1
|
Lin X, Feng X, Sun L, Wang Y, Wu X, Lu S, Shao L, Wang W, Yang L, Geng W, Lin H. Effects of esketamine on postoperative fatigue syndrome in patients after laparoscopic resection of gastric carcinoma: a randomized controlled trial. BMC Anesthesiol 2024; 24:185. [PMID: 38789968 PMCID: PMC11127346 DOI: 10.1186/s12871-024-02513-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 03/27/2024] [Indexed: 05/26/2024] Open
Abstract
BACKGROUND Despite the implementation of various postoperative management strategies, the prevalence of postoperative fatigue syndrome (POFS) remains considerable among individuals undergoing laparoscopic radical gastrectomy. While the N-methyl-D-aspartic acid receptor antagonist esketamine has demonstrated efficacy in enhancing sleep quality and alleviating postoperative pain, its impact on POFS remains uncertain. Consequently, the objective of this study is to ascertain whether perioperative administration of esketamine can effectively mitigate the occurrence of POFS in patients undergoing laparoscopic radical gastrectomy. METHODS A total of 133 patients diagnosed with gastric cancer were randomly assigned to two groups, namely the control group (Group C) (n = 66) and the esketamine group (Group E) (n = 67), using a double-blind method. The Group C received standardized anesthesia, while the Group E received esketamine in addition to the standardized anesthesia. The primary outcome measure assessed was the Christensen fatigue score at 3 days after the surgical procedure, while the secondary outcomes included the disparities in postoperative fatigue, postoperative pain, sleep quality, and adverse reactions between the two groups. RESULTS In the group receiving esketamine, the fatigue scores of Christensen on the third day after surgery were significantly lower compared to the Group C (estimated difference, -0.70; 95% CI, -1.37 to -0.03; P = 0.040). Additionally, there was a significant decrease in the occurrence of fatigue in the Group E compared to the Group C on the first and third days following surgery (P < 0.05). Also, compared to individuals who had distal gastrectomy, those who had entire gastrectomy demonstrated a higher degree of postoperative tiredness reduction with esketamine. Furthermore, the Group E exhibited reduced postoperative pain and improved sleep in comparison to the Group C. Both groups experienced similar rates of adverse events. CONCLUSIONS The use of esketamine during the perioperative period can improve POFS after laparoscopic radical gastrectomy, without adverse reactions. TRIAL REGISTRATION Registered in the Chinese Clinical Trial Registry (ChiCTR2300072167) on 05/06 /2023.
Collapse
Affiliation(s)
- Xinru Lin
- Department of Pain, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
- Wenzhou Key Laboratory of Perioperative Medicine (2021HZSY0069), Wenzhou, 325000, China
| | - Xiaoxue Feng
- Department of Pain, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
- Wenzhou Key Laboratory of Perioperative Medicine (2021HZSY0069), Wenzhou, 325000, China
| | - Linxiao Sun
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, 325000, China
| | - Yijian Wang
- Department of Pain, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
- Wenzhou Key Laboratory of Perioperative Medicine (2021HZSY0069), Wenzhou, 325000, China
| | - Xudong Wu
- Department of Pain, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
- Wenzhou Key Laboratory of Perioperative Medicine (2021HZSY0069), Wenzhou, 325000, China
| | - Shufang Lu
- Department of Pain, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
- Wenzhou Key Laboratory of Perioperative Medicine (2021HZSY0069), Wenzhou, 325000, China
| | - Lulu Shao
- Department of Pain, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
- Wenzhou Key Laboratory of Perioperative Medicine (2021HZSY0069), Wenzhou, 325000, China
| | - Wenchao Wang
- Department of Pain, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
- Wenzhou Key Laboratory of Perioperative Medicine (2021HZSY0069), Wenzhou, 325000, China
| | - Liqun Yang
- Department of Anesthesiology Renji Hospital, Shanghai Jiaotong University School of Medicine, No.160 Pujian road, Shanghai, 200127, China.
| | - Wujun Geng
- Department of Pain, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China.
- Wenzhou Key Laboratory of Perioperative Medicine (2021HZSY0069), Wenzhou, 325000, China.
| | - Hai Lin
- Department of Pain, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China.
- Wenzhou Key Laboratory of Perioperative Medicine (2021HZSY0069), Wenzhou, 325000, China.
| |
Collapse
|
2
|
Woeppel KM, Krahe DD, Robbins EM, Vazquez AL, Cui XT. Electrically Controlled Vasodilator Delivery from PEDOT/Silica Nanoparticle Modulates Vessel Diameter in Mouse Brain. Adv Healthc Mater 2024; 13:e2301221. [PMID: 37916912 PMCID: PMC10842908 DOI: 10.1002/adhm.202301221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 10/16/2023] [Indexed: 11/03/2023]
Abstract
Vascular damage and reduced tissue perfusion are expected to majorly contribute to the loss of neurons or neural signals around implanted electrodes. However, there are limited methods of controlling the vascular dynamics in tissues surrounding these implants. This work utilizes conducting polymer poly(ethylenedioxythiophene) and sulfonated silica nanoparticle composite (PEDOT/SNP) to load and release a vasodilator, sodium nitroprusside, to controllably dilate the vasculature around carbon fiber electrodes (CFEs) implanted in the mouse cortex. The vasodilator release is triggered via electrical stimulation and the amount of release increases with increasing electrical pulses. The vascular dynamics are monitored in real-time using two-photon microscopy, with changes in vessel diameters quantified before, during, and after the release of the vasodilator into the tissues. This work observes significant increases in vessel diameters when the vasodilator is electrically triggered to release, and differential effects of the drug release on vessels of different sizes. In conclusion, the use of nanoparticle reservoirs in conducting polymer-based drug delivery platforms enables the controlled delivery of vasodilator into the implant environment, effectively altering the local vascular dynamics on demand. With further optimization, this technology could be a powerful tool to improve the neural electrode-tissue interface and study neurovascular coupling.
Collapse
Affiliation(s)
- Kevin M Woeppel
- Department of Bioengineering, University of Pittsburgh, United States
| | - Daniela D Krahe
- Department of Bioengineering, University of Pittsburgh, United States
| | - Elaine M Robbins
- Department of Bioengineering, University of Pittsburgh, United States
| | - Alberto L Vazquez
- Department of Bioengineering, University of Pittsburgh, United States
- Center for Neural Basis of Cognition, University of Pittsburgh and Carnegie Mellon University, United States
- Department of Radiology, University of Pittsburgh, United States
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, United States
| | - Xinyan Tracy Cui
- Department of Bioengineering, University of Pittsburgh, United States
- Center for Neural Basis of Cognition, University of Pittsburgh and Carnegie Mellon University, United States
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, United States
| |
Collapse
|
3
|
Gärtner M, Weigand A, Meiering MS, Weigner D, Carstens L, Keicher C, Hertrampf R, Beckmann C, Mennes M, Wunder A, Grimm S. Region- and time- specific effects of ketamine on cerebral blood flow: a randomized controlled trial. Neuropsychopharmacology 2023; 48:1735-1741. [PMID: 37231079 PMCID: PMC10579356 DOI: 10.1038/s41386-023-01605-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 05/04/2023] [Accepted: 05/07/2023] [Indexed: 05/27/2023]
Abstract
There is intriguing evidence suggesting that ketamine might have distinct acute and delayed neurofunctional effects, as its acute administration transiently induces schizophrenia-like symptoms, while antidepressant effects slowly emerge and are most pronounced 24 h after administration. Studies attempting to characterize ketamine's mechanism of action by using blood oxygen level dependent (BOLD) imaging have yielded inconsistent results regarding implicated brain regions and direction of effects. This may be due to intrinsic properties of the BOLD contrast, while cerebral blood flow (CBF), as measured with arterial spin labeling, is a single physiological marker more directly related to neural activity. As effects of acute ketamine challenge are sensitive to modulation by pretreatment with lamotrigine, which inhibits glutamate release, a combination of these approaches should be particularly suited to offer novel insights. In total, 75 healthy participants were investigated in a double blind, placebo-controlled, randomized, parallel-group study and underwent two scanning sessions (acute/post 24 h.). Acute ketamine administration was associated with higher perfusion in interior frontal gyrus (IFG) and dorsolateral prefrontal cortex (DLPFC), but no other investigated brain region. Inhibition of glutamate release by pretreatment with lamotrigine abolished ketamine's effect on perfusion. At the delayed time point, pretreatment with lamotrigine was associated with lower perfusion in IFG. These findings underscore the idea that regionally selective patterns of CBF changes reflect proximate effects of modulated glutamate release on neuronal activity. Furthermore, region- specific sustained effects indicate both a swift restoration of disturbed homeostasis in DLPFC as well changes occurring beyond the immediate effects on glutamate signaling in IFG.
Collapse
Affiliation(s)
- Matti Gärtner
- Medical School Berlin, Berlin, Germany.
- Department of Psychiatry and Psychotherapy, Charité, Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Berlin, Germany.
| | | | | | | | | | | | | | | | | | - Andreas Wunder
- Translational Medicine and Clinical Pharmacology, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Simone Grimm
- Medical School Berlin, Berlin, Germany
- Department of Psychiatry and Psychotherapy, Charité, Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Berlin, Germany
- Department of Psychiatry, Psychotherapy and Psychosomatics, University Hospital of Psychiatry, University of Zurich, Zurich, Switzerland
| |
Collapse
|
4
|
Boucherie DE, Reneman L, Ruhé HG, Schrantee A. Neurometabolite changes in response to antidepressant medication: A systematic review of 1H-MRS findings. Neuroimage Clin 2023; 40:103517. [PMID: 37812859 PMCID: PMC10563053 DOI: 10.1016/j.nicl.2023.103517] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/22/2023] [Accepted: 09/23/2023] [Indexed: 10/11/2023]
Abstract
Selective serotonin reuptake inhibitors (SSRIs), serotonin and noradrenaline reuptake inhibitors (SNRIs), and (es)ketamine are used to treat major depressive disorder (MDD). These different types of medication may involve common neural pathways related to glutamatergic and GABAergic neurotransmitter systems, both of which have been implicated in MDD pathology. We conducted a systematic review of pharmacological proton Magnetic Resonance Spectroscopy (1H-MRS) studies in healthy volunteers and individuals with MDD to explore the potential impact of these medications on glutamatergic and GABAergic systems. We searched PubMed, Web of Science and Embase and included randomized controlled trials or cohort studies, which assessed the effects of SSRIs, SNRIs, or (es)ketamine on glutamate, glutamine, Glx or GABA using single-voxel 1H-MRS or Magnetic Resonance Spectroscopic Imaging (MRSI). Additionally, studies were included when they used a field strength > 1.5 T, and when a comparison of metabolite levels between antidepressant treatment and placebo or baseline with post-medication metabolite levels was done. We excluded animal studies, duplicate publications, or articles with 1H-MRS data already described in another included article. Twenty-nine studies were included in this review. Fifteen studies investigated the effect of administration or treatment with SSRIs or SNRIs, and fourteen studies investigated the effect of (es)ketamine on glutamatergic and GABAergic metabolite levels. Studies on SSRIs and SNRIs were highly variable, generally underpowered, and yielded no consistent findings across brain regions or specific populations. Although studies on (es)ketamine were also highly variable, some demonstrated an increase in glutamate levels in the anterior cingulate cortex in a time-dependent manner after administration. Our findings highlight the need for standardized study and acquisition protocols. Additionally, measuring metabolites dynamically over time or combining 1H-MRS with whole brain functional imaging techniques could provide valuable insights into the effects of these medications on glutamate and GABAergic neurometabolism.
Collapse
Affiliation(s)
- Daphne E Boucherie
- Amsterdam UMC, Location AMC, Department of Radiology and Nuclear Medicine, Meibergdreef 9, 1109 AZ Amsterdam, the Netherlands.
| | - Liesbeth Reneman
- Department of Psychiatry, Radboudumc, Radboud University, Reinier Postlaan 4, 6525 GC Nijmegen, the Netherlands
| | - Henricus G Ruhé
- Amsterdam UMC, Location AMC, Department of Radiology and Nuclear Medicine, Meibergdreef 9, 1109 AZ Amsterdam, the Netherlands; Department of Psychiatry, Radboudumc, Radboud University, Reinier Postlaan 4, 6525 GC Nijmegen, the Netherlands; Donders Institute for Brain Cognition and Behaviour, Radboud University, Kapittelweg 29, 6525 EN Nijmegen, the Netherlands
| | - Anouk Schrantee
- Amsterdam UMC, Location AMC, Department of Radiology and Nuclear Medicine, Meibergdreef 9, 1109 AZ Amsterdam, the Netherlands
| |
Collapse
|
5
|
Wolf EJ, Hawn SE, Sullivan DR, Miller MW, Sanborn V, Brown E, Neale Z, Fein-Schaffer D, Zhao X, Logue MW, Fortier CB, McGlinchey RE, Milberg WP. Neurobiological and genetic correlates of the dissociative subtype of posttraumatic stress disorder. JOURNAL OF PSYCHOPATHOLOGY AND CLINICAL SCIENCE 2023; 132:409-427. [PMID: 37023279 PMCID: PMC10286858 DOI: 10.1037/abn0000795] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
Abstract
Approximately 10%-30% of individuals with posttraumatic stress disorder (PTSD) exhibit a dissociative subtype of the condition defined by symptoms of depersonalization and derealization. This study examined the psychometric evidence for the dissociative subtype of PTSD in a sample of young, primarily male post-9/11-era Veterans (n = 374 at baseline and n = 163 at follow-up) and evaluated its biological correlates with respect to resting state functional connectivity (default mode network [DMN]; n = 275), brain morphology (hippocampal subfield volume and cortical thickness; n = 280), neurocognitive functioning (n = 337), and genetic variation (n = 193). Multivariate analyses of PTSD and dissociation items suggested a class structure was superior to dimensional and hybrid ones, with 7.5% of the sample comprising the dissociative class; this group showed stability over 1.5 years. Covarying for age, sex, and PTSD severity, linear regression models revealed that derealization/depersonalization severity was associated with: decreased DMN connectivity between bilateral posterior cingulate cortex and right isthmus (p = .015; adjusted-p [padj] = .097); increased bilateral whole hippocampal, hippocampal head, and molecular layer head volume (p = .010-.034; padj = .032-.053); worse self-monitoring (p = .018; padj = .079); and a candidate genetic variant (rs263232) in the adenylyl cyclase 8 gene (p = .026), previously associated with dissociation. Results converged on biological structures and systems implicated in sensory integration, the neural representation of spatial awareness, and stress-related spatial learning and memory, suggesting possible mechanisms underlying the dissociative subtype of PTSD. (PsycInfo Database Record (c) 2023 APA, all rights reserved).
Collapse
Affiliation(s)
- Erika J. Wolf
- National Center for PTSD at VA Boston Healthcare System, Boston, MA
- Department of Psychiatry, Boston University School of Medicine, Boston, MA
| | - Sage E. Hawn
- National Center for PTSD at VA Boston Healthcare System, Boston, MA
- Department of Psychiatry, Boston University School of Medicine, Boston, MA
| | - Danielle R. Sullivan
- National Center for PTSD at VA Boston Healthcare System, Boston, MA
- Department of Psychiatry, Boston University School of Medicine, Boston, MA
| | - Mark W. Miller
- National Center for PTSD at VA Boston Healthcare System, Boston, MA
- Department of Psychiatry, Boston University School of Medicine, Boston, MA
| | - Victoria Sanborn
- National Center for PTSD at VA Boston Healthcare System, Boston, MA
| | - Emma Brown
- Translational Research Center for TBI and Stress Disorders and Geriatric Research Educational and Clinical Center, VA Boston Healthcare System, Boston, MA
| | - Zoe Neale
- National Center for PTSD at VA Boston Healthcare System, Boston, MA
- Department of Psychiatry, Boston University School of Medicine, Boston, MA
| | | | - Xiang Zhao
- National Center for PTSD at VA Boston Healthcare System, Boston, MA
- Department of Psychiatry, Boston University School of Medicine, Boston, MA
| | - Mark W. Logue
- National Center for PTSD at VA Boston Healthcare System, Boston, MA
- Department of Psychiatry, Boston University School of Medicine, Boston, MA
- Department of Biostatistics, Boston University School of Public Health Boston, MA
- Biomedical Genetics, Boston University School of Medicine, Boston, MA
| | - Catherine B. Fortier
- Translational Research Center for TBI and Stress Disorders and Geriatric Research Educational and Clinical Center, VA Boston Healthcare System, Boston, MA
- Department of Psychiatry, Harvard Medical School, Boston, MA
| | - Regina E. McGlinchey
- Translational Research Center for TBI and Stress Disorders and Geriatric Research Educational and Clinical Center, VA Boston Healthcare System, Boston, MA
- Department of Psychiatry, Harvard Medical School, Boston, MA
| | - William P. Milberg
- Translational Research Center for TBI and Stress Disorders and Geriatric Research Educational and Clinical Center, VA Boston Healthcare System, Boston, MA
- Department of Psychiatry, Harvard Medical School, Boston, MA
| |
Collapse
|
6
|
Pan Y, Park K, Ren J, Volkow ND, Ling H, Koretsky AP, Du C. Dynamic 3D imaging of cerebral blood flow in awake mice using self-supervised-learning-enhanced optical coherence Doppler tomography. Commun Biol 2023; 6:298. [PMID: 36944712 PMCID: PMC10030663 DOI: 10.1038/s42003-023-04656-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 03/03/2023] [Indexed: 03/23/2023] Open
Abstract
Cerebral blood flow (CBF) is widely used to assess brain function. However, most preclinical CBF studies have been performed under anesthesia, which confounds findings. High spatiotemporal-resolution CBF imaging of awake animals is challenging due to motion artifacts and background noise, particularly for Doppler-based flow imaging. Here, we report ultrahigh-resolution optical coherence Doppler tomography (µODT) for 3D imaging of CBF velocity (CBFv) dynamics in awake mice by developing self-supervised deep-learning for effective image denoising and motion-artifact removal. We compare cortical CBFv in awake vs. anesthetized mice and their dynamic responses in arteriolar, venular and capillary networks to acute cocaine (1 mg/kg, i.v.), a highly addictive drug associated with neurovascular toxicity. Compared with awake, isoflurane (2-2.5%) induces vasodilation and increases CBFv within 2-4 min, whereas dexmedetomidine (0.025 mg/kg, i.p.) does not change vessel diameters nor flow. Acute cocaine decreases CBFv to the same extent in dexmedetomidine and awake states, whereas decreases are larger under isoflurane, suggesting that isoflurane-induced vasodilation might have facilitated detection of cocaine-induced vasoconstriction. Awake mice after chronic cocaine show severe vasoconstriction, CBFv decreases and vascular adaptations with extended diving arteriolar/venular vessels that prioritize blood supply to deeper cortical capillaries. The 3D imaging platform we present provides a powerful tool to study dynamic changes in vessel diameters and morphology alongside CBFv networks in the brain of awake animals that can advance our understanding of the effects of drugs and disease conditions (ischemia, tumors, wound healing).
Collapse
Affiliation(s)
- Yingtian Pan
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, 11794, USA.
| | - Kicheon Park
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Jiaxiang Ren
- Department of Computer Science, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Nora D Volkow
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, 20857, USA
| | - Haibin Ling
- Department of Computer Science, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Alan P Koretsky
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Congwu Du
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, 11794, USA
| |
Collapse
|
7
|
Romand R, Ehret G. Neuro-functional modeling of near-death experiences in contexts of altered states of consciousness. Front Psychol 2023; 13:846159. [PMID: 36743633 PMCID: PMC9891231 DOI: 10.3389/fpsyg.2022.846159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 11/23/2022] [Indexed: 01/19/2023] Open
Abstract
Near-death experiences (NDEs) including out-of-body experiences (OBEs) have been fascinating phenomena of perception both for affected persons and for communities in science and medicine. Modern progress in the recording of changing brain functions during the time between clinical death and brain death opened the perspective to address and understand the generation of NDEs in brain states of altered consciousness. Changes of consciousness can experimentally be induced in well-controlled clinical or laboratory settings. Reports of the persons having experienced the changes can inform about the similarity of the experiences with those from original NDEs. Thus, we collected neuro-functional models of NDEs including OBEs with experimental backgrounds of drug consumption, epilepsy, brain stimulation, and ischemic stress, and included so far largely unappreciated data from fighter pilot tests under gravitational stress generating cephalic nervous system ischemia. Since we found a large overlap of NDE themes or topics from original NDE reports with those from neuro-functional NDE models, we can state that, collectively, the models offer scientifically appropriate causal explanations for the occurrence of NDEs. The generation of OBEs, one of the NDE themes, can be localized in the temporo-parietal junction (TPJ) of the brain, a multimodal association area. The evaluated literature suggests that NDEs may emerge as hallucination-like phenomena from a brain in altered states of consciousness (ASCs).
Collapse
Affiliation(s)
- Raymond Romand
- Faculty of Medicine, University of Strasbourg, Strasbourg, France
| | - Günter Ehret
- Institute of Neurobiology, University of Ulm, Ulm, Germany
| |
Collapse
|
8
|
Chen Y, Li S, Liang X, Zhang J. Differential Alterations to the Metabolic Connectivity of the Cortical and Subcortical Regions in Rat Brain During Ketamine-Induced Unconsciousness. Anesth Analg 2022; 135:1106-1114. [PMID: 35007212 DOI: 10.1213/ane.0000000000005869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND Ketamine anesthesia increased glucose metabolism in most brain regions compared to another intravenous anesthetic propofol. However, whether the changes in cerebral metabolic networks induced by ketamine share the same mechanism with propofol remains to be explored. The purpose of the present study was to identify specific features of metabolic network in rat brains during ketamine-induced subanesthesia state and anesthesia state compared to awake state. METHODS We acquired fluorodeoxyglucose positron emission tomography (FDG-PET) images in 20 healthy adult Sprague-Dawley rats that were intravenously administrated saline and ketamine to achieve different conscious states: awake (normal saline), subanesthesia (30 mg kg -1 h -1 ), and anesthesia (160 mg kg -1 h -1 ). Based on the FDG-PET data, the alterations in cerebral glucose metabolism and metabolic topography were investigated by graph-theory analysis. RESULTS The baseline metabolism in rat brains was found significantly increased during ketamine-induced subanesthesia and anesthesia. The graph-theory analysis manifested a reduction in metabolism connectivity and network global/local efficiency across cortical regions and an increase across subcortical regions during ketamine-induced anesthesia (nonparametric permutation test: global efficiency between awake and anesthesia, cortex: P = .016, subcortex: P = .015; global efficiency between subanesthesia and anesthesia, subcortex: P = .012). CONCLUSIONS Ketamine broadly increased brain metabolism alongside decreased metabolic connectivity and network efficiency of cortex network. Modulation of these cortical metabolic networks may be a candidate mechanism underlying general anesthesia-induced loss of consciousness.
Collapse
Affiliation(s)
- Yali Chen
- From the Department of Anesthesiology, Shanghai Cancer Center, Fudan University, Shanghai, China
| | - Siyang Li
- School of Life Science and Technology.,Institute of Space Environment and Materiel Science, Harbin Institute of Technology, Harbin, China
| | - Xia Liang
- School of Life Science and Technology.,Institute of Space Environment and Materiel Science, Harbin Institute of Technology, Harbin, China
| | - Jun Zhang
- From the Department of Anesthesiology, Shanghai Cancer Center, Fudan University, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
9
|
Gärtner M, de Rover M, Václavů L, Scheidegger M, van Osch MJP, Grimm S. Increase in thalamic cerebral blood flow is associated with antidepressant effects of ketamine in major depressive disorder. World J Biol Psychiatry 2022; 23:643-652. [PMID: 34985394 DOI: 10.1080/15622975.2021.2020900] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Ketamine is a promising treatment option for patients with Major Depressive Disorder (MDD) and has become an important research tool to investigate antidepressant mechanisms of action. However, imaging studies attempting to characterise ketamine's mechanism of action using blood oxygen level-dependent signal (BOLD) imaging have yielded inconsistent results- at least partly due to intrinsic properties of the BOLD contrast, which measures a complex signal related to neural activity. To circumvent the limitations associated with the BOLD signal, we used arterial spin labelling (ASL) as an unambiguous marker of neuronal activity-related changes in cerebral blood flow (CBF). We measured CBF in 21 MDD patients at baseline and 24 h after receiving a single intravenous infusion of subanesthetic ketamine and examined relationships with clinical outcomes. Our findings demonstrate that increase in thalamus perfusion 24 h after ketamine administration is associated with greater improvement of depressive symptoms. Furthermore, lower thalamus perfusion at baseline is associated both with larger increases in perfusion 24 h after ketamine administration and with stronger reduction of depressive symptoms. These findings indicate that ASL is not only a useful tool to broaden our understanding of ketamine's mechanism of action but might also have the potential to inform treatment decisions based on CBF-defined regional disruptions.
Collapse
Affiliation(s)
- Matti Gärtner
- MSB-Medical School Berlin, Berlin, Germany.,Department of Psychiatry and Psychotherapy, Campus Benjamin Franklin, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Mischa de Rover
- Laboratory for Neurophysiology, Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, Netherlands.,Department of Clinical Psychology, Institute of Psychology, Leiden University, Leiden, Netherlands
| | - Lena Václavů
- Department of Radiology, C.J. Gorter Center for High Field MRI, Leiden University Medical Center, Leiden, Netherlands
| | - Milan Scheidegger
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Zurich, Switzerland
| | - Matthias J P van Osch
- Department of Radiology, C.J. Gorter Center for High Field MRI, Leiden University Medical Center, Leiden, Netherlands
| | - Simone Grimm
- MSB-Medical School Berlin, Berlin, Germany.,Department of Psychiatry and Psychotherapy, Campus Benjamin Franklin, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Zurich, Switzerland
| |
Collapse
|
10
|
McHugo M, Rogers BP, Avery SN, Armstrong K, Blackford JU, Vandekar SN, Roeske MJ, Woodward ND, Heckers S. Increased amplitude of hippocampal low frequency fluctuations in early psychosis: A two-year follow-up study. Schizophr Res 2022; 241:260-266. [PMID: 35180665 PMCID: PMC8960358 DOI: 10.1016/j.schres.2022.02.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/31/2022] [Accepted: 02/03/2022] [Indexed: 11/30/2022]
Abstract
Neuroimaging studies have revealed hippocampal hyperactivity in schizophrenia. In the early stage of the illness, hyperactivity is present in the anterior hippocampus and is thought to spread to other regions as the illness progresses. However, there is limited evidence for changes in basal hippocampal function following the onset of psychosis. Resting state functional MRI signal amplitude may be a proxy measure for increased metabolism and disrupted oscillatory activity, both consequences of an excitation/inhibition imbalance underlying hippocampal hyperactivity. Here, we used fractional amplitude of low frequency fluctuations (fALFF) to test the hypothesis of progressive hippocampal hyperactivity in a two-year longitudinal case-control study. We found higher fALFF in the anterior and posterior hippocampus of individuals in the early stage of non-affective psychosis at study entry. Contrary to our hypothesis of progressive hippocampal dysfunction, we found evidence for normalization of fALFF over time in psychosis. Our findings support a model in which hippocampal fALFF is a marker of psychosis vulnerability or acute illness state rather than an enduring feature of the illness.
Collapse
Affiliation(s)
- Maureen McHugo
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA.
| | - Baxter P Rogers
- Vanderbilt University Institute of Imaging Sciences, Nashville, TN, USA
| | - Suzanne N Avery
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Kristan Armstrong
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | - Simon N Vandekar
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Maxwell J Roeske
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Neil D Woodward
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Stephan Heckers
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
11
|
Wolf DH, Zheng D, Kohler C, Turetsky BI, Ruparel K, Satterthwaite TD, Elliott MA, March ME, Cross AJ, Smith MA, Zukin SR, Gur RC, Gur RE. Effect of mGluR2 positive allosteric modulation on frontostriatal working memory activation in schizophrenia. Mol Psychiatry 2022; 27:1226-1232. [PMID: 34667261 PMCID: PMC9018886 DOI: 10.1038/s41380-021-01320-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 09/09/2021] [Accepted: 09/24/2021] [Indexed: 02/07/2023]
Abstract
Negative symptoms and cognitive deficits contribute strongly to disability in schizophrenia, and are resistant to existing medications. Recent drug development has targeted enhanced NMDA function by increasing mGluR2/3 signaling. However, the clinical utility of such agents remains uncertain, and markers of brain circuit function are critical for clarifying mechanisms and understanding individual differences in efficacy. We conducted a double-blind, placebo-controlled, randomized cross-over (14 day washout) pilot study evaluating adjunctive use of the mGluR2 positive allosteric modulator AZD8529 (80 mg daily for 3 days), in chronic stable patients with schizophrenia (n = 26 analyzed). We focused on 3 T fMRI response in frontostriatal regions during an n-back working memory task, testing the hypothesis that AZD8529 produces fMRI changes that correlate with improvement in negative symptoms and cognition. We found that AZD8529 did not produce significant group-average effects on symptoms or cognitive accuracy. However, AZD8529 did increase n-back fMRI activation in striatum (p < 0.0001) and anterior cingulate/paracingulate (p = 0.002). Greater drug-versus-placebo effects on caudate activation significantly correlated with greater reductions in PANSS negative symptom scores (r = -0.42, p = 0.031), and exploratory correlations suggested broader effects across multiple symptom domains and regions of interest. These findings demonstrate that fMRI responses to mGluR2 positive modulation relate to individual differences in symptom reduction, and could be pursued for future biomarker development. Negative clinical results at the group level should not lead to premature termination of investigation of this mechanism, which may benefit an important subset of individuals with schizophrenia. Imaging biomarkers may reveal therapeutic mechanisms, and help guide treatment toward specific populations.
Collapse
Affiliation(s)
- Daniel H. Wolf
- Department of Psychiatry, University of Pennsylvania, Philadelphia PA 19104
| | - David Zheng
- Department of Psychiatry, University of Pennsylvania, Philadelphia PA 19104
| | - Christian Kohler
- Department of Psychiatry, University of Pennsylvania, Philadelphia PA 19104
| | - Bruce I. Turetsky
- Department of Psychiatry, University of Pennsylvania, Philadelphia PA 19104
| | - Kosha Ruparel
- Department of Psychiatry, University of Pennsylvania, Philadelphia PA 19104
| | | | - Mark A. Elliott
- Department of Radiology, University of Pennsylvania, Philadelphia PA 19104
| | - Mary E. March
- Department of Psychiatry, University of Pennsylvania, Philadelphia PA 19104
| | - Alan J. Cross
- AstraZeneca Pharmaceuticals LP, Wilmington DE, 19850.,Present affiliations: Psy Therapeutics, Thornton PA 19373
| | - Mark A. Smith
- AstraZeneca Pharmaceuticals LP, Wilmington DE, 19850.,Vistagen Therapeutics, South San Francisco CA 94080;,Medical College of Georgia, Augusta, GA 30912
| | - Stephen R. Zukin
- AstraZeneca Pharmaceuticals LP, Wilmington DE, 19850.,PRA Health Sciences, Blue Bell PA 19422
| | - Ruben C. Gur
- Department of Psychiatry, University of Pennsylvania, Philadelphia PA 19104.,Department of Radiology, University of Pennsylvania, Philadelphia PA 19104
| | - Raquel E. Gur
- Department of Psychiatry, University of Pennsylvania, Philadelphia PA 19104.,Department of Radiology, University of Pennsylvania, Philadelphia PA 19104
| |
Collapse
|
12
|
Kotoula V, Webster T, Stone J, Mehta MA. Resting-state connectivity studies as a marker of the acute and delayed effects of subanaesthetic ketamine administration in healthy and depressed individuals: A systematic review. Brain Neurosci Adv 2021; 5:23982128211055426. [PMID: 34805548 PMCID: PMC8597064 DOI: 10.1177/23982128211055426] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 09/24/2021] [Indexed: 11/15/2022] Open
Abstract
Acute ketamine administration has been widely used in neuroimaging research to mimic psychosis-like symptoms. Within the last two decades, ketamine has also emerged as a potent, fast-acting antidepressant. The delayed effects of the drug, observed 2–48 h after a single infusion, are associated with marked improvements in depressive symptoms. At the systems’ level, several studies have investigated the acute ketamine effects on brain activity and connectivity; however, several questions remain unanswered around the brain changes that accompany the drug’s antidepressant effects and how these changes relate to the brain areas that appear with altered function and connectivity in depression. This review aims to address some of these questions by focusing on resting-state brain connectivity. We summarise the studies that have examined connectivity changes in treatment-naïve, depressed individuals and those studies that have looked at the acute and delayed effects of ketamine in healthy and depressed volunteers. We conclude that brain areas that are important for emotional regulation and reward processing appear with altered connectivity in depression whereas the default mode network presents with increased connectivity in depressed individuals compared to healthy controls. This finding, however, is not as prominent as the literature often assumes. Acute ketamine administration causes an increase in brain connectivity in healthy volunteers. The delayed effects of ketamine on brain connectivity vary in direction and appear to be consistent with the drug normalising the changes observed in depression. The limited number of studies however, as well as the different approaches for resting-state connectivity analysis make it very difficult to draw firm conclusions and highlight the importance of data sharing and larger future studies.
Collapse
Affiliation(s)
- Vasileia Kotoula
- Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | | | | | - Mitul A Mehta
- Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| |
Collapse
|
13
|
Kraguljac NV, Lahti AC. Neuroimaging as a Window Into the Pathophysiological Mechanisms of Schizophrenia. Front Psychiatry 2021; 12:613764. [PMID: 33776813 PMCID: PMC7991588 DOI: 10.3389/fpsyt.2021.613764] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 02/15/2021] [Indexed: 12/16/2022] Open
Abstract
Schizophrenia is a complex neuropsychiatric disorder with a diverse clinical phenotype that has a substantial personal and public health burden. To advance the mechanistic understanding of the illness, neuroimaging can be utilized to capture different aspects of brain pathology in vivo, including brain structural integrity deficits, functional dysconnectivity, and altered neurotransmitter systems. In this review, we consider a number of key scientific questions relevant in the context of neuroimaging studies aimed at unraveling the pathophysiology of schizophrenia and take the opportunity to reflect on our progress toward advancing the mechanistic understanding of the illness. Our data is congruent with the idea that the brain is fundamentally affected in the illness, where widespread structural gray and white matter involvement, functionally abnormal cortical and subcortical information processing, and neurometabolic dysregulation are present in patients. Importantly, certain brain circuits appear preferentially affected and subtle abnormalities are already evident in first episode psychosis patients. We also demonstrated that brain circuitry alterations are clinically relevant by showing that these pathological signatures can be leveraged for predicting subsequent response to antipsychotic treatment. Interestingly, dopamine D2 receptor blockers alleviate neural abnormalities to some extent. Taken together, it is highly unlikely that the pathogenesis of schizophrenia is uniform, it is more plausible that there may be multiple different etiologies that converge to the behavioral phenotype of schizophrenia. Our data underscore that mechanistically oriented neuroimaging studies must take non-specific factors such as antipsychotic drug exposure or illness chronicity into consideration when interpreting disease signatures, as a clear characterization of primary pathophysiological processes is an imperative prerequisite for rational drug development and for alleviating disease burden in our patients.
Collapse
Affiliation(s)
- Nina Vanessa Kraguljac
- Neuroimaging and Translational Research Laboratory, Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Adrienne Carol Lahti
- Neuroimaging and Translational Research Laboratory, Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
14
|
Li CX, Kempf D, Howell L, Zhang X. Effects of alfaxalone on cerebral blood flow and intrinsic neural activity of rhesus monkeys: A comparison study with ketamine. Magn Reson Imaging 2020; 75:134-140. [PMID: 33127411 DOI: 10.1016/j.mri.2020.10.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 10/22/2020] [Accepted: 10/23/2020] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Alfaxalone has been used increasingly in biomedical research and veterinary medicine of large animals in recent years. However, its effects on the cerebral blood flow (CBF) physiology and intrinsic neuronal activity of anesthetized brains remain poorly understood. METHODS Four healthy adult rhesus monkeys were anesthetized initially with alfaxalone (0.125 mg/kg/min) or ketamine (1.6 mg/kg/min) for 50 min, then administrated with 0.8% isoflurane for 60 min. Heart rates, breathing beats, and blood pressures were continuously monitored. CBF data were collected using pseudo-continuous arterial spin-labeling (pCASL) MRI technique and rsfMRI data were collected using single-shot EPI sequence for each anesthetic. RESULTS Both the heart rates and mean arterial pressure (MAP) remained more stable during alfaxalone infusion than those during ketamine administration. Alfaxalone reduced CBF substantially compared to ketamine anesthesia (grey matter, 65 ± 22 vs. 179 ± 38 ml/100g/min, p<0.001; white matter, 14 ± 7 vs. 26 ± 6 ml/100g/min, p < 0.05); In addition, CBF increase was seen in all selected cortical and subcortical regions of alfaxalone-pretreated monkey brains during isoflurane exposure, very different from the findings in isoflurane-exposed monkeys pretreated with ketamine. Also, alfaxalone showed suppression effects on functional connectivity of the monkey brain similar to ketamine. CONCLUSION Alfaxalone showed strong suppression effects on CBF of the monkey brain.The residual effect of alfaxalone on CBF of isoflurane-exposed brains was evident and monotonous in all the examined brain regions when used as induction agent for inhalational anesthesia. In particular, alfaxalone showed similar suppression effect on intrinsic neuronal activity of the brain in comparison with ketamine. These findings suggest alfaxalone can be a good alternative to veterinary anesthesia in neuroimaging examination of large animal models. However, its effects on CBF and functional connectivity should be considered.
Collapse
Affiliation(s)
- Chun-Xia Li
- Yerkes Imaging Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329, United States
| | - Doty Kempf
- Yerkes Imaging Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329, United States
| | - Leonard Howell
- Yerkes Imaging Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329, United States; Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329, United States
| | - Xiaodong Zhang
- Yerkes Imaging Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329, United States; Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329, United States.
| |
Collapse
|
15
|
Zhuo C, Ji F, Tian H, Wang L, Jia F, Jiang D, Chen C, Zhou C, Lin X, Zhu J. Transient effects of multi-infusion ketamine augmentation on treatment-resistant depressive symptoms in patients with treatment-resistant bipolar depression - An open-label three-week pilot study. Brain Behav 2020; 10:e01674. [PMID: 32621379 PMCID: PMC7428494 DOI: 10.1002/brb3.1674] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 04/29/2020] [Accepted: 05/08/2020] [Indexed: 12/30/2022] Open
Abstract
INTRODUCTION While the psychiatric benefits of ketamine have been verified through clinical trials, there is limited information about ketamine augmentation in patients with treatment-resistant bipolar depression (TRBPD). Hence, in the present study, we investigate the therapeutic efficacy and functional brain alterations associated with multi-infusion ketamine augmentation in patients with TRBPD. METHODS The present three-week study included 38 patients with TRBPD, all of whom received a series of nine ketamine injections over the study period. The Hamilton Depression Rating Scale (HAMD) was used to assess the effects of multi-infusion ketamine combined with mood stabilizers. Brain function was evaluated by global functional connectivity density (gFCD). RESULTS Adjunctive treatment with multiple infusions of ketamine, when combined with a mood stabilizer, could effectively alleviate depressive symptoms for one week, yet the symptoms began to relapse during the second week. Functional brain alterations were detected via gFCD. Specifically, gFCD reductions were mainly found in the bilateral insula, right caudate nucleus, and bilateral inferior frontal gyrus, while increased gFCD was mainly located in the bilateral postcentral gyrus, subgenual anterior cingulate cortex, bilateral thalamus, and cerebellum. Although gFCD alterations were sustained for up to three weeks after the first ketamine infusion, the antidepressant effects of ketamine augmentation sharply declined from the end of the second week of treatment. CONCLUSIONS Multi-infusion ketamine augmentation can rapidly alleviate depressive symptoms in patients with TRBPD. The clinical effects were primarily visible in the first week after treatment and partially sustained for two weeks; however, the therapeutic effects and related functional brain alterations sharply decreased from the end of the second week. Based on these findings, we demonstrated that the clinical efficacy and functional brain alterations induced by ketamine augmentation are transient.
Collapse
Affiliation(s)
- Chuanjun Zhuo
- Department of Psychiatry, School of Mental Health, Jining Medical University, Jining, China.,Department of Psychiatry and Imaging-Genetics and Co-morbidity (PNGC-Lab), Tianjin Anding Hospital, Tianjin Mental Health Center, Mental Health Teaching Hospital, Tianjin Medical University, Tianjin, China.,Department of Psychiatry Wenzhou Seventh People's Hospital, Wenzhou, China
| | - Feng Ji
- Department of Psychiatry, School of Mental Health, Jining Medical University, Jining, China
| | - Hongjun Tian
- Department of Psychiatry and Imaging-Genetics and Co-morbidity (PNGC-Lab), Tianjin Anding Hospital, Tianjin Mental Health Center, Mental Health Teaching Hospital, Tianjin Medical University, Tianjin, China
| | - Lina Wang
- Department of Psychiatry and Imaging-Genetics and Co-morbidity (PNGC-Lab), Tianjin Anding Hospital, Tianjin Mental Health Center, Mental Health Teaching Hospital, Tianjin Medical University, Tianjin, China
| | - Feng Jia
- Department of Psychiatry and Imaging-Genetics and Co-morbidity (PNGC-Lab), Tianjin Anding Hospital, Tianjin Mental Health Center, Mental Health Teaching Hospital, Tianjin Medical University, Tianjin, China
| | - Deguo Jiang
- Department of Psychiatry Wenzhou Seventh People's Hospital, Wenzhou, China
| | - Ce Chen
- Department of Psychiatry Wenzhou Seventh People's Hospital, Wenzhou, China
| | - Chunhua Zhou
- Department of Pharmacy, First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xiaodong Lin
- Department of Psychiatry Wenzhou Seventh People's Hospital, Wenzhou, China
| | - Jingjing Zhu
- Department of Psychiatry Wenzhou Seventh People's Hospital, Wenzhou, China
| |
Collapse
|
16
|
Limongi R, Jeon P, Mackinley M, Das T, Dempster K, Théberge J, Bartha R, Wong D, Palaniyappan L. Glutamate and Dysconnection in the Salience Network: Neurochemical, Effective Connectivity, and Computational Evidence in Schizophrenia. Biol Psychiatry 2020; 88:273-281. [PMID: 32312577 DOI: 10.1016/j.biopsych.2020.01.021] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 01/06/2020] [Accepted: 01/27/2020] [Indexed: 11/17/2022]
Abstract
BACKGROUND Functional dysconnection in schizophrenia is underwritten by a pathophysiology of the glutamate neurotransmission that affects the excitation-inhibition balance in key nodes of the salience network. Physiologically, this manifests as aberrant effective connectivity in intrinsic connections involving inhibitory interneurons. In computational terms, this produces a pathology of evidence accumulation and ensuing inference in the brain. Finally, the pathophysiology and aberrant inference would partially account for the psychopathology of schizophrenia as measured in terms of symptoms and signs. We refer to this formulation as the 3-level hypothesis. METHODS We tested the hypothesis in core nodes of the salience network (the dorsal anterior cingulate cortex [dACC] and the anterior insula) of 20 patients with first-episode psychosis and 20 healthy control subjects. We established 3-way correlations between the magnetic resonance spectroscopy measures of glutamate, effective connectivity of resting-state functional magnetic resonance imaging, and correlations between measures of this connectivity and estimates of precision (inherent in evidence accumulation in the Stroop task) and psychopathology. RESULTS Glutamate concentration in the dACC was associated with higher and lower inhibitory connectivity in the dACC and in the anterior insula, respectively. Crucially, glutamate concentration correlated negatively with the inhibitory influence on the excitatory neuronal population in the dACC of subjects with first-episode psychosis. Furthermore, aberrant computational parameters of the Stroop task performance were associated with aberrant inhibitory connections. Finally, the strength of connections from the dACC to the anterior insula correlated negatively with severity of social withdrawal. CONCLUSIONS These findings support a link between glutamate-mediated cortical disinhibition, effective-connectivity deficits, and computational performance in psychosis.
Collapse
Affiliation(s)
- Roberto Limongi
- Department of Psychiatry, Western University, London, Ontario, Canada; Robarts Research Institute, Western University, London, Ontario, Canada.
| | - Peter Jeon
- Department of Medical Biophysics, Western University, London, Ontario, Canada
| | - Michael Mackinley
- Department of Psychiatry, Western University, London, Ontario, Canada; Robarts Research Institute, Western University, London, Ontario, Canada
| | - Tushar Das
- Department of Strategic Enterprise Solutions, Fanshawe College, London, Ontario, Canada
| | - Kara Dempster
- Department of Psychiatry, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Jean Théberge
- Department of Psychiatry, Western University, London, Ontario, Canada; Department of Medical Biophysics, Western University, London, Ontario, Canada; Department of Medical Imaging, Western University, London, Ontario, Canada; Neuropsychiatry Imaging Lab, Lawson Health Research Institute, London, Ontario, Canada; Department of Diagnostic Imaging, St. Joseph's Health Care London, London, Ontario, Canada
| | - Robert Bartha
- Department of Medical Biophysics, Western University, London, Ontario, Canada
| | - Dickson Wong
- Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Lena Palaniyappan
- Department of Psychiatry, Western University, London, Ontario, Canada; Robarts Research Institute, Western University, London, Ontario, Canada; Lawson Health Research Institute, London, Ontario, Canada.
| |
Collapse
|