1
|
Ping L, Chu Z, Zhou B, Sun D, Chu J, Xu J, Li Z, Zhang D, Cheng Y. Structural alterations after repetitive transcranial magnetic stimulation in depression and the link to neurotransmitter profiles. Asian J Psychiatr 2025; 107:104445. [PMID: 40117801 DOI: 10.1016/j.ajp.2025.104445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 03/04/2025] [Accepted: 03/08/2025] [Indexed: 03/23/2025]
Abstract
BACKGROUND Repetitive Transcranial Magnetic Stimulation (rTMS) is widely used to treat depression, showing good efficacy and tolerability. However, the neurobiological mechanisms of its antidepressant effects remain unclear. This study explores the potential impact of rTMS on brain structure in depressed patients and its link to neurotransmitter systems. METHODS Thirty-six MDD patients were randomized to receive 5 times per week for 3 weeks of active or sham rTMS targeting the dorsolateral prefrontal cortex (DLPFC) within a double-blind, sham-controlled trial. The Hamilton Depression Rating Scale-17 items (HAMD-17) was used to assess depressive symptoms at baseline and the end of 1 W, 2 W and 3 W after treatment. We analyzed the differences in efficacy between the two groups of patients at different time points, and the grey matter changes of the brain before and after treatment in both groups. In addition, we analyzed the spatial correlations between abnormal grey matter and the neurotransmitter receptors and transporters map. RESULTS Both the active and sham groups showed significant improvement in depression and anxiety symptoms following rTMS treatment, with the Active group demonstrating greater improvement. Additionally, the Active group exhibited increased grey matter volume in regions associated with the frontal-limbic network, and these changes were significantly correlated with the spatial distribution of D1 receptors. CONCLUSION This study suggests that rTMS targeting the left DLPFC produces antidepressant effects by enhancing structural plasticity in the frontal-limbic network, and that dopamine system modulation may underlie rTMS therapeutic effects. These findings provide insight into the neurobiological basis of rTMS for depression treatment.
Collapse
Affiliation(s)
- Liangliang Ping
- Department of Psychiatry, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, China; Department of Psychiatry, Xiamen Xianyue Hospital, Xiamen, Fujian 361000, China; Xianyue Hospital Affiliated with Xiamen Medical College, Xiamen, Fujian 361000, China; Fujian Psychiatric Center, Xiamen, Fujian 361000, China; Fujian Clinical Research Center for Mental Disorders, Xiamen, Fujian 361000, China
| | - Zhaosong Chu
- Department of Psychiatry, The Third People's Hospital of Foshan, Foshan, Guangdong 528000, China
| | - Biao Zhou
- Department of Psychiatry, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, China
| | - Duo Sun
- Department of Psychiatry, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, China
| | - Jiangmin Chu
- Department of Psychiatry, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, China
| | - Jian Xu
- Department of Rheumatology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, China
| | - Zhenhui Li
- Department of Radiology, the Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Yunnan Cancer Center, Kunming, Yunnan 650118, China
| | - Dafu Zhang
- Department of Radiology, the Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Yunnan Cancer Center, Kunming, Yunnan 650118, China.
| | - Yuqi Cheng
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310063, China.
| |
Collapse
|
2
|
Yang Y, Chen J, Yu M, Xiong C, Zhang R, Jiang G. Comparative efficacy of multiple non-invasive brain stimulation to treat major depressive disorder in older patients: A systematic review and network meta-analysis study based on randomized controlled trials. Psychiatry Res 2025; 344:116340. [PMID: 39740314 DOI: 10.1016/j.psychres.2024.116340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 12/20/2024] [Accepted: 12/22/2024] [Indexed: 01/02/2025]
Abstract
BACKGROUND Major depressive disorder (MDD) is prevalent among older patients and is frequently associated with cognitive decline and a reduced quality of life. Non-invasive brain stimulation (NIBS) techniques show promise for treating MDD, but their comparative efficacy and safety older populations remain unclear. This study aimed to compare the efficacy and cognitive effects of various NIBS techniques in treating MDD in older patients. METHODS We searched the PubMed, EMBASE, Cochrane Library, and Web of Science core databases from inception to March 2024. Seventeen randomized controlled trials (RCTs) were included. RESULTS Surfaces under the cumulative ranking curve (SUCRA) values were used to rank the interventions. The SUCRA rankings for the Hamilton Depression Rating Scale (HDRS) outcomes indicated that repetitive transcranial magnetic stimulation (rTMS) (89.0 %) had the highest efficacy, followed by transcranial direct current stimulation (tDCS) (68.7 %). rTMS demonstrated significantly superior efficacy compared with bilateral electroconvulsive therapy (BL ECT) and right unilateral electroconvulsive therapy (RUL ECT). Theta burst stimulation (TBS) had the highest response rate (69.6 %), followed by rTMS (61.8 %). Based on the Mini-Mental State Examination, rTMS (86.4 %) ranked the highest, with RUL ECT showing significantly better outcomes than BL ECT. CONCLUSION NIBS, particularly rTMS and TBS, may offer effective treatment options for older patients with MDD. Further research with larger sample sizes and longer follow-up periods is required to validate these findings and inform clinical practice.
Collapse
Affiliation(s)
- Yang Yang
- Department of Neurology, Affiliated Hospital of North Sichuan Medical College; Institute of Neurological Diseases, North Sichuan Medical College, Nanchong 637000, Sichuan, China
| | - Jianglin Chen
- Department of Neurology, Affiliated Hospital of North Sichuan Medical College; Institute of Neurological Diseases, North Sichuan Medical College, Nanchong 637000, Sichuan, China
| | - Min Yu
- Department of Neurology, Affiliated Hospital of North Sichuan Medical College; Institute of Neurological Diseases, North Sichuan Medical College, Nanchong 637000, Sichuan, China
| | - Cheng Xiong
- Department of Neurology, Affiliated Hospital of North Sichuan Medical College; Institute of Neurological Diseases, North Sichuan Medical College, Nanchong 637000, Sichuan, China
| | - Rong Zhang
- Department of Neurology, Guang' an District People's Hospital, Guang' an, Sichuan, China
| | - Guohui Jiang
- Department of Neurology, Affiliated Hospital of North Sichuan Medical College; Institute of Neurological Diseases, North Sichuan Medical College, Nanchong 637000, Sichuan, China.
| |
Collapse
|
3
|
Hervault M, Soh C, Wessel JR. Does the stop-signal P3 reflect inhibitory control? Cortex 2025; 183:232-250. [PMID: 39754857 PMCID: PMC11839379 DOI: 10.1016/j.cortex.2024.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 11/16/2024] [Accepted: 12/17/2024] [Indexed: 01/06/2025]
Abstract
The ability to stop already-initiated actions is paramount to adaptive behavior. In psychology and neuroscience alike, action-stopping is a popular model behavior to probe inhibitory control - the underlying cognitive control process that is purportedly vital to regulating thoughts and actions. Starting with seminal work in the 1990s, the frontocentral stop-signal P3 - an event-related potential derived from scalp EEG - has been proposed as a neurophysiological index of inhibitory control during action-stopping. However, this association has been challenged repeatedly over recent years. Here, we perform a critical review of both the evidence in support of the association between this P3 index and inhibitory control, as well as its documented criticisms. We first comprehensively review literature from the past three decades that suggested a link between stop-signal P3 and inhibitory control. Second, we then replicate the key empirical patterns reported in that body of literature in a uniquely large stop-signal task EEG dataset (N = 255). Third, we then examine the criticisms raised against the view of P3 as an index of inhibitory control and evaluate the evidence supporting these arguments. Finally, we present an updated view of the process(es) reflected in the stop-signal P3. Specifically, we propose that the stop-signal P3 indexes a specific, selective inhibitory control process that critically contributes to action-stopping. This view is motivated by recent two-stage models of inhibitory control and emerging empirical data. Together, we hope to clarify the process(es) reflected in the stop-signal P3 and resolve the ongoing debates regarding its utility as an index of inhibitory control during action-stopping.
Collapse
Affiliation(s)
- Mario Hervault
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA, USA; Department of Neurology, University of Iowa Hospitals and Clinics, Iowa City, IA, USA; Cognitive Control Collaborative, University of Iowa, Iowa City, IA, USA.
| | - Cheol Soh
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA, USA; Department of Neurology, University of Iowa Hospitals and Clinics, Iowa City, IA, USA; Cognitive Control Collaborative, University of Iowa, Iowa City, IA, USA
| | - Jan R Wessel
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA, USA; Department of Neurology, University of Iowa Hospitals and Clinics, Iowa City, IA, USA; Cognitive Control Collaborative, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
4
|
Pagali SR, Kumar R, LeMahieu AM, Basso MR, Boeve BF, Croarkin PE, Geske JR, Hassett LC, Huston J, Kung S, Lundstrom BN, Petersen RC, St Louis EK, Welker KM, Worrell GA, Pascual-Leone A, Lapid MI. Efficacy and safety of transcranial magnetic stimulation on cognition in mild cognitive impairment, Alzheimer's disease, Alzheimer's disease-related dementias, and other cognitive disorders: a systematic review and meta-analysis. Int Psychogeriatr 2024; 36:880-928. [PMID: 38329083 PMCID: PMC11306417 DOI: 10.1017/s1041610224000085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/05/2023] [Accepted: 01/10/2024] [Indexed: 02/09/2024]
Abstract
OBJECTIVE We aim to analyze the efficacy and safety of TMS on cognition in mild cognitive impairment (MCI), Alzheimer's disease (AD), AD-related dementias, and nondementia conditions with comorbid cognitive impairment. DESIGN Systematic review, Meta-Analysis. SETTING We searched MEDLINE, Embase, Cochrane database, APA PsycINFO, Web of Science, and Scopus from January 1, 2000, to February 9, 2023. PARTICIPANTS AND INTERVENTIONS RCTs, open-label, and case series studies reporting cognitive outcomes following TMS intervention were included. MEASUREMENT Cognitive and safety outcomes were measured. Cochrane Risk of Bias for RCTs and MINORS (Methodological Index for Non-Randomized Studies) criteria were used to evaluate study quality. This study was registered with PROSPERO (CRD42022326423). RESULTS The systematic review included 143 studies (n = 5,800 participants) worldwide, encompassing 94 RCTs, 43 open-label prospective, 3 open-label retrospective, and 3 case series. The meta-analysis included 25 RCTs in MCI and AD. Collectively, these studies provide evidence of improved global and specific cognitive measures with TMS across diagnostic groups. Only 2 studies (among 143) reported 4 adverse events of seizures: 3 were deemed TMS unrelated and another resolved with coil repositioning. Meta-analysis showed large effect sizes on global cognition (Mini-Mental State Examination (SMD = 0.80 [0.26, 1.33], p = 0.003), Montreal Cognitive Assessment (SMD = 0.85 [0.26, 1.44], p = 0.005), Alzheimer's Disease Assessment Scale-Cognitive Subscale (SMD = -0.96 [-1.32, -0.60], p < 0.001)) in MCI and AD, although with significant heterogeneity. CONCLUSION The reviewed studies provide favorable evidence of improved cognition with TMS across all groups with cognitive impairment. TMS was safe and well tolerated with infrequent serious adverse events.
Collapse
Affiliation(s)
- Sandeep R Pagali
- Division of Hospital Internal Medicine, Mayo Clinic, Rochester, MN, USA
- Division of Community Internal Medicine, Geriatrics, and Palliative Care, Mayo Clinic, Rochester, MN, USA
| | - Rakesh Kumar
- Department of Psychiatry and Psychology, Mayo Clinic School of Graduate Medical Education, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Allison M LeMahieu
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | - Michael R Basso
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, USA
| | | | - Paul E Croarkin
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, USA
| | - Jennifer R Geske
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | | | - John Huston
- Department of Radiology (Huston and Welker), Mayo Clinic, Rochester, MN, USA
| | - Simon Kung
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, USA
| | | | | | | | - Kirk M Welker
- Department of Radiology (Huston and Welker), Mayo Clinic, Rochester, MN, USA
| | | | - Alvaro Pascual-Leone
- Hinda and Arthur Marcus Institute for Aging Research and Deanna, Sidney Wolk Center for Memory Health, Hebrew SeniorLife, Roslindale, MA, USA
- Department of Neurology, Harvard Medical School, Cambridge, MA, USA
| | - Maria I Lapid
- Division of Community Internal Medicine, Geriatrics, and Palliative Care, Mayo Clinic, Rochester, MN, USA
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
5
|
Valter Y, Rapallo F, Burlando B, Crossen M, Baeken C, Datta A, Deblieck C. Efficacy of non-invasive brain stimulation and neuronavigation for major depressive disorder: a systematic review and meta-analysis. Expert Rev Med Devices 2024; 21:643-658. [PMID: 38902968 DOI: 10.1080/17434440.2024.2370820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 05/28/2024] [Indexed: 06/22/2024]
Abstract
INTRODUCTION Repetitive transcranial magnetic stimulation (rTMS) and transcranial direct current stimulation (tDCS) are increasingly used for major depressive disorder (MDD). Most tDCS and rTMS studies target the left dorsolateral prefrontal cortex, either with or without neuronavigation. We examined the effect of rTMS and tDCS, and the added value of neuronavigation in the treatment of MDD. METHODS A search on PubMed, Embase, and Cochrane databases for rTMS or tDCS randomized controlled trials of MDD up to 1 February 2023, yielded 89 studies. We then performed meta-analyses comparing tDCS efficacy to non-neuronavigated rTMS, tDCS to neuronavigated rTMS, and neuronavigated rTMS to non-neuronavigated rTMS. We assessed the significance of the effect in subgroups and in the whole meta-analysis with a z-test and subgroup differences with a chi-square test. RESULTS We found small-to-medium effects of both tDCS and rTMS on MDD, with a slightly greater effect from rTMS. No significant difference was found between neuronavigation and non-neuronavigation. CONCLUSION Although both tDCS and rTMS are effective in treating MDD, many patients do not respond. Additionally, current neuronavigation methods are not significantly improving MDD treatment. It is therefore imperative to seek personalized methods for these interventions.
Collapse
Affiliation(s)
- Yishai Valter
- Research and Development, Soterix Medical, Inc, Woodbridge, NJ, USA
- Department of Biomedical Engineering, City College of the City University of New York, New York, NY, USA
| | - Fabio Rapallo
- Faculty of Economics, University of Genoa, Genova, Italy
| | - Bruno Burlando
- Department of Pharmacy, University of Genoa, Genova, Italy
| | - Miah Crossen
- Research and Development, Soterix Medical, Inc, Woodbridge, NJ, USA
| | - Chris Baeken
- Faculty of Medicine and Health Sciences, Department of Head and Skin, Ghent Experimental Psychiatry (GHEP) lab, Ghent University, Ghent, Belgium
- Department of Psychiatry, University Hospital (UZBrussel), Vrije Universiteit Brussel (VUB), Brussels, Belgium
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Abhishek Datta
- Research and Development, Soterix Medical, Inc, Woodbridge, NJ, USA
- Department of Biomedical Engineering, City College of the City University of New York, New York, NY, USA
| | - Choi Deblieck
- Lab for Equilibrium Investigations and Aerospace (LEIA), University of Antwerp, Antwerp, Belgium
| |
Collapse
|
6
|
Wang Y, Wu D, Sun K, Zhu Y, Chen X, Xiao W. The Effect of Rhythmic Audio-Visual Stimulation on Inhibitory Control: An ERP Study. Brain Sci 2024; 14:506. [PMID: 38790484 PMCID: PMC11119230 DOI: 10.3390/brainsci14050506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 05/13/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024] Open
Abstract
Inhibitory control, as an essential cognitive ability, affects the development of higher cognitive functions. Rhythmic perceptual stimulation has been used to improve cognitive abilities. It is unclear, however, whether it can be used to improve inhibitory control. This study used the Go/NoGo task and the Stroop task to assess various levels of inhibitory control using rhythmic audio-visual stimuli as the stimulus mode. Sixty subjects were randomly divided into three groups to receive 6 Hz, 10 Hz, and white noise stimulation for 30 min. Two tasks were completed by each subject both before and after the stimulus. Before and after the task, closed-eye resting EEG data were collected. The results showed no differences in behavioral and EEG measures of the Go/NoGo task among the three groups. While both 6 Hz and 10 Hz audio-visual stimulation reduced the conflict effect in the Stroop task, only 6 Hz audio-visual stimulation improved the amplitude of the N2 component and decreased the conflict score. Although rhythmic audio-visual stimulation did not enhance response inhibition, it improved conflict inhibition.
Collapse
Affiliation(s)
| | | | | | | | | | - Wei Xiao
- Department of Military Medical Psychology, Air Force Medical University, Xi’an 710032, China; (Y.W.); (D.W.); (K.S.); (Y.Z.); (X.C.)
| |
Collapse
|
7
|
Yu K, Wang L, Lv S, Ye X, Liu L, Zheng X, Jin R, Zhou D, Zhang Y, Min G, Wu S. Using functional near-infrared spectroscopy to study effects of virtual reality intervention for adolescents with depression in a clinical setting in China: study protocol for a prospective, randomised, controlled trial. BMJ Open 2023; 13:e074129. [PMID: 38101854 PMCID: PMC10729192 DOI: 10.1136/bmjopen-2023-074129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 08/31/2023] [Indexed: 12/17/2023] Open
Abstract
INTRODUCTION Adolescent depression has been shown to be associated with many devastating psychosocial outcomes. However, there are many barriers that may prevent depressed individuals from receiving specialised treatment. Virtual reality (VR) technology has shown promise as one avenue for overcoming these challenges. This study first aims to evaluate the effectiveness of VR intervention on adolescent depression symptoms, and second, to determine the intervention's underlying mechanism of effect using functional near-infrared spectroscopy (fNIRS). METHODS AND ANALYSIS This is a single-centre, prospective, randomised controlled clinical trial. Sixty-six eligible adolescents aged 12-18 years with a diagnosis of depression will be randomised in a 1:1 ratio to either the VR treatment group or the conventional treatment group. All patients for both groups will receive usual treatment during a 4-week intervention period. In addition, patients randomised to VR treatment group (n=33) will complete three 20 min VR sessions including attention, executive function and relaxation training per week. Moreover, 33 healthy adolescents will be recruited as the general population. Primary outcome (ie, depressive symptoms) and secondary outcomes (ie, anxiety symptoms, executive function, treatment emergent symptoms, haemoglobin changes measured by fNIRS) will be collected at preintervention, immediately postintervention and at 4 weeks follow-up. The data assessor and analyst will be blinded to group membership. ETHICS AND DISSEMINATION Ethical approval has been obtained from the Ethics Committee of Lishui Second People's Hospital. Written informed consent will be obtained for all participants. Results will be disseminated through peer-reviewed journals, national or international conference presentations, media outlets, the internet and various community activities. TRIAL REGISTRATION NUMBER ChiCTR2300067747.
Collapse
Affiliation(s)
- Kunqiang Yu
- Department of Mental Rehabilitation, The Second People's Hospital of Lishui, Lishui, Zhejiang, China
- Zhejiang Clinical Medical Research Centre for Psychiatric and Psychological Disorders, Lishui, Zhejiang, China
- Lishui Key Laboratory of Brain Health and Major Brain Diseases, Lishui, Zhejiang, China
| | - Lijun Wang
- Cixi Biomedical Research Institute, Wenzhou Medical University, Ningbo, Zhejiang, China
| | - Shiqiao Lv
- Department of Mental Rehabilitation, The Second People's Hospital of Lishui, Lishui, Zhejiang, China
| | - Xiaofang Ye
- Department of Mental Rehabilitation, The Second People's Hospital of Lishui, Lishui, Zhejiang, China
| | - Linhui Liu
- Psychological Counselling Center, The Second People's Hospital of Lishui, Lishui, Zhejiang, China
| | - Xiuxiu Zheng
- Lishui Key Laboratory of Brain Health and Major Brain Diseases, Lishui, Zhejiang, China
- Psychological Counselling Center, The Second People's Hospital of Lishui, Lishui, Zhejiang, China
| | - Ruomei Jin
- Department of Mental Rehabilitation, The Second People's Hospital of Lishui, Lishui, Zhejiang, China
- Lishui Key Laboratory of Brain Health and Major Brain Diseases, Lishui, Zhejiang, China
| | - Dongsheng Zhou
- Department of Mental Rehabilitation, Ningbo Kangning Hospital, Ningbo, Zhejiang, China
| | - Yan Zhang
- Psychological Counselling Center, The Second People's Hospital of Lishui, Lishui, Zhejiang, China
| | - Guoqing Min
- Department of Mental Rehabilitation, The Second People's Hospital of Lishui, Lishui, Zhejiang, China
- Lishui Key Laboratory of Brain Health and Major Brain Diseases, Lishui, Zhejiang, China
| | - Shaochang Wu
- Department of Mental Rehabilitation, The Second People's Hospital of Lishui, Lishui, Zhejiang, China
- Zhejiang Clinical Medical Research Centre for Psychiatric and Psychological Disorders, Lishui, Zhejiang, China
- Lishui Key Laboratory of Brain Health and Major Brain Diseases, Lishui, Zhejiang, China
| |
Collapse
|
8
|
Xu Y, Zhang Y, Zhao D, Tian Y, Yuan TF. Growing placebo response in TMS treatment for depression: a meta-analysis of 27-year randomized sham-controlled trials. NATURE MENTAL HEALTH 2023; 1:792-809. [DOI: 10.1038/s44220-023-00118-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 08/03/2023] [Indexed: 04/02/2025]
|
9
|
Luo X, Zhou Y, Yuan S, Chen X, Zhang B. The changes in metabolomics profile induced by intermittent theta burst stimulation in major depressive disorder: an exploratory study. BMC Psychiatry 2023; 23:550. [PMID: 37516823 PMCID: PMC10387200 DOI: 10.1186/s12888-023-05044-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 07/22/2023] [Indexed: 07/31/2023] Open
Abstract
BACKGROUND Recently, there has been an ongoing interest in the mechanism of intermittent theta burst stimulation (iTBS) in major depressive disorder. Studying the metabolite changes induced by iTBS may help to understand the mechanism. METHODS Eleven participants with major depressive disorder received 10 days iTBS treatment. Magnetic resonance imaging (MRI) was used to target the region of the left dorsolateral prefrontal cortex (DLPFC) in each participant. We analyzed the effects of iTBS on metabolites using high-throughput profiling and assessed its impact on depressive symptoms. These analyses were considered exploratory, and no correction for multiple comparisons was applied. RESULTS Among the 318 measured metabolites, a significant increase in cystine, asymmetric dimethylarginine (ADMA), 1-methylhistidine, indoleacetic acid (IAA), diethanolamine (DEA), dopa, riboflavin-5'-monophosphate (FMN), and a significant decrease in alphalinolenic acid (ALA), gamma-linolenic acid (GLA), serotonin, linoleic acid (LA) (p < 0.05) were detected in the patients after iTBS treatment. In Pearson correlation analysis, the plasma levels of LA, FMN and ADMA at baseline were significantly related to the reduction rate of the 17-item Hamilton Depression Rating Scale and the Patient Health Questionnaire-9 scores (p < 0.05). CONCLUSIONS Our study highlights that LA, FMN, ADMA and their relationship with oxidative stress, may be key factors in the antidepressant efficacy of iTBS.
Collapse
Affiliation(s)
- Xin Luo
- Psychiatric & Psychological Neuroimage Laboratory (PsyNI Lab), The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yuwen Zhou
- Institute of Mental Health, Tianjin Anding Hospital, Tianjin Medical University, Tianjin, China
| | - Shiqi Yuan
- Psychiatric & Psychological Neuroimage Laboratory (PsyNI Lab), The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiaoyu Chen
- Psychiatric & Psychological Neuroimage Laboratory (PsyNI Lab), The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Bin Zhang
- Institute of Mental Health, Tianjin Anding Hospital, Tianjin Medical University, Tianjin, China.
| |
Collapse
|
10
|
Li Y, Pang J, Wang J, Wang W, Bo Q, Lei L, Wang X, Wang M. High-frequency rTMS over the left DLPFC improves the response inhibition control of young healthy participants: an ERP combined 1H-MRS study. Front Psychol 2023; 14:1144757. [PMID: 37275686 PMCID: PMC10233929 DOI: 10.3389/fpsyg.2023.1144757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 04/25/2023] [Indexed: 06/07/2023] Open
Abstract
Introduction Unlike the effect of repetitive transcranial magnetic stimulation (rTMS) in treating neuropsychiatric diseases, little is known about how personal factors might account for the disparity of results from studies of cognition and rTMS. In this study, we investigated the effects of high-frequency rTMS on response inhibition control and explored the time course changes in cognitive processing and brain metabolic mechanisms after rTMS using event-related potentials (ERPs) and magnetic resonance spectroscopy (1H-MRS). Methods Participants were all right-handed and were naive to rTMS and the Go/NoGo task. Twenty-five healthy young participants underwent one 10 Hz rTMS session per day in which stimulation was applied over the left dorsolateral prefrontal cortex (DLPFC), and a homogeneous participant group of 25 individuals received a sham rTMS treatment for 1 week. A Go/NoGo task was performed, an electroencephalogram (EEG) was recorded, and 1H-MRS was performed. Results The results revealed that there was a strong trend of decreasing commission errors of NoGo stimuli by high frequency rTMS over the left DLPFC, whereas there was no significant difference between before and after rTMS treatment with respect to these parameters in the sham rTMS group. High-frequency rTMS significantly increased the amplitude of NoGo-N2 but not Go-N2, Go-P3, or NoGo-P3. The myo-inositol /creatine complex (MI/Cr) ratio, indexing cerebral metabolism, in the left DLPFC was decreased in the rTMS treated group. Discussion This observation supports the view that high-frequency rTMS over the left DLPFC has the strong tendency of reducing commission errors behaviorally, increase the amplitude of NoGo-N2 and improve the response inhibition control of healthy young participants. The results are consistent with the excitatory properties of high frequency rTMS. We suggest that the increase in the NoGo-N2 amplitude may be related to the increased excitability of the DLPFC-anterior cingulate cortex (ACC) neural loop. Metabolic changes in the DLPFC may be a possible mechanism for the improvement of the response inhibition control of rTMS.
Collapse
Affiliation(s)
- Yanmin Li
- Department of Neurology, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- Brain Aging and Cognitive Neuroscience Laboratory of Hebei Province, Shijiazhuang, Hebei, China
- Department of Neurology, Hebei Hospital of Xuanwu Hospital Capital Medical University, Shijiazhuang, Hebei, China
| | - Jianmin Pang
- Department of Neurology, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Jing Wang
- Department of Respiratory Medicine, Harrison International Peace Hospital, Hengshui, Hebei, China
| | - Wei Wang
- Department of Neurology, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- Brain Aging and Cognitive Neuroscience Laboratory of Hebei Province, Shijiazhuang, Hebei, China
- Department of Neurology, Hebei Hospital of Xuanwu Hospital Capital Medical University, Shijiazhuang, Hebei, China
| | - Qianlan Bo
- Department of Neurology, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- Brain Aging and Cognitive Neuroscience Laboratory of Hebei Province, Shijiazhuang, Hebei, China
- Department of Neurology, Hebei Hospital of Xuanwu Hospital Capital Medical University, Shijiazhuang, Hebei, China
| | - Licun Lei
- Department of Radiology, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Xiayue Wang
- Department of Neurology, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- Brain Aging and Cognitive Neuroscience Laboratory of Hebei Province, Shijiazhuang, Hebei, China
- Department of Neurology, Hebei Hospital of Xuanwu Hospital Capital Medical University, Shijiazhuang, Hebei, China
| | - Mingwei Wang
- Department of Neurology, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- Brain Aging and Cognitive Neuroscience Laboratory of Hebei Province, Shijiazhuang, Hebei, China
- Department of Neurology, Hebei Hospital of Xuanwu Hospital Capital Medical University, Shijiazhuang, Hebei, China
| |
Collapse
|
11
|
Toffanin T, Folesani F, Ferrara M, Belvederi Murri M, Zerbinati L, Caruso R, Nanni MG, Koch G, Fadiga L, Palagini L, Perini G, Benatti B, Dell'Osso B, Grassi L. Cognitive functioning as predictor and marker of response to repetitive transcranial magnetic stimulation in depressive disorders: A systematic review. Gen Hosp Psychiatry 2022; 79:19-32. [PMID: 36240649 DOI: 10.1016/j.genhosppsych.2022.10.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 10/04/2022] [Accepted: 10/05/2022] [Indexed: 11/17/2022]
Abstract
OBJECTIVE Cognitive performance in Major Depressive Disorder (MDD) is frequently impaired and related to functional outcomes. Repetitive Transcranial Magnetic Stimulation (rTMS) may exert its effects on MDD acting both on depressive symptoms and neurocognition. Furthermore, cognitive status could predict the therapeutic response of depressive symptoms to rTMS. However, cognitive performances as a predictor of rTMS response in MDD has not been thoroughly investigated. This review aims to evaluate the role of pre-treatment cognitive performance as a predictor of clinical response to rTMS, and the effects of rTMS on neurocognition in MDD. METHOD A systematic review of studies evaluating neurocognition in MDD as an outcome and/or predictor of response to rTMS was conducted using PubMed/Medline and Embase. RESULTS Fifty-eight articles were identified: 25 studies included neurocognition as a predictor of response to rTMS; 56 used cognitive evaluation as an outcome of rTMS. Baseline cognitive performance and cognitive improvements after rTMS predicted clinical response to rTMS. Moreover, rTMS improved cognition in MDD. CONCLUSIONS Cognitive assessment could predict improvement of depression in MDD patients undergoing rTMS and help selecting patients that could have beneficial effects from rTMS. A routine cognitive assessment might stratify MDD patients and track rTMS related cognitive improvement.
Collapse
Affiliation(s)
- Tommaso Toffanin
- Department of Neuroscience and Rehabilitation, Institute of Psychiatry, University of Ferrara, Ferrara, Italy
| | - Federica Folesani
- Department of Neuroscience and Rehabilitation, Institute of Psychiatry, University of Ferrara, Ferrara, Italy
| | - Maria Ferrara
- Department of Neuroscience and Rehabilitation, Institute of Psychiatry, University of Ferrara, Ferrara, Italy; Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA.
| | - Martino Belvederi Murri
- Department of Neuroscience and Rehabilitation, Institute of Psychiatry, University of Ferrara, Ferrara, Italy
| | - Luigi Zerbinati
- Department of Neuroscience and Rehabilitation, Institute of Psychiatry, University of Ferrara, Ferrara, Italy
| | - Rosangela Caruso
- Department of Neuroscience and Rehabilitation, Institute of Psychiatry, University of Ferrara, Ferrara, Italy
| | - Maria Giulia Nanni
- Department of Neuroscience and Rehabilitation, Institute of Psychiatry, University of Ferrara, Ferrara, Italy
| | - Giacomo Koch
- Department of Neuroscience and Rehabilitation, Institute of Physiology, University of Ferrara, Ferrara, Italy; Center for Translational Neurophysiology of Speech and Communication (CTNSC), Italian Institute of Technology (IIT), Ferrara, Italy
| | - Luciano Fadiga
- Department of Neuroscience and Rehabilitation, Institute of Physiology, University of Ferrara, Ferrara, Italy; Center for Translational Neurophysiology of Speech and Communication (CTNSC), Italian Institute of Technology (IIT), Ferrara, Italy
| | - Laura Palagini
- Department of Neuroscience and Rehabilitation, Institute of Psychiatry, University of Ferrara, Ferrara, Italy
| | - Giulia Perini
- Padova Neuroscience Center, University of Padova, Padova, Italy; Casa di Cura Parco dei Tigli, Padova, Italy
| | - Beatrice Benatti
- Department of Biomedical and Clinical Sciences Luigi Sacco, University of Milan, Milan, Italy
| | - Bernardo Dell'Osso
- Department of Biomedical and Clinical Sciences Luigi Sacco, University of Milan, Milan, Italy
| | - Luigi Grassi
- Department of Neuroscience and Rehabilitation, Institute of Psychiatry, University of Ferrara, Ferrara, Italy
| |
Collapse
|