E.A.N-B., Y.A., J.W., P.J.G.); and The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania (V.P.)
| | - Jason Wickman
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania (B.C., S.M.M., E.A.N-B., Y.A., J.W., P.J.G.); and The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania (V.P.)
| | - Peter J Gaskill
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania (B.C., S.M.M., E.A.N-B., Y.A., J.W., P.J.G.); and The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania (V.P.)
| |
Collapse
|
6
|
Assessing positive and negative valence systems to refine animal models of bipolar disorders: the example of GBR 12909-induced manic phenotype. Sci Rep 2022; 12:7364. [PMID: 35513683 PMCID: PMC9072677 DOI: 10.1038/s41598-022-10965-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 03/09/2022] [Indexed: 11/23/2022] Open
Abstract
Bipolar disorders are defined by recurrences of depressive and manic episodes. The pathophysiology is still unknown, and translating clinical symptoms into behaviors explorable in animal models is challenging. Animal models of bipolar disorder do not exist because cyclicity of the disease is impossible to mimic, and it is therefore necessary to study mania and depression models separately. Beyond mood, emotional biases differentiate bipolar states in humans. Mania is associated with positive biases, e.g. emotional stimuli become more rewarding and less aversive, and the opposite for depression. We propose to assess behavioral hedonic responses to innately appetitive and aversive olfactory and gustatory cues in mice as proxies for the assigned emotional valence. A mania model is therefore supposed to exhibit positive hedonic bias. Using the GBR 12909 mania model, we observed the classical hyperactivity phenotype, along with low depressive-like but high anxiety-like behaviors. Unexpectedly, GBR 12909-treated mice exhibited strong negative hedonic biases. Consequently, the GBR 12909 model of mania might not be appropriate for studying emotional disturbances associated with mania states. We propose olfactory and gustatory preference tests as crucial assessment for positive and negative valence biases, necessary for precisely characterizing animal models of bipolar disorders.
Collapse
|
7
|
Kotzalidis GD, Rapinesi C, Chetoni C, De Filippis S. Aripiprazole IM depot as an option for the treatment of bipolar disorder. Expert Opin Pharmacother 2021; 22:1407-1416. [PMID: 33847183 DOI: 10.1080/14656566.2021.1910236] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Introduction: Long-acting injectable (LAI) antipsychotic drugs are developed to reduce daily intake need and to overcome treatment non-adherence. Aripiprazole IM depot refers to two long-acting aripiprazole formulations, once monthly monohydrate (AOM) and aripiprazole lauroxil. AOM has been approved for schizophrenia since 2012 and for bipolar disorder since 2017. Aripiprazole lauroxil is approved for schizophrenia, not for bipolar disorder.Areas covered: To assess the effect of AOM in bipolar disorder, the authors searched PubMed and ClinicalTrials.gov for randomized trials using AOM in patients with bipolar disorder. Included were four studies covering efficacy, functioning, quality of life, and safety/tolerability. Studies lasted 12 months.Expert opinion: AOM reduced symptoms of patients with bipolar disorder and a manic episode, increased functioning and quality of life, and protected from recurrence of manic episodes. It proved to be safe/tolerable, with only akathisia occurring in ≥10% of cases and more frequently than with placebo. However, there were only 143 patients receiving AOM in the considered studies. Included studies were backed in their conclusions by other literature, but they come from 2017-2018. No studies are expected or planned in the near future. Aripiprazole lauroxil has not applied for approval in bipolar disorder and there is no sign it will.
Collapse
Affiliation(s)
- Georgios D Kotzalidis
- NESMOS Department, Sapienza University of Rome, Faculty of Medicine and Psychology, Sant'Andrea Hospital, Rome, Italy.,Department of Neuropsychiatry, Villa Von Siebenthal Neuropsychiatric Hospital, Genzano Di Roma, Italy
| | - Chiara Rapinesi
- NESMOS Department, Sapienza University of Rome, Faculty of Medicine and Psychology, Sant'Andrea Hospital, Rome, Italy
| | - Chiara Chetoni
- NESMOS Department, Sapienza University of Rome, Faculty of Medicine and Psychology, Sant'Andrea Hospital, Rome, Italy
| | - Sergio De Filippis
- Department of Neuropsychiatry, Villa Von Siebenthal Neuropsychiatric Hospital, Genzano Di Roma, Italy
| |
Collapse
|
8
|
Decreased motor impulsivity following chronic lithium treatment in male rats is associated with reduced levels of pro-inflammatory cytokines in the orbitofrontal cortex. Brain Behav Immun 2020; 89:339-349. [PMID: 32688024 DOI: 10.1016/j.bbi.2020.07.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 06/30/2020] [Accepted: 07/13/2020] [Indexed: 02/06/2023] Open
Abstract
Lithium's efficacy in reducing both symptom severity in bipolar disorder (BD) and suicide risk across clinical populations may reflect its ability to reduce impulsivity. Changes in immune markers are associated with BD and suicidality yet their exact role in symptom expression remains unknown. Evidence also suggests that lithium may decrease levels of pro-inflammatory cytokines in the periphery and central nervous system, and that such changes are related to its therapeutic efficacy. However, issues of cause and effect are hard to infer from clinical data alone. Here, we investigated the effects of chronic dietary lithium treatment on rats' performance of the 5-Choice Serial Reaction Time Task (5CSRTT), a well-validated operant behavioural task measuring aspects of impulsivity, attention and motivation. Male Long-Evans rats received a diet supplemented with 0.3% LiCl (n = 13), or the equivalent control diet (n = 16), during behavioural testing. Blood and brain tissue samples were assayed for a wide range of cytokines once any changes in impulsivity became significant. After 12 weeks, chronic lithium treatment reduced levels of motor impulsivity, as indexed by premature responses in the 5CSRTT; measures of sustained attention and motivation were unaffected. Plasma levels of IL-1β, IL-10 and RANTES (CCL-5) were reduced in lithium-treated rats at this time point. IL-1β, IL-6 and RANTES were also reduced selectively within the orbitofrontal cortex of lithium-treated rats, whereas cytokine levels in the medial prefrontal cortex and nucleus accumbens were comparable with control subjects. These results are consistent with the hypothesis that lithium may improve impulse control deficits in clinical populations by minimising the effects of pro-inflammatory signalling on neuronal activity, particularly within the orbitofrontal cortex.
Collapse
|
9
|
de Miranda AS, Vieira ÉLM, Dos Reis Bastos J, Ferreira RN, Nicoli JR, Teixeira MM, Vieira LQ, Moreira FA, Teixeira AL. Role of gut microbiota in the GBR12909 model of mania-like behavior in mice. J Neuroimmunol 2020; 346:577292. [PMID: 32580070 DOI: 10.1016/j.jneuroim.2020.577292] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 06/01/2020] [Accepted: 06/15/2020] [Indexed: 02/07/2023]
Abstract
Growing evidence suggests a role for brain-gut-microbiota axis in affective disorders including major depression and bipolar disorder (BD). Herein, we aim to explore, by employing germ-free (GF) mice, the effect of the indigenous microbiota in the development of mania-like behavior. Conventional and GF mice were evaluated for the hyperlocomotion induced by the dopamine transporter inhibitor GBR12909 (15 mg/Kg), a validated model for mania-like behavior. Inflammatory mediators and neurotrophic factors were quantified in the prefrontal cortex, hippocampus and striatum. Mice lacking indigenous microbiota were less susceptible to the mania-like behavior induced by GBR12909. This effect was associated with decreased levels of inflammatory cytokines such as IL-6 and TNF-α, along with increased concentrations of anti- inflammatory cytokines (IL-10) and of neurotrophins (BDNF and NGF). We provided the first evidence that gut-microbiota-brain axis participates in the development of mania-like behavior in rodents, possibly through neuroimmunepathways.
Collapse
Affiliation(s)
- Aline Silva de Miranda
- Laboratório de Neurobiologia, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil; Laboratório Interdisciplinar de Investigação Médica, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.
| | - Érica Leandro Marciano Vieira
- Laboratório Interdisciplinar de Investigação Médica, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Juliana Dos Reis Bastos
- Departmento de Farmacologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Rodrigo Novaes Ferreira
- Laboratório de Neurobiologia, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Jacques R Nicoli
- Departmento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Mauro Martins Teixeira
- Departmento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Leda Quercia Vieira
- Departmento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Fabrício A Moreira
- Departmento de Farmacologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Antônio Lúcio Teixeira
- Neuropsychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, University of Texas Health Science Center at Houston, TX, USA
| |
Collapse
|
10
|
Ochiai S, Sugawara H, Kajio Y, Tanaka H, Ishikawa T, Fukuhara R, Jono T, Hashimoto M. Delusional parasitosis in dementia with Lewy bodies: a case report. Ann Gen Psychiatry 2019; 18:29. [PMID: 31892935 PMCID: PMC6937717 DOI: 10.1186/s12991-019-0253-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 12/19/2019] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Dementia with Lewy bodies (DLB) is characterized by fluctuating cognitive impairments, recurrent visual hallucinations, the motor symptoms of parkinsonism and REM sleep behavior disorder. Various neuropsychiatric symptoms including hallucination and delusions occur frequently; however, delusional parasitosis is rare in DLB. Here, we report a case of DLB patient with delusional parasitosis. CASE PRESENTATION The patient was an 89-year-old woman. At the age of 88, she began to complain her oral cenesthopathy, and developed cognitive decline, delusional parasitosis and parkinsonism. As a result of examination, she was diagnosed as DLB and treated with combination of donepezil 5 mg/day and aripiprazole 1.5 mg/day, and her complaint was disappeared. CONCLUSIONS Further studies are needed to investigate the association between delusional parasitosis and underlying pathophysiology of DLB, and the utility of antipsychotics for delusional parasitosis in DLB has to be examined through more cases.
Collapse
Affiliation(s)
- Sho Ochiai
- 1Department of Neuropsychiatry, Kumamoto University Hospital, Kumamoto, Japan
| | - Hiroko Sugawara
- 1Department of Neuropsychiatry, Kumamoto University Hospital, Kumamoto, Japan
| | | | - Hibiki Tanaka
- 1Department of Neuropsychiatry, Kumamoto University Hospital, Kumamoto, Japan
| | - Tomohisa Ishikawa
- 1Department of Neuropsychiatry, Kumamoto University Hospital, Kumamoto, Japan
| | - Ryuji Fukuhara
- 1Department of Neuropsychiatry, Kumamoto University Hospital, Kumamoto, Japan
| | - Tadashi Jono
- 1Department of Neuropsychiatry, Kumamoto University Hospital, Kumamoto, Japan.,3Faculty of Social Welfare, Kumamoto Gakuen University, Kumamoto, Japan
| | - Mamoru Hashimoto
- 4Department of Behavioral Neurology and Neuropsychiatry, Osaka University United Graduate School of Child Development, Osaka, Japan
| |
Collapse
|