1
|
Zhao R, Shi H, Wang Y, Jiang T, Xu Y. Allele-specific methylation of SSTR4 associated with aging and cognitive functions in patients with schizophrenia. PLoS One 2025; 20:e0303038. [PMID: 39908289 DOI: 10.1371/journal.pone.0303038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 04/18/2024] [Indexed: 02/07/2025] Open
Abstract
The co-occurrence of alcohol use disorder (AUD) and schizophrenia is prevalent, with a rate of 33.7%. Previous research has suggested a genetic and epigenetic overlap between these two disorders. SSTR4, a member of the somatostatin receptor family, is implicated in various neurological and psychiatric conditions, including cognitive function, AUD, and schizophrenia. However, the role of genetic-epigenetic interactions involving SSTR4 in patients with schizophrenia remains unexplored. In this study, we conducted an integration of publicly available datasets and identified allele-specific methylation patterns in SSTR4. Additionally, we pinpointed several genetic variants (rs17691954, rs11464356, rs3109190, and rs145879288) that influence the pace of aging and cognitive functions (rs705935) through their quantitative trait loci effects on CpG sites within SSTR4.
Collapse
Affiliation(s)
- Rongrong Zhao
- The First Affiliated Hospital and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| | - Huihui Shi
- The First Affiliated Hospital and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| | - Yanqiu Wang
- The First Affiliated Hospital and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| | - Tao Jiang
- The First Affiliated Hospital and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| | - Yahui Xu
- The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| |
Collapse
|
2
|
Marques D, Vaziri N, Greenway SC, Bousman C. DNA methylation and histone modifications associated with antipsychotic treatment: a systematic review. Mol Psychiatry 2025; 30:296-309. [PMID: 39227433 DOI: 10.1038/s41380-024-02735-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 08/21/2024] [Accepted: 08/28/2024] [Indexed: 09/05/2024]
Abstract
Antipsychotic medications are essential when treating schizophrenia spectrum and other psychotic disorders, but the efficacy and tolerability of these medications vary from person to person. This interindividual variation is likely mediated, at least in part, by epigenomic processes that have yet to be fully elucidated. Herein, we systematically identified and evaluated 65 studies that examine the influence of antipsychotic drugs on epigenomic changes, including global methylation (9 studies), genome-wide methylation (22 studies), candidate gene methylation (16 studies), and histone modification (18 studies). Our evaluation revealed that haloperidol was consistently associated with increased global hypermethylation, which corroborates with genome-wide analyses, mostly performed by methylation arrays. In contrast, clozapine seems to promote hypomethylation across the epigenome. Candidate-gene methylation studies reveal varying effects post-antipsychotic therapy. Some genes like Glra1 and Drd2 are frequently found to undergo hypermethylation, whereas other genes such as SLC6A4, DUSP6, and DTNBP1 are more likely to exhibit hypomethylation in promoter regions. In examining histone modifications, the literature suggests that clozapine changes histone methylation patterns in the prefrontal cortex, particularly elevating H3K4me3 at the Gad1 gene and affecting the transcription of genes like mGlu2 by modifying histone acetylation and interacting with HDAC2 enzymes. Risperidone and quetiapine, however, exhibit distinct impacts on histone marks across different brain regions and cell types, with risperidone reducing H3K27ac in the striatum and quetiapine modifying global H3K9me2 levels in the prefrontal cortex, suggesting antipsychotics demonstrate selective influence on histone modifications, which demonstrates a complex and targeted mode of action. While this review summarizes current knowledge, the intricate dynamics between antipsychotics and epigenetics clearly warrant more exhaustive exploration with the potential to redefine our understanding and treatment of psychiatric conditions. By deciphering the epigenetic changes associated with drug treatment and therapeutic outcomes, we can move closer to personalized medicine in psychiatry.
Collapse
Affiliation(s)
- Diogo Marques
- Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Nazanin Vaziri
- Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Steven C Greenway
- Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Cardiac Sciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Chad Bousman
- Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
- Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
- Department of Psychiatry, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
- Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
3
|
D'Addario C, Di Bartolomeo M. Epigenetic Control in Schizophrenia. Subcell Biochem 2025; 108:191-215. [PMID: 39820863 DOI: 10.1007/978-3-031-75980-2_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
Schizophrenia is a severe and complex psychiatric condition ranking among the top 15 leading causes of disability worldwide. Despite the well-established heritability component, a complex interplay between genetic and environmental risk factors plays a key role in the development of schizophrenia and psychotic disorders in general. This chapter covers all the clinical evidence showing how the analysis of the epigenetic modulation in schizophrenia might be relevant to understand the pathogenesis of schizophrenia as well as potentially useful to develop new pharmacotherapies.
Collapse
Affiliation(s)
- Claudio D'Addario
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy.
| | - Martina Di Bartolomeo
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| |
Collapse
|
4
|
Hart XM, Gründer G, Ansermot N, Conca A, Corruble E, Crettol S, Cumming P, Frajerman A, Hefner G, Howes O, Jukic MM, Kim E, Kim S, Maniscalco I, Moriguchi S, Müller DJ, Nakajima S, Osugo M, Paulzen M, Ruhe HG, Scherf-Clavel M, Schoretsanitis G, Serretti A, Spina E, Spigset O, Steimer W, Süzen SH, Uchida H, Unterecker S, Vandenberghe F, Verstuyft C, Zernig G, Hiemke C, Eap CB. Optimisation of pharmacotherapy in psychiatry through therapeutic drug monitoring, molecular brain imaging and pharmacogenetic tests: Focus on antipsychotics. World J Biol Psychiatry 2024; 25:451-536. [PMID: 38913780 DOI: 10.1080/15622975.2024.2366235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 05/12/2024] [Accepted: 06/06/2024] [Indexed: 06/26/2024]
Abstract
BACKGROUND For psychotic disorders (i.e. schizophrenia), pharmacotherapy plays a key role in controlling acute and long-term symptoms. To find the optimal individual dose and dosage strategy, specialised tools are used. Three tools have been proven useful to personalise drug treatments: therapeutic drug monitoring (TDM) of drug levels, pharmacogenetic testing (PG), and molecular neuroimaging. METHODS In these Guidelines, we provide an in-depth review of pharmacokinetics, pharmacodynamics, and pharmacogenetics for 45 antipsychotics. Over 30 international experts in psychiatry selected studies that have measured drug concentrations in the blood (TDM), gene polymorphisms of enzymes involved in drug metabolism, or receptor/transporter occupancies in the brain (positron emission tomography (PET)). RESULTS Study results strongly support the use of TDM and the cytochrome P450 (CYP) genotyping and/or phenotyping to guide drug therapies. Evidence-based target ranges are available for titrating drug doses that are often supported by PET findings. CONCLUSION All three tools discussed in these Guidelines are essential for drug treatment. TDM goes well beyond typical indications such as unclear compliance and polypharmacy. Despite its enormous potential to optimise treatment effects, minimise side effects and ultimately reduce the global burden of diseases, personalised drug treatment has not yet become the standard of care in psychiatry.
Collapse
Affiliation(s)
- Xenia Marlene Hart
- Department of Molecular Neuroimaging, Medical Faculty Mannheim, Central Institute of Mental Health, University of Heidelberg, Mannheim, Germany
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Gerhard Gründer
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
- German Center for Mental Health (DZPG), Partner Site Mannheim, Heidelberg, Germany
| | - Nicolas Ansermot
- Department of Psychiatry, Unit of Pharmacogenetics and Clinical Psychopharmacology, Center for Psychiatric Neuroscience, Lausanne University Hospital, Prilly, Switzerland
| | - Andreas Conca
- Dipartimento di Psichiatria, Comprensorio Sanitario di Bolzano, Bolzano, Italy
| | - Emmanuelle Corruble
- Service Hospitalo-Universitaire de Psychiatrie, Hôpital de Bicêtre, Université Paris-Saclay, AP-HP, Le Kremlin-Bicêtre, France
- Equipe MOODS, Inserm U1018, CESP (Centre de Recherche en Epidémiologie et Sante des Populations), Le Kremlin-Bicêtre, France
| | - Severine Crettol
- Department of Psychiatry, Unit of Pharmacogenetics and Clinical Psychopharmacology, Center for Psychiatric Neuroscience, Lausanne University Hospital, Prilly, Switzerland
| | - Paul Cumming
- Department of Nuclear Medicine, Bern University Hospital, Bern, Switzerland
- School of Psychology and Counseling, Queensland University of Technology, Brisbane, Australia
| | - Ariel Frajerman
- Service Hospitalo-Universitaire de Psychiatrie, Hôpital de Bicêtre, Université Paris-Saclay, AP-HP, Le Kremlin-Bicêtre, France
- Equipe MOODS, Inserm U1018, CESP (Centre de Recherche en Epidémiologie et Sante des Populations), Le Kremlin-Bicêtre, France
| | - Gudrun Hefner
- Forensic Psychiatry, Vitos Clinic for Forensic Psychiatry, Eltville, Germany
| | - Oliver Howes
- Department of Psychosis Studies, IoPPN, King's College London, London, UK
- Faculty of Medicine, Institute of Clinical Sciences (ICS), Imperial College London, London, UK
| | - Marin M Jukic
- Department of Physiology, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
- Pharmacogenetics Section, Department of Physiology and Pharmacology, Karolinska Institutet, Solna, Sweden
| | - Euitae Kim
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Seoyoung Kim
- Department of Neuropsychiatry, Seoul National University Bundang Hospital, Seongnam-si, Gyeonggi-do, Republic of Korea
| | - Ignazio Maniscalco
- Dipartimento di Psichiatria, Comprensorio Sanitario di Bolzano, Bolzano, Italy
| | - Sho Moriguchi
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Daniel J Müller
- Department of Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health, University Hospital of Würzburg, Würzburg, Germany
- Pharmacogenetics Research Clinic, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Shinichiro Nakajima
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Martin Osugo
- Department of Psychosis Studies, IoPPN, King's College London, London, UK
- Faculty of Medicine, Institute of Clinical Sciences (ICS), Imperial College London, London, UK
| | - Michael Paulzen
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, Aachen, Germany
- JARA - Translational Brain Medicine, Alexianer Center for Mental Health, Aachen, Germany
| | - Henricus Gerardus Ruhe
- Department of Psychiatry, Radboudumc, Nijmegen, Netherlands
- Donders Institute for Brain, Cognition and Behavior, Radboud University, Nijmegen, Netherlands
| | - Maike Scherf-Clavel
- Department of Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health, University Hospital of Würzburg, Würzburg, Germany
| | - Georgios Schoretsanitis
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Zurich, Switzerland
| | | | - Edoardo Spina
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Olav Spigset
- Department of Clinical Pharmacology, St. Olav University Hospital, Trondheim, Norway
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Werner Steimer
- Institute of Clinical Chemistry and Pathobiochemistry, Technical University Munich, Munich, Germany
| | - Sinan H Süzen
- Department of Pharmaceutic Toxicology, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| | - Hiroyuki Uchida
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Stefan Unterecker
- Department of Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health, University Hospital of Würzburg, Würzburg, Germany
| | - Frederik Vandenberghe
- Department of Psychiatry, Unit of Pharmacogenetics and Clinical Psychopharmacology, Center for Psychiatric Neuroscience, Lausanne University Hospital, Prilly, Switzerland
| | - Celine Verstuyft
- Equipe MOODS, Inserm U1018, CESP (Centre de Recherche en Epidémiologie et Sante des Populations), Le Kremlin-Bicêtre, France
- Department of Molecular Genetics, Pharmacogenetics and Hormonology, Bicêtre University Hospital Paris-Saclay, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Gerald Zernig
- Department of Pharmacology, Medical University Innsbruck, Hall in Tirol, Austria
- Private Practice for Psychotherapy and Court-Certified Witness, Hall in Tirol, Austria
| | - Christoph Hiemke
- Department of Psychiatry and Psychotherapy and Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center of Mainz, Mainz, Germany
| | - Chin B Eap
- Department of Psychiatry, Unit of Pharmacogenetics and Clinical Psychopharmacology, Center for Psychiatric Neuroscience, Lausanne University Hospital, Prilly, Switzerland
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, Geneva, Switzerland
- Center for Research and Innovation in Clinical Pharmaceutical Sciences, University of Lausanne, Lausanne, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
5
|
Michalczyk A, Tyburski E, Podwalski P, Waszczuk K, Rudkowski K, Kucharska-Mazur J, Mak M, Rek-Owodziń K, Plichta P, Bielecki M, Andrusewicz W, Cecerska-Heryć E, Samochowiec A, Misiak B, Sagan L, Samochowiec J. Greater methylation of the IL-6 promoter region is associated with decreased integrity of the corpus callosum in schizophrenia. J Psychiatr Res 2024; 175:108-117. [PMID: 38728913 DOI: 10.1016/j.jpsychires.2024.05.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 04/29/2024] [Accepted: 05/03/2024] [Indexed: 05/12/2024]
Abstract
BACKGROUND Schizophrenia is associated with chronic subclinical inflammation and decreased integrity of the corpus callosum (CC). Our previous study showed associations between peripheral IL-6 levels and the integrity of the CC. Epigenetic studies show associations between methylation of the genes related to immunological processes and integrity of the CC. AIM To investigate correlations between methylation status of IL-6 promotor and peripheral IL-6 levels and the integrity of the CC in schizophrenia. MATERIAL AND METHODS The participants were 29 chronic schizophrenia patients (SCH) and 29 controls. Decreased integrity of the CC was understood as increased mean diffusivity (MD) and/or decreased fractional anisotropy (FA) in diffusion tensor imaging. Peripheral IL-6 concentrations were measured in serum samples and IL-6 promoter methylation status of 6 CpG sites was analyzed in peripheral leukocytes by pyrosequencing. RESULTS Moderate positive correlations were found between CpG1 methylation and the MD of proximal regions of the CC (CCR1-CCR3) and between CpGmean and MD of CCR1 in SCH. Weaker positive correlations were found for CpGmean with CCR2 and CCR3 and negative correlations were found for CpG1 and FA of CCR3 in SCH. Multivariate regression showed that methylation of CpG1, type of antipsychotic treatment, and their interaction were significant independent predictors of MD of CCR1 in SCH. Methylation of CpG2 was negatively correlated with serum IL-6 in SCH. CONCLUSIONS The methylation level of the IL-6 promotor region in peripheral leukocytes is associated with the integrity of the CC in schizophrenia and this association may depend on the type of antipsychotic treatment. Further studies are necessary to explain the mechanisms of the observed associations.
Collapse
Affiliation(s)
- Anna Michalczyk
- Department of Psychiatry, Pomeranian Medical University in Szczecin, Poland.
| | - Ernest Tyburski
- Department of Health Psychology, Pomeranian Medical University in Szczecin, Poland
| | - Piotr Podwalski
- Department of Psychiatry, Pomeranian Medical University in Szczecin, Poland
| | - Katarzyna Waszczuk
- Department of Psychiatry, Pomeranian Medical University in Szczecin, Poland
| | | | | | - Monika Mak
- Department of Health Psychology, Pomeranian Medical University in Szczecin, Poland
| | | | - Piotr Plichta
- Department of Health Psychology, Pomeranian Medical University in Szczecin, Poland
| | - Maksymilian Bielecki
- Department of Health Psychology, Pomeranian Medical University in Szczecin, Poland
| | | | | | | | - Błażej Misiak
- Department of Psychiatry, Division of Consultation Psychiatry and Neuroscience, Wroclaw Medical University, Poland
| | - Leszek Sagan
- Department of Neurosurgery, Pomeranian Medical University in Szczecin, Poland
| | - Jerzy Samochowiec
- Department of Psychiatry, Pomeranian Medical University in Szczecin, Poland
| |
Collapse
|
6
|
Xie J, Wang Y, Ye C, Li XJ, Lin L. Distinctive Patterns of 5-Methylcytosine and 5-Hydroxymethylcytosine in Schizophrenia. Int J Mol Sci 2024; 25:636. [PMID: 38203806 PMCID: PMC10779130 DOI: 10.3390/ijms25010636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/25/2023] [Accepted: 12/30/2023] [Indexed: 01/12/2024] Open
Abstract
Schizophrenia is a highly heritable neuropsychiatric disorder characterized by cognitive and social dysfunction. Genetic, epigenetic, and environmental factors are together implicated in the pathogenesis and development of schizophrenia. DNA methylation, 5-methycytosine (5mC) and 5-hydroxylcytosine (5hmC) have been recognized as key epigenetic elements in neurodevelopment, ageing, and neurodegenerative diseases. Recently, distinctive 5mC and 5hmC pattern and expression changes of related genes have been discovered in schizophrenia. Antipsychotic drugs that affect 5mC status can alleviate symptoms in patients with schizophrenia, suggesting a critical role for DNA methylation in the pathogenesis of schizophrenia. Further exploring the signatures of 5mC and 5hmC in schizophrenia and developing precision-targeted epigenetic drugs based on this will provide new insights into the diagnosis and treatment of schizophrenia.
Collapse
Affiliation(s)
| | | | | | | | - Li Lin
- Guangdong Key Laboratory of Non-Human Primate Research, Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou 510632, China; (J.X.); (Y.W.); (C.Y.); (X.-J.L.)
| |
Collapse
|
7
|
Zhuo C, Tian H, Song X, Jiang D, Chen G, Cai Z, Ping J, Cheng L, Zhou C, Chen C. Microglia and cognitive impairment in schizophrenia: translating scientific progress into novel therapeutic interventions. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2023; 9:42. [PMID: 37429882 DOI: 10.1038/s41537-023-00370-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 06/21/2023] [Indexed: 07/12/2023]
Abstract
Cognitive impairment is a core clinical feature of schizophrenia, exerting profound adverse effects on social functioning and quality of life in a large proportion of patients with schizophrenia. However, the mechanisms underlying the pathogenesis of schizophrenia-related cognitive impairment are not well understood. Microglia, the primary resident macrophages in the brain, have been shown to play important roles in psychiatric disorders, including schizophrenia. Increasing evidence has revealed excessive microglial activation in cognitive deficits related to a broad range of diseases and medical conditions. Relative to that about age-related cognitive deficits, current knowledge about the roles of microglia in cognitive impairment in neuropsychiatric disorders, such as schizophrenia, is limited, and such research is in its infancy. Thus, we conducted this review of the scientific literature with a focus on the role of microglia in schizophrenia-associated cognitive impairment, aiming to gain insight into the roles of microglial activation in the onset and progression of such impairment and to consider how scientific advances could be translated to preventive and therapeutic interventions. Research has demonstrated that microglia, especially those in the gray matter of the brain, are activated in schizophrenia. Upon activation, microglia release key proinflammatory cytokines and free radicals, which are well-recognized neurotoxic factors contributing to cognitive decline. Thus, we propose that the inhibition of microglial activation holds potential for the prevention and treatment of cognitive deficits in patients with schizophrenia. This review identifies potential targets for the development of new treatment strategies and eventually the improvement of care for these patients. It might also help psychologists and clinical investigators in planning future research.
Collapse
Affiliation(s)
- Chuanjun Zhuo
- Key Laboratory of Sensory Information Processing Abnormalities in Schizophrenia (SIPAS-Lab), Nankai University Affiliated Tianjin Fourth Center Hospital, Tianjin Medical University Affiliated Tianjin Fourth Center Hospital, Tianjin Fourth Center Hospital, Tianjin, China.
- Laboratory of Psychiatric-Neuroimaging-Genetic and Co-morbidity (PNGC-Lab), Nankai University Affiliated Tianjin Anding Hospital, Tianjin Mental Health Center of Tianjin Medical University, Tianjin Anding Hospital, 300222, Tianjin, China.
- Department of Psychiatry, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
- Department of Psychiatry, Wenzhou Seventh peoples Hospital, Wenzhou, China.
| | - Hongjun Tian
- Key Laboratory of Sensory Information Processing Abnormalities in Schizophrenia (SIPAS-Lab), Nankai University Affiliated Tianjin Fourth Center Hospital, Tianjin Medical University Affiliated Tianjin Fourth Center Hospital, Tianjin Fourth Center Hospital, Tianjin, China
| | - Xueqin Song
- Department of Psychiatry, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan International Joint Laboratory of Biological Psychiatry, Zhengzhou, China
- Henan Psychiatric Transformation Research Key Laboratory, Zhengzhou University, Zhengzhou, China
| | - Deguo Jiang
- Department of Psychiatry, Wenzhou Seventh peoples Hospital, Wenzhou, China
| | - Guangdong Chen
- Department of Psychiatry, Wenzhou Seventh peoples Hospital, Wenzhou, China
| | - Ziyao Cai
- Department of Psychiatry, Wenzhou Seventh peoples Hospital, Wenzhou, China
| | - Jing Ping
- Department of Psychiatry, Wenzhou Seventh peoples Hospital, Wenzhou, China
| | - Langlang Cheng
- Department of Psychiatry, Wenzhou Seventh peoples Hospital, Wenzhou, China
| | - Chunhua Zhou
- Department of Pharmacology, The First Hospital of Hebei Medical University, Shijiazhuang, China.
| | - Chunmian Chen
- Department of Psychiatry, Wenzhou Seventh peoples Hospital, Wenzhou, China
| |
Collapse
|
8
|
Wawrzczak-Bargieła A, Bilecki W, Maćkowiak M. Epigenetic Targets in Schizophrenia Development and Therapy. Brain Sci 2023; 13:brainsci13030426. [PMID: 36979236 PMCID: PMC10046502 DOI: 10.3390/brainsci13030426] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/24/2023] [Accepted: 02/26/2023] [Indexed: 03/06/2023] Open
Abstract
Schizophrenia is regarded as a neurodevelopmental disorder with its course progressing throughout life. However, the aetiology and development of schizophrenia are still under investigation. Several data suggest that the dysfunction of epigenetic mechanisms is known to be involved in the pathomechanism of this mental disorder. The present article revised the epigenetic background of schizophrenia based on the data available in online databases (PubMed, Scopus). This paper focused on the role of epigenetic regulation, such as DNA methylation, histone modifications, and interference of non-coding RNAs, in schizophrenia development. The article also reviewed the available data related to epigenetic regulation that may modify the severity of the disease as a possible target for schizophrenia pharmacotherapy. Moreover, the effects of antipsychotics on epigenetic malfunction in schizophrenia are discussed based on preclinical and clinical results. The obtainable data suggest alterations of epigenetic regulation in schizophrenia. Moreover, they also showed the important role of epigenetic modifications in antipsychotic action. There is a need for more data to establish the role of epigenetic mechanisms in schizophrenia therapy. It would be of special interest to find and develop new targets for schizophrenia therapy because patients with schizophrenia could show little or no response to current pharmacotherapy and have treatment-resistant schizophrenia.
Collapse
|
9
|
Adrien V, Bosc N, Fumat H, Tessier C, Ferreri F, Mouchabac S, Tareste D, Nuss P. Higher stress response and altered quality of life in schizophrenia patients with low membrane levels of docosahexaenoic acid. Front Psychiatry 2023; 14:1089724. [PMID: 36816405 PMCID: PMC9937080 DOI: 10.3389/fpsyt.2023.1089724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 01/12/2023] [Indexed: 02/05/2023] Open
Abstract
Schizophrenia is a severe, chronic, and heterogeneous mental disorder that affects approximately 1% of the world population. Ongoing research aims at clustering schizophrenia heterogeneity into various "biotypes" to identify subgroups of individuals displaying homogeneous symptoms, etiopathogenesis, prognosis, and treatment response. The present study is in line with this approach and focuses on a biotype partly characterized by a specific membrane lipid composition. We have examined clinical and biological data of patients with stabilized schizophrenia, including the fatty acid content of their erythrocyte membranes, in particular the omega-3 docosahexaenoic acid (DHA). Two groups of patients of similar size were identified: the DHA- group (N = 19) with a lower proportion of membrane DHA as compared to the norm in the general population, and the DHAn group (N = 18) with a normal proportion of DHA. Compared to DHAn, DHA- patients had a higher number of hospitalizations and a lower quality of life in terms of perceived health and physical health. They also exhibited significant higher interleukin-6 and cortisol blood levels. These results emphasize the importance of measuring membrane lipid and immunoinflammatory biomarkers in stabilized patients to identify a specific subgroup and optimize non-pharmacological interventions. It could also guide future research aimed at proposing specific pharmacological treatments.
Collapse
Affiliation(s)
- Vladimir Adrien
- AP-HP, Sorbonne Université, Department of Psychiatry, Hôpital Saint-Antoine, Paris, France.,Infrastructure for Clinical Research in Neurosciences (iCRIN), Paris Brain Institute, Sorbonne Université, INSERM, CNRS, Paris, France.,Université Paris Cité, INSERM UMR-S 1266, Institut de Psychiatrie et Neurosciences de Paris, Paris, France
| | - Nicolas Bosc
- AP-HP, Sorbonne Université, Department of Psychiatry, Hôpital Saint-Antoine, Paris, France
| | - Hugo Fumat
- Université Paris Cité, INSERM UMR-S 1266, Institut de Psychiatrie et Neurosciences de Paris, Paris, France
| | - Cédric Tessier
- AP-HP, Sorbonne Université, Department of Psychiatry, Hôpital Saint-Antoine, Paris, France
| | - Florian Ferreri
- AP-HP, Sorbonne Université, Department of Psychiatry, Hôpital Saint-Antoine, Paris, France.,Infrastructure for Clinical Research in Neurosciences (iCRIN), Paris Brain Institute, Sorbonne Université, INSERM, CNRS, Paris, France
| | - Stéphane Mouchabac
- AP-HP, Sorbonne Université, Department of Psychiatry, Hôpital Saint-Antoine, Paris, France.,Infrastructure for Clinical Research in Neurosciences (iCRIN), Paris Brain Institute, Sorbonne Université, INSERM, CNRS, Paris, France
| | - David Tareste
- Université Paris Cité, INSERM UMR-S 1266, Institut de Psychiatrie et Neurosciences de Paris, Paris, France
| | - Philippe Nuss
- AP-HP, Sorbonne Université, Department of Psychiatry, Hôpital Saint-Antoine, Paris, France.,Centre de Recherche Saint-Antoine, INSERM UMR S938, Sorbonne Université, Paris, France
| |
Collapse
|
10
|
Micale V, Di Bartolomeo M, Di Martino S, Stark T, Dell'Osso B, Drago F, D'Addario C. Are the epigenetic changes predictive of therapeutic efficacy for psychiatric disorders? A translational approach towards novel drug targets. Pharmacol Ther 2023; 241:108279. [PMID: 36103902 DOI: 10.1016/j.pharmthera.2022.108279] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 09/01/2022] [Accepted: 09/01/2022] [Indexed: 02/06/2023]
Abstract
The etiopathogenesis of mental disorders is not fully understood and accumulating evidence support that clinical symptomatology cannot be assigned to a single gene mutation, but it involves several genetic factors. More specifically, a tight association between genes and environmental risk factors, which could be mediated by epigenetic mechanisms, may play a role in the development of mental disorders. Several data suggest that epigenetic modifications such as DNA methylation, post-translational histone modification and interference of microRNA (miRNA) or long non-coding RNA (lncRNA) may modify the severity of the disease and the outcome of the therapy. Indeed, the study of these mechanisms may help to identify patients particularly vulnerable to mental disorders and may have potential utility as biomarkers to facilitate diagnosis and treatment of psychiatric disorders. This article summarizes the most relevant preclinical and human data showing how epigenetic modifications can be central to the therapeutic efficacy of antidepressant and/or antipsychotic agents, as possible predictor of drugs response.
Collapse
Affiliation(s)
- Vincenzo Micale
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania, Italy.
| | - Martina Di Bartolomeo
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Serena Di Martino
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania, Italy
| | - Tibor Stark
- Department of Pharmacology, Faculty of Medicine, Masaryk University, Brno, Czech Republic; Scientific Core Unit Neuroimaging, Max Planck Institute of Psychiatry, Munich, Germany
| | - Bernardo Dell'Osso
- Department of Biomedical and Clinical Sciences 'Luigi Sacco', University of Milan, Milan, Italy, Department of Mental Health, ASST Fatebenefratelli-Sacco, Milan, Italy; "Aldo Ravelli" Research Center for Neurotechnology and Experimental Brain Therapeutics, Department of Health Sciences, University of Milan Medical School, Milan, Italy; Department of Psychiatry and Behavioral Sciences, Stanford University, CA, USA
| | - Filippo Drago
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania, Italy.
| | - Claudio D'Addario
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy; Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
11
|
Kho SH, Yee JY, Puang SJ, Han L, Chiang C, Rapisarda A, Goh WWB, Lee J, Sng JCG. DNA methylation levels of RELN promoter region in ultra-high risk, first episode and chronic schizophrenia cohorts of schizophrenia. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2022; 8:81. [PMID: 36216926 PMCID: PMC9550813 DOI: 10.1038/s41537-022-00278-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 08/18/2022] [Indexed: 06/16/2023]
Abstract
The essential role of the Reelin gene (RELN) during brain development makes it a prominent candidate in human epigenetic studies of Schizophrenia. Previous literature has reported differing levels of DNA methylation (DNAm) in patients with psychosis. Therefore, this study aimed to (1) examine and compare RELN DNAm levels in subjects at different stages of psychosis cross-sectionally, (2) analyse the effect of antipsychotics (AP) on DNAm, and (3) evaluate the effectiveness and applicability of RELN promoter DNAm as a possible biological-based marker for symptom severity in psychosis.. The study cohort consisted of 56 healthy controls, 87 ultra-high risk (UHR) individuals, 26 first-episode (FE) psychosis individuals and 30 chronic schizophrenia (CS) individuals. The Positive and Negative Syndrome Scale (PANSS) was used to assess Schizophrenia severity. After pyrosequencing selected CpG sites of peripheral blood, the Average mean DNAm levels were compared amongst the 4 subgroups. Our results showed differing levels of DNAm, with UHR having the lowest (7.72 ± 0.19) while the CS had the highest levels (HC: 8.78 ± 0.35; FE: 7.75 ± 0.37; CS: 8.82 ± 0.48). Significantly higher Average mean DNAm levels were found in CS subjects on AP (9.12 ± 0.61) compared to UHR without medication (UHR(-)) (7.39 ± 0.18). A significant association was also observed between the Average mean DNAm of FE and PANSS Negative symptom factor (R2 = 0.237, ß = -0.401, *p = 0.033). In conclusion, our findings suggested different levels of DNAm for subjects at different stages of psychosis. Those subjects that took AP have different DNAm levels. There were significant associations between FE DNAm and Negative PANSS scores. With more future experiments and on larger cohorts, there may be potential use of DNAm of the RELN gene as one of the genes for the biological-based marker for symptom severity in psychosis.
Collapse
Affiliation(s)
- Sok-Hong Kho
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore.
| | - Jie Yin Yee
- Research Division, Institute of Mental Health, Singapore, Singapore
| | - Shu Juan Puang
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Luke Han
- Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore, Singapore
| | - Christine Chiang
- Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore, Singapore
| | - Attilio Rapisarda
- Research Division, Institute of Mental Health, Singapore, Singapore
- Neuroscience and Behavioural Disorders, Duke-NUS Medical School, Singapore, Singapore
| | - Wilson Wen Bin Goh
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Jimmy Lee
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- Research Division, Institute of Mental Health, Singapore, Singapore
- Department of Psychosis, Institute of Mental Health, Singapore, Singapore
| | - Judy Chia Ghee Sng
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
12
|
Ramos-Méndez MA, Tovilla-Zárate CA, Juárez-Rojop IE, Villar-Soto M, Genis-Mendoza AD, González-Castro TB, López-Narváez ML, Martínez-Magaña JJ, Castillo-Avila RG, Villar-Juárez GE. Effect of risperidone on serum IL-6 levels in individuals with schizophrenia: a systematic review and meta-analysis. Int J Psychiatry Clin Pract 2022:1-8. [PMID: 35839173 DOI: 10.1080/13651501.2022.2100264] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
BACKGROUND Risperidone has been significant correlated with a direct effect of interleukin-6 (IL-6) levels in patients with schizophrenia. This fact allows the opportunity to link the probable immunomodulatory effect of antipsychotic medication. Specially, a proper functioning of IL-6 pathway plays a potential role in the treatment or development of schizophrenia. OBJECTIVE Our primary aim was to perform a systematic review and meta-analysis to determine the effect of risperidone on IL-6 levels in individuals with schizophrenia. METHODS Studies were identified through a systematic search using PubMed, Scopus, and Web of Science databases. The articles found were subjected to the inclusion and exclusion criteria; then, the mean and standardised differences were extracted to calculate the standardised mean differences using the CMA software. RESULTS IL-6 levels in individuals with schizophrenia were compared before and after receiving risperidone as treatment. Increased levels of IL-6 levels were observed in individuals with schizophrenia who received risperidone (point estimate 0.249, lower limit 0.042, upper limit 0.455, p-value 0.018). In the Asian population sub-analysis, no statistically significant differences were observed (point estimate 0.103, lower limit -0.187, upper limit 0.215, p value 0.890). When we compared individuals with schizophrenia to the control groups, a significant increase of IL-6 levels was observed in the group with schizophrenia (point estimate 0.248, lower limit 0.024, upper limit 0.472, p-value 0.30). CONCLUSIONS Risperidone appears to play an important role in IL-6 levels in schizophrenia. Potential implications of increased IL-6 levels in people with schizophrenia should be considered in future studies.KEY POINTSIncreased levels of IL-6 levels were observed in individuals with schizophrenia who received risperidone.Risperidone appears to play an important role in IL-6 levels in schizophrenia.This study could serve for future research focussed on IL-6.
Collapse
Affiliation(s)
- Miguel Angel Ramos-Méndez
- División Académica de Ciencias de la Salud, Universidad Juárez Autónoma de Tabasco, Villahermosa, Mexico
| | | | - Isela Esther Juárez-Rojop
- División Académica de Ciencias de la Salud, Universidad Juárez Autónoma de Tabasco, Villahermosa, Mexico
| | - Mario Villar-Soto
- Hospital Regional de Alta Especialidad de Salud Mental, Villahermosa, Mexico
| | - Alma Delia Genis-Mendoza
- Laboratorio de Genómica de Enfermedades Psiquiátricas y Neurodegenerativas, Instituto Nacional de Medicina Genómica, Ciudad de México, Mexico
| | - Thelma Beatriz González-Castro
- División Académica Multidisciplinaria de Jalpa de Méndez, Universidad Juárez Autónoma de Tabasco, Jalpa de Méndez, Mexico
| | - María Lilia López-Narváez
- Hospital Chiapas Nos Une Dr. Gilberto Gómez Maza, Secretaría de Salud de Chiapas, Tuxtla Gutiérrez, Mexico
| | - José Jaime Martínez-Magaña
- Laboratorio de Genómica de Enfermedades Psiquiátricas y Neurodegenerativas, Instituto Nacional de Medicina Genómica, Ciudad de México, Mexico
| | | | | |
Collapse
|
13
|
Francisco RD, Fernando V, Norma E, Madai ME, Marcelo B. Glial changes in schizophrenia: Genetic and epigenetic approach. Indian J Psychiatry 2022; 64:3-12. [PMID: 35400734 PMCID: PMC8992743 DOI: 10.4103/indianjpsychiatry.indianjpsychiatry_104_21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 10/24/2021] [Accepted: 12/23/2021] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Schizophrenia (SCZ) is a severe mental illness that affects one percent of the population, affecting how people think, feel, and behave. Evidence suggests glial cell alteration and some researchers have found genetic risk loci and epigenetic marks that may regulate glia-related genes implicated in SCZ. AIM The aim of this study is to identify genetic and epigenetic changes that have been reported in glial cells or glial-associated genes in SCZ. MATERIALS AND METHODS We searched the articles from PubMed, PubMed Central, Medline, Medscape, and Embase databases up to December 2020 to identify relevant peer-reviewed articles in English. The titles and abstracts were screened to eliminate irrelevant citations. RESULTS Twenty-four original articles were included in the review. Studies were categorized into the following four thematic via: (1) oligodendrocytes, (2) microglia, (3) astrocytes, and (4) perspectives. CONCLUSION This study is the first of its kind to review research on genetic variants and epigenetic modifications associated with glia-related genes implicated in SCZ. Epigenetic evidence is considerably less than genetic evidence in this field. Understanding the pathways of some risk genes and their genetic and epigenetic regulation allows us to understand and find potential targets for future interventions in this mental illness.
Collapse
Affiliation(s)
- Ramos Daniel Francisco
- Faculty of Chemical Sciences, Juarez University of the State of Durango, Durango, Mexico
| | - Vazquez Fernando
- Faculty of Chemical Sciences, Juarez University of the State of Durango, Durango, Mexico.,Research Unit, General Hospital 450, Durango, Mexico
| | - Estrada Norma
- Faculty of Chemical Sciences, Juarez University of the State of Durango, Durango, Mexico
| | - Méndez Edna Madai
- Scientific Research Institute, Juarez University of the State of Durango, Durango, Mexico
| | - Barraza Marcelo
- Faculty of Chemical Sciences, Juarez University of the State of Durango, Durango, Mexico
| |
Collapse
|
14
|
Lisoway AJ, Chen CC, Zai CC, Tiwari AK, Kennedy JL. Toward personalized medicine in schizophrenia: Genetics and epigenetics of antipsychotic treatment. Schizophr Res 2021; 232:112-124. [PMID: 34049235 DOI: 10.1016/j.schres.2021.05.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 04/30/2021] [Accepted: 05/02/2021] [Indexed: 12/21/2022]
Abstract
Schizophrenia is a complex psychiatric disorder where genetic, epigenetic, and environmental factors play a role in disease onset, course of illness, and treatment outcome. Pharmaco(epi)genetic research presents an important opportunity to improve patient care through prediction of medication side effects and response. In this narrative review, we discuss the current state of research and important progress of both genetic and epigenetic factors involved in antipsychotic response, over the past five years. The review is largely focused on the following frequently prescribed antipsychotics: olanzapine, risperidone, aripiprazole, and clozapine. Several consistent pharmacogenetic findings have emerged, in particular pharmacokinetic genes (primarily cytochrome P450 enzymes) and pharmacodynamic genes involving dopamine, serotonin, and glutamate neurotransmission. In addition to studies analysing DNA sequence variants, there are also several pharmacoepigenetic studies of antipsychotic response that have focused on the measurement of DNA methylation. Although pharmacoepigenetics is still in its infancy, consideration of both genetic and epigenetic factors contributing to antipsychotic response and side effects no doubt will be increasingly important in personalized medicine. We provide recommendations for next steps in research and clinical evaluation.
Collapse
Affiliation(s)
- Amanda J Lisoway
- Molecular Brain Science Department, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada; Institute of Medical Science, University of Toronto, Canada
| | - Cheng C Chen
- Molecular Brain Science Department, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada; Institute of Medical Science, University of Toronto, Canada
| | - Clement C Zai
- Molecular Brain Science Department, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada; Institute of Medical Science, University of Toronto, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Canada; Department of Psychiatry, University of Toronto, Canada
| | - Arun K Tiwari
- Molecular Brain Science Department, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Canada
| | - James L Kennedy
- Molecular Brain Science Department, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada; Institute of Medical Science, University of Toronto, Canada; Department of Psychiatry, University of Toronto, Canada.
| |
Collapse
|
15
|
Zhou J, Li M, Wang X, He Y, Xia Y, Sweeney JA, Kopp RF, Liu C, Chen C. Drug Response-Related DNA Methylation Changes in Schizophrenia, Bipolar Disorder, and Major Depressive Disorder. Front Neurosci 2021; 15:674273. [PMID: 34054421 PMCID: PMC8155631 DOI: 10.3389/fnins.2021.674273] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 04/14/2021] [Indexed: 12/12/2022] Open
Abstract
Pharmacotherapy is the most common treatment for schizophrenia (SCZ), bipolar disorder (BD), and major depressive disorder (MDD). Pharmacogenetic studies have achieved results with limited clinical utility. DNA methylation (DNAm), an epigenetic modification, has been proposed to be involved in both the pathology and drug treatment of these disorders. Emerging data indicates that DNAm could be used as a predictor of drug response for psychiatric disorders. In this study, we performed a systematic review to evaluate the reproducibility of published changes of drug response-related DNAm in SCZ, BD and MDD. A total of 37 publications were included. Since the studies involved patients of different treatment stages, we partitioned them into three groups based on their primary focuses: (1) medication-induced DNAm changes (n = 8); (2) the relationship between DNAm and clinical improvement (n = 24); and (3) comparison of DNAm status across different medications (n = 14). We found that only BDNF was consistent with the DNAm changes detected in four independent studies for MDD. It was positively correlated with clinical improvement in MDD. To develop better predictive DNAm factors for drug response, we also discussed future research strategies, including experimental, analytical procedures and statistical criteria. Our review shows promising possibilities for using BDNF DNAm as a predictor of antidepressant treatment response for MDD, while more pharmacoepigenetic studies are needed for treatments of various diseases. Future research should take advantage of a system-wide analysis with a strict and standard analytical procedure.
Collapse
Affiliation(s)
- Jiaqi Zhou
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Miao Li
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xueying Wang
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yuwen He
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yan Xia
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Psychiatry, State University of New York Upstate Medical University, Syracuse, NY, United States
| | - John A. Sweeney
- Department of Psychiatry, University of Cincinnati, Cincinnati, OH, United States
| | - Richard F. Kopp
- Department of Psychiatry, State University of New York Upstate Medical University, Syracuse, NY, United States
| | - Chunyu Liu
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Psychiatry, State University of New York Upstate Medical University, Syracuse, NY, United States
| | - Chao Chen
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Animal Models for Human Diseases, Central South University, Changsha, Hunan, China
| |
Collapse
|
16
|
Smigielski L, Jagannath V, Rössler W, Walitza S, Grünblatt E. Epigenetic mechanisms in schizophrenia and other psychotic disorders: a systematic review of empirical human findings. Mol Psychiatry 2020; 25:1718-1748. [PMID: 31907379 DOI: 10.1038/s41380-019-0601-3] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 11/05/2019] [Accepted: 11/07/2019] [Indexed: 12/26/2022]
Abstract
Schizophrenia and other psychotic disorders are highly debilitating psychiatric conditions that lack a clear etiology and exhibit polygenic inheritance underlain by pleiotropic genes. The prevailing explanation points to the interplay between predisposing genes and environmental exposure. Accumulated evidence suggests that epigenetic regulation of the genome may mediate dynamic gene-environment interactions at the molecular level by modulating the expression of psychiatric phenotypes through transcription factors. This systematic review summarizes the current knowledge linking schizophrenia and other psychotic disorders to epigenetics, based on PubMed and Web of Science database searches conducted according to the PRISMA guidelines. Three groups of mechanisms in case-control studies of human tissue (i.e., postmortem brain and bio-fluids) were considered: DNA methylation, histone modifications, and non-coding miRNAs. From the initial pool of 3,204 records, 152 studies met our inclusion criteria (11,815/11,528, 233/219, and 2,091/1,827 cases/controls for each group, respectively). Many of the findings revealed associations with epigenetic modulations of genes regulating neurotransmission, neurodevelopment, and immune function, as well as differential miRNA expression (e.g., upregulated miR-34a, miR-7, and miR-181b). Overall, actual evidence moderately supports an association between epigenetics and schizophrenia and other psychotic disorders. However, heterogeneous results and cross-tissue extrapolations call for future work. Integrating epigenetics into systems biology may critically enhance research on psychosis and thus our understanding of the disorder. This may have implications for psychiatry in risk stratification, early recognition, diagnostics, precision medicine, and other interventional approaches targeting epigenetic fingerprints.
Collapse
Affiliation(s)
- Lukasz Smigielski
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital of Psychiatry Zurich, University of Zurich, Zurich, Switzerland. .,The Zurich Program for Sustainable Development of Mental Health Services (ZInEP), University Hospital of Psychiatry Zurich, Zurich, Switzerland.
| | - Vinita Jagannath
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital of Psychiatry Zurich, University of Zurich, Zurich, Switzerland.,Merck Sharp & Dohme (MSD) R&D Innovation Centre, London, UK
| | - Wulf Rössler
- The Zurich Program for Sustainable Development of Mental Health Services (ZInEP), University Hospital of Psychiatry Zurich, Zurich, Switzerland.,Department of Psychiatry, Psychotherapy and Psychosomatics, University Hospital of Psychiatry, University of Zurich, Zurich, Switzerland.,Department of Psychiatry and Psychotherapy, Charité Universitätsmedizin, Berlin, Germany.,Laboratory of Neuroscience, Institute of Psychiatry, Universidade de São Paulo, São Paulo, Brazil
| | - Susanne Walitza
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital of Psychiatry Zurich, University of Zurich, Zurich, Switzerland.,The Zurich Program for Sustainable Development of Mental Health Services (ZInEP), University Hospital of Psychiatry Zurich, Zurich, Switzerland.,Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland.,Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - Edna Grünblatt
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital of Psychiatry Zurich, University of Zurich, Zurich, Switzerland.,Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland.,Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
17
|
Bergé D, Mané A, Lesh TA, Bioque M, Barcones F, Gonzalez-Pinto AM, Parellada M, Vieta E, Castro-Fornieles J, Rodriguez-Jimenez R, García-Portilla MP, Usall J, Carter CS, Cabrera B, Bernardo M, Janssen J. Elevated Extracellular Free-Water in a Multicentric First-Episode Psychosis Sample, Decrease During the First 2 Years of Illness. Schizophr Bull 2020; 46:846-856. [PMID: 31915835 PMCID: PMC7342177 DOI: 10.1093/schbul/sbz132] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Recent diffusion imaging studies using free-water (FW) elimination have shown increased FW in gray matter (GM) and white matter (WM) in first-episode psychosis (FEP) and lower corrected fractional anisotropy (FAt) in WM in chronic schizophrenia. However, little is known about the longitudinal stability and clinical significance of these findings. To determine tissue-specific FW and FAt abnormalities in FEP, as part of a multicenter Spanish study, 132 FEP and 108 healthy controls (HC) were clinically characterized and underwent structural and diffusion-weighted MRI scanning. FEP subjects were classified as schizophrenia spectrum disorder (SSD) or non-SSD. Of these subjects, 45 FEP and 41 HC were longitudinally assessed and rescanned after 2 years. FA and FW tissue-specific measurements were cross-sectional and longitudinally compared between groups using voxel-wise analyses in the skeletonized WM and vertex-wise analyses in the GM surface. SSD and non-SSD subjects showed (a) higher baseline FW in temporal regions and in whole GM average (P.adj(SSD vs HC) = .003, P.adj(Non-SSD vs HC) = .040) and (b) lower baseline FAt in several WM tracts. SSD, but not non-SSD, showed (a) higher FW in several WM tracts and in whole WM (P.adj(SSD vs HC)= .049) and (b) a significant FW decrease over time in temporal cortical regions and in whole GM average (P.adj = .011). Increased extracellular FW in the brain is a reliable finding in FEP, and in SSD appears to decrease over the early course of the illness. FAt abnormalities are stable during the first years of psychosis.
Collapse
Affiliation(s)
- Daniel Bergé
- Neuroscience Department, Neuroimaging Group, IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain,Department of Psychiatry and Forensic Medicine, Autonomous University of Barcelona, Bellaterra, Spain,CIBERSAM, Madrid, Spain,To whom correspondence should be addressed; IMIM, Neuroimaging group. c/ Doctor Aiguader 88, 08003, Barcelona, Spain; tel: +34-932483175, fax: 0034 93 248 3445, e-mail:
| | - Anna Mané
- Neuroscience Department, Neuroimaging Group, IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain,Department of Psychiatry and Forensic Medicine, Autonomous University of Barcelona, Bellaterra, Spain,CIBERSAM, Madrid, Spain
| | - Tyler A Lesh
- Department of Psychiatry and Behavioral Sciences, University of California at Davis (UCDAVIS), Sacramento, CA
| | - Miquel Bioque
- Schizophrenia Unit, Hospital Clínic Barcelona, Barcelona, Spain
| | - Fe Barcones
- Department of Psychiatry, Instituto Aragonés de Ciencias de la Salud, Zaragoza, Spain,Department of Family Medicine, Hospital Universitario Miguel Servet, Zaragoza, Spain,Department of Medicine and Psychiatry, University of Zaragoza, Zaragoza, Spain
| | - Ana Maria Gonzalez-Pinto
- CIBERSAM, Madrid, Spain,BioAraba Health Research Institute, Vitoria-Gasteiz, Spain,Department of Neuroscience, University of the Basque Country, Leioa, Spain
| | - Mara Parellada
- CIBERSAM, Madrid, Spain,Child and Adolescent Psychiatry, Hospital Gregorio Marañon, Madrid, Spain
| | - Eduard Vieta
- CIBERSAM, Madrid, Spain,Bipolar and Depressive Disorders Unit, Hospital Clínic Barcelona, University of Barcelona, Barcelona, Spain
| | - Josefina Castro-Fornieles
- CIBERSAM, Madrid, Spain,Department of Child and Adolescent Psychiatry and Psychology, IDIBAPS, Hospital Clínic Barcelona, Barcelona, Spain
| | - Roberto Rodriguez-Jimenez
- CIBERSAM, Madrid, Spain,Department of Cognition and Psychosis, Instituto de Investigación Sanitaria 12 de Octubre (imas12), Madrid, Spain
| | | | - Judith Usall
- Research and Development Unit, Parc Sanitari Sant Joan de Déu, Sant Boi de Llobregat, Spain
| | - Cameron S Carter
- Department of Psychiatry and Behavioral Sciences, University of California at Davis (UCDAVIS), Sacramento, CA
| | - Bibiana Cabrera
- CIBERSAM, Madrid, Spain,Schizophrenia Unit, Hospital Clínic Barcelona, Barcelona, Spain
| | - Miguel Bernardo
- CIBERSAM, Madrid, Spain,Schizophrenia Unit, Hospital Clínic Barcelona, Barcelona, Spain
| | - Joost Janssen
- CIBERSAM, Madrid, Spain,Child and Adolescent Psychiatry, Hospital Universitario Gregorio Marañon, Madrid, Spain,Brain Center Rudolf Magnus, UMC Ultrecht, Ultrecht, The Netherlands
| | | |
Collapse
|
18
|
Burghardt KJ, Khoury AS, Msallaty Z, Yi Z, Seyoum B. Antipsychotic Medications and DNA Methylation in Schizophrenia and Bipolar Disorder: A Systematic Review. Pharmacotherapy 2020; 40:331-342. [PMID: 32058614 DOI: 10.1002/phar.2375] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The pharmacoepigenetics of antipsychotic treatment in severe mental illness is a growing area of research that aims to understand the interface between antipsychotic treatment and genetic regulation. Pharmacoepigenetics may some day assist in identifying treatment response mechanisms or become one of the components in the implementation of precision medicine. To understand the current evidence regarding the effects of antipsychotics on DNA methylation a systematic review with qualitative synthesis was performed through Pubmed, Embase and Psychinfo from earliest data to June 2019. Studies were included if they analyzed DNA methylation in an antipsychotic-treated population of patients with schizophrenia or bipolar disorder. Data extraction occurred via a standardized format and study quality was assessed. Twenty-nine studies were identified for inclusion. Study design, antipsychotic type, sample source, and methods of DNA methylation measurement varied across all studies. Eighteen studies analyzed methylation in patients with schizophrenia, four studies in patients with bipolar disorder, and seven studies in a combined sample of schizophrenia and bipolar disorder. Twenty-two studies used observational samples whereas the remainder used prospectively treated samples. Six studies assessed global methylation, five assessed epigenome-wide, and 15 performed a candidate epigenetic study. Two studies analyzed both global and gene-specific methylation, whereas one study performed a simultaneous epigenome-wide and gene-specific study. Only three genes were analyzed in more than one gene-specific study and the findings were discordant. The state of the pharmacoepigenetic literature on antipsychotic use is still in its early stages and uniform reporting of methylation site information is needed. Future work should concentrate on using prospective sampling with appropriate control groups and begin to replicate many of the novel associations that have been reported.
Collapse
Affiliation(s)
- Kyle J Burghardt
- Wayne State University Eugene Applebaum College of Pharmacy and Health Sciences, Detroit, Michigan
| | - Audrey S Khoury
- Wayne State University Eugene Applebaum College of Pharmacy and Health Sciences, Detroit, Michigan
| | - Zaher Msallaty
- Wayne State University Eugene Applebaum College of Pharmacy and Health Sciences, Detroit, Michigan
| | - Zhengping Yi
- Wayne State University Eugene Applebaum College of Pharmacy and Health Sciences, Detroit, Michigan
| | - Berhane Seyoum
- Wayne State University School of Medicine, Detroit, Michigan
| |
Collapse
|
19
|
Subbanna M, Shivakumar V, Talukdar PM, Narayanaswamy JC, Venugopal D, Berk M, Varambally S, Venkatasubramanian G, Debnath M. Role of IL-6/RORC/IL-22 axis in driving Th17 pathway mediated immunopathogenesis of schizophrenia. Cytokine 2018; 111:112-118. [PMID: 30138899 DOI: 10.1016/j.cyto.2018.08.016] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 08/01/2018] [Accepted: 08/13/2018] [Indexed: 02/07/2023]
Abstract
The immuno-inflammatory origin of schizophrenia in a subset of patients is viewed as a key element of an overarching etiological construct. Despite substantial research, the immune components exerting major effect are yet to be fully clarified. Disrupted T cell networks have consistently been linked to the pathogenesis of schizophrenia. Amongst the Th cell subsets, the Th17 cells have emerged as a paradigmatic lineage with significant functional implications in a vast number of immune mediated diseases including brain disorders such as schizophrenia. The present study was aimed at examining the functional role of the Th17 pathway in schizophrenia. To address this, genotyping of IL17A (rs2275913; G197A) Single Nucleotide Polymorphism was carried out by the PCR-RFLP method in 221 schizophrenia patients and 223 healthy control subjects. Gene expression of two transcription factors STAT3 and RORC was quantified in a subset of drug naïve schizophrenia patients (n = 56) and healthy controls (n = 52) by TaqMan assay. The plasma levels of fifteen cytokines belonging to Th17 pathway were estimated in a subset of drug naïve schizophrenia patients (n = 61) and healthy controls (n = 50) by using Bio-Plex Pro Human Th17 cytokine assays. The AA genotype was associated with higher total score of bizarre behaviour and apathy in female schizophrenia patients. A high gene expression level of RORC was observed in drug naïve schizophrenia patients. In addition, significantly elevated plasma levels of IL-6 and IL-22, and reduced levels of IL-1β and IL-17F were noted in schizophrenia patients. Taken together, these findings indicate a dysregulated Th17 pathway in schizophrenia patients.
Collapse
Affiliation(s)
- Manjula Subbanna
- Department of Human Genetics, National Institute of Mental Health and Neurosciences, Bangalore, Karnataka, India; Translational Psychiatry Laboratory, Neurobiology Research Centre, National Institute of Mental Health and Neurosciences, Bangalore, Karnataka, India
| | - Venkataram Shivakumar
- Translational Psychiatry Laboratory, Neurobiology Research Centre, National Institute of Mental Health and Neurosciences, Bangalore, Karnataka, India; Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore, Karnataka, India
| | - Pinku Mani Talukdar
- Department of Human Genetics, National Institute of Mental Health and Neurosciences, Bangalore, Karnataka, India
| | - Janardhanan C Narayanaswamy
- Translational Psychiatry Laboratory, Neurobiology Research Centre, National Institute of Mental Health and Neurosciences, Bangalore, Karnataka, India; Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore, Karnataka, India
| | - Deepthi Venugopal
- Department of Human Genetics, National Institute of Mental Health and Neurosciences, Bangalore, Karnataka, India; Translational Psychiatry Laboratory, Neurobiology Research Centre, National Institute of Mental Health and Neurosciences, Bangalore, Karnataka, India
| | - Michael Berk
- Deakin University, School of Medicine, IMPACT Strategic Research Centre, Geelong, Victoria, Australia; Orygen, The Centre of Excellence in Youth Mental Health, The Department of Psychiatry and the Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Australia
| | - Shivarama Varambally
- Translational Psychiatry Laboratory, Neurobiology Research Centre, National Institute of Mental Health and Neurosciences, Bangalore, Karnataka, India; Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore, Karnataka, India
| | - Ganesan Venkatasubramanian
- Translational Psychiatry Laboratory, Neurobiology Research Centre, National Institute of Mental Health and Neurosciences, Bangalore, Karnataka, India; Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore, Karnataka, India
| | - Monojit Debnath
- Department of Human Genetics, National Institute of Mental Health and Neurosciences, Bangalore, Karnataka, India.
| |
Collapse
|