1
|
Varghese S, J M A, Madanan AS, Abraham MK, Shkhair AI, Indongo G, Rajeevan G, N S V, B K A, George S. Highly sensitive lanthanide complex as a probe for l-kynurenine: A cancer biomarker. LUMINESCENCE 2024; 39:e4740. [PMID: 38618664 DOI: 10.1002/bio.4740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/23/2024] [Accepted: 03/12/2024] [Indexed: 04/16/2024]
Abstract
A lanthanide complex based on europium (Eu) and chelidamic acid was synthesized (Eu-CHE) and characterized. The complex Eu-CHE exhibited intense luminescence at 615 nm under excitation at 300 nm and was further investigated for highly sensitive turn-off detection of l-kynurenine (l-kyn), a cancer biomarker. The probe detected l-kyn linearly from 6 nM to 0.2 μM with a limit of detection and limit of quantification of 1.37 and 4.57 nM, respectively. The probe was investigated for selectivity towards l-kyn among co-existing amino acids and further extended for detecting l-kyn from human serum and urine samples. A low-cost paper strip-based sensing platform was also developed for the visual detection of l-kyn.
Collapse
Affiliation(s)
- Susan Varghese
- Department of Chemistry, School of Physical and Mathematical Sciences, University of Kerala, Thiruvananthapuram, Kerala, India
| | - Arya J M
- Department of Chemistry, School of Physical and Mathematical Sciences, University of Kerala, Thiruvananthapuram, Kerala, India
| | - Anju S Madanan
- Department of Chemistry, School of Physical and Mathematical Sciences, University of Kerala, Thiruvananthapuram, Kerala, India
| | - Merin K Abraham
- Department of Chemistry, School of Physical and Mathematical Sciences, University of Kerala, Thiruvananthapuram, Kerala, India
| | - Ali Ibrahim Shkhair
- Department of Chemistry, School of Physical and Mathematical Sciences, University of Kerala, Thiruvananthapuram, Kerala, India
| | - Geneva Indongo
- Department of Chemistry, School of Physical and Mathematical Sciences, University of Kerala, Thiruvananthapuram, Kerala, India
| | - Greeshma Rajeevan
- Department of Chemistry, School of Physical and Mathematical Sciences, University of Kerala, Thiruvananthapuram, Kerala, India
| | - Vijila N S
- Department of Chemistry, School of Physical and Mathematical Sciences, University of Kerala, Thiruvananthapuram, Kerala, India
| | - Arathy B K
- Department of Chemistry, School of Physical and Mathematical Sciences, University of Kerala, Thiruvananthapuram, Kerala, India
| | - Sony George
- Department of Chemistry, School of Physical and Mathematical Sciences, University of Kerala, Thiruvananthapuram, Kerala, India
| |
Collapse
|
2
|
Li W, Liang Z, Wang P, Ma Q. The luminescent principle and sensing mechanism of metal-organic framework for bioanalysis and bioimaging. Biosens Bioelectron 2024; 249:116008. [PMID: 38245932 DOI: 10.1016/j.bios.2024.116008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 01/04/2024] [Indexed: 01/23/2024]
Abstract
Metal-organic frameworks (MOFs) porous material have obtained more and more attention during the past decade. Among various MOFs materials, luminescent MOFs with specific chemical characteristics and excellent optical properties have been regarded as promising candidates in the research of cancer biomarkers detection and bioimaging. Therefore, the latest advances and the principal biosensing and imaging strategies based on the luminescent MOFs were discussed in this review. The effective synthesis methods of luminescent MOFs were emphasized firstly. Subsequently, the luminescent principle of MOFs has been summarized. Furthermore, the luminescent MOF-based sensing mechanisms have been highlighted to provide insights into the design of biosensors. The designability of LMOFs was suitable for different needs of biorecognition, detection, and imaging. Typical examples of luminescent MOF in the various cancer biomarkers detection and bioimaging were emphatically introduced. Finally, the future outlooks and challenges of luminescent MOF-based biosensing systems were proposed for clinical cancer diagnosis.
Collapse
Affiliation(s)
- Wenyan Li
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
| | - Zihui Liang
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
| | - Peilin Wang
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
| | - Qiang Ma
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun 130012, China.
| |
Collapse
|
3
|
Mrštná K, Kujovská Krčmová L, Švec F. Advances in kynurenine analysis. Clin Chim Acta 2023:117441. [PMID: 37321530 DOI: 10.1016/j.cca.2023.117441] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/07/2023] [Accepted: 06/08/2023] [Indexed: 06/17/2023]
Abstract
Kynurenine, the first product of tryptophan degradation via the kynurenine pathway, has become one of the most frequently mentioned biomarkers in recent years. Its levels in the body indicate the state of the human physiology. Human serum and plasma are the main matrixes used to evaluate kynurenine levels and liquid chromatography is the dominant technique for its determination. However, their concentrations in blood do not always correspond to the levels in other matrixes obtained from the affected individuals. It is therefore important to decide when it is appropriate to analyse kynurenine in alternative matrices. However, liquid chromatography may not be the best option for the analysis. This review presents alternatives that can be used and summarizes the features that need to be considered prior to kynurenine determination. Possible approaches to kynurenine analysis in a variety of human matrixes, their challenges, and limitations are critically discussed.
Collapse
Affiliation(s)
- K Mrštná
- The Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203/8, 50005 Hradec Králové, Czech Republic; The Department of Clinical Biochemistry and Diagnostics, University Hospital Hradec Králové, Sokolská 581, 50005 Hradec Králové, Czech Republic
| | - L Kujovská Krčmová
- The Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203/8, 50005 Hradec Králové, Czech Republic; The Department of Clinical Biochemistry and Diagnostics, University Hospital Hradec Králové, Sokolská 581, 50005 Hradec Králové, Czech Republic.
| | - F Švec
- The Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203/8, 50005 Hradec Králové, Czech Republic
| |
Collapse
|
4
|
Cheng Y, Cai Z, Xu Z, Sang X, Song C. Smart sensing device for formaldehyde that based on uniform lanthanide CPs microsphere. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
5
|
High sensitive fluorescent sensing and photocatalytic degradation performance of two-dimensional Tb-organic network. J RARE EARTH 2023. [DOI: 10.1016/j.jre.2022.12.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
6
|
Mu B, Li B, Qi B. Dihydrogen orthophosphate on phosphomolybdic acid/(Ln-MOFs) modified glassy carbon electrode electrochemical reduction process. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.110292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
7
|
Sahoo S, Mondal S, Sarma D. Luminescent Lanthanide Metal Organic Frameworks (LnMOFs): A Versatile Platform towards Organomolecule Sensing. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214707] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
8
|
Metal-organic framework-based smart nanoplatforms with multifunctional attributes for biosensing, drug delivery, and cancer theranostics. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.110145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
9
|
Lunev AM, Belousov YA. Luminescent sensor materials based on rare-earth element complexes for detecting cations, anions, and small molecules. Russ Chem Bull 2022. [DOI: 10.1007/s11172-022-3485-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
10
|
Sadok I, Tyszczuk-Rotko K, Mroczka R, Kozak J, Staniszewska M. Improved Voltammetric Determination of Kynurenine at the Nafion Covered Glassy Carbon Electrode - Application in Samples Delivered from Human Cancer Cells. Int J Tryptophan Res 2021; 14:11786469211023468. [PMID: 34276216 PMCID: PMC8256253 DOI: 10.1177/11786469211023468] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 05/03/2021] [Indexed: 12/16/2022] Open
Abstract
Nowadays, development of analytical methods responding to a need for rapid and
accurate determination of human metabolites is highly desirable. Herein, an
electrochemical method employing a Nafion-coated glassy carbon electrode
(Nafion/GCE) has been developed for reliable determination of kynurenine (a key
tryptophan metabolite) using a differential pulse adsorptive stripping
voltammetry. To our knowledge, this is the first analytical method to allow for
kynurenine determination at the Nafion-coated electrode. The methodology
involves kynurenine pre-concentration in 0.1 M H2SO4 in
the Nafion film at the potential of +0.5 V and subsequent stripping from the
electrode by differential pulse voltammetry. Under optimal conditions, the
sensor can detect 5 nM kynurenine (for the accumulation time of 60 seconds), but
the limit of detection can be easily lowered to 0.6 nM by prolonging the
accumulation time to 600 seconds. The sensor shows sensitivity of
36.25 μAμM−1cm−2 and
185.50 μAμM−1cm−2 for the accumulation time of 60 and
600 seconds, respectively. The great advantage of the proposed method is easy
sensor preparation, employing drop coating method, high sensitivity, short total
analysis time, and no need for sample preparation. The method was validated for
linearity, precision, accuracy (using a high-performance liquid chromatography),
selectivity (towards tryptophan metabolites and different amino acids), and
recovery. The comprehensive microscopic and electrochemical characterization of
the Nafion/GCE was also conducted with different methods including atomic force
microscopy (AFM), optical profilometry, time-of-flight secondary ion mass
spectrometry (TOF-SIMS), electrochemical impedance spectroscopy (EIS), and
cyclic voltammetry (CV). The method has been applied with satisfactory results
for determination of kynurenine concentration in a culture medium collected from
the human ovarian carcinoma cells SK-OV-3 and to measure IDO enzyme activity in
the cancer cell extracts.
Collapse
Affiliation(s)
- Ilona Sadok
- Laboratory of Separation and Spectroscopic Method Applications, Centre for Interdisciplinary Research, Faculty of Science and Health, The John Paul II Catholic University of Lublin, Lublin, Poland
| | - Katarzyna Tyszczuk-Rotko
- Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Skłodowska University in Lublin, Lublin, Poland
| | - Robert Mroczka
- Laboratory of X-ray Optics, Centre for Interdisciplinary Research, Faculty of Science and Health, The John Paul II Catholic University of Lublin, Lublin, Poland
| | - Jędrzej Kozak
- Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Skłodowska University in Lublin, Lublin, Poland
| | - Magdalena Staniszewska
- Laboratory of Separation and Spectroscopic Method Applications, Centre for Interdisciplinary Research, Faculty of Science and Health, The John Paul II Catholic University of Lublin, Lublin, Poland
| |
Collapse
|