1
|
Wang Y, Wang J, Long Z, Sun Z, Lv L, Liang J, Zhang G, Wang P, Gao W. MnCe-based catalysts for removal of organic pollutants in urban wastewater by advanced oxidation processes - A critical review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122773. [PMID: 39388818 DOI: 10.1016/j.jenvman.2024.122773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/11/2024] [Accepted: 09/29/2024] [Indexed: 10/12/2024]
Abstract
With Advanced oxidation processes (AOPs) widely promoted, MnCe-based catalysts have received extensive attention under the advantages of high efficiency, stability and economy for refractory organic pollutants present in urban wastewater. Driven by multiple factors such as environmental pollution, technological development, and policy promotion, a systematic review of MnCe-based catalysts is urgently needed in the current research situation. This research provides a critical review of MnCe-based catalysts for removal of organic pollutants in urban wastewater by AOPs. It is found that co-precipitation and sol-gel methods are more appropriate methods for catalyst preparation. Among a host of influence factors, catalyst composition and pH are crucial in the catalytic oxidation processes. The synergistic effect of the free radical pathway and surface catalysis results in better pollutants degradation. It is more valuable to utilize multiple systems for oxidation (e.g., photo-Fenton technology) to improve the catalytic efficiency. This review provides theoretical guidance for MnCe-based catalysts and offers a reference direction for future research in the AOPs of organic pollutants removal from urban wastewater.
Collapse
Affiliation(s)
- Yuting Wang
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Jiaqing Wang
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Zeqing Long
- Department of Public Health and Preventive Medicine, Changzhi Medical College, Changzhi, China
| | - Zhi Sun
- National Key Laboratory of Biochemical Engineering, Beijing Engineering Research Centre of Process Pollution Control, Institute of Process Engineering, Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing, 100190, China
| | - Longyi Lv
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Jinsong Liang
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Guangming Zhang
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China.
| | - Pengfei Wang
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Wenfang Gao
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China.
| |
Collapse
|
2
|
Li X, Chen R, Yang M, Niu Y, Li J, Shao D, Zheng X, Zhang C, Qi Y. Insight into modified CeMn based catalysts for efficient degradation of toluene by in situ infrared. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169192. [PMID: 38097085 DOI: 10.1016/j.scitotenv.2023.169192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/02/2023] [Accepted: 12/06/2023] [Indexed: 12/17/2023]
Abstract
Trace activated carbon (AC) and diatomaceous earth (DE) were used as structural promoters to be incorporated into Ce-Mn-based solid-solution catalysts by the redox precipitation method. The modified catalysts exhibit superior reducibility, with abundant Ce3+, Mn3+and reactive oxygen species, which are facilitated to the migration of oxygen and the generation of oxygen vacancies. In particular, the catalytic combustion temperatures of 90 % toluene (3000 ppm) on Ce1Mn3Ox-AC/DE were 84 °C (dry) and 123 °C (10 vol% H2O), respectively. The role of lattice oxygen and adsorbed oxygen was revealed by in situ DRIFTS. Additionally, in situ DRIFTS was employed to verify that the degradation of toluene by Ce1Mn3Ox-AC/DE satisfied the Langmuir-Hinshelwood (L-H) mechanism and the Mars-Van Krevelen (MvK) mechanism. The possible reaction pathway was elucidated (toluene → benzyl alcohol → benzoic acid → maleic anhydride → CO2 + H2O). Furthermore, final products attributed to toluene oxidation were detected by in situ DRIFTS at 50 °C in the absence of oxygen, confirming that the catalyst possessed outstanding performance at low temperatures beyond mere adsorption.
Collapse
Affiliation(s)
- Xuelian Li
- National Engineering Research Center for Fine Petrochemical Intermediates, and State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Rujie Chen
- Shandong Laboratory of Yantai Advanced Materials and Green Manufacturing, Yantai Zhongke Research Institute of Advanced Materials and Green Chemical Engineering, Yantai 264000, PR China
| | - Min Yang
- National Engineering Research Center for Fine Petrochemical Intermediates, and State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, PR China
| | - Yongfang Niu
- National Engineering Research Center for Fine Petrochemical Intermediates, and State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Jing Li
- National Engineering Research Center for Fine Petrochemical Intermediates, and State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, PR China
| | - Dan Shao
- Shandong Laboratory of Yantai Advanced Materials and Green Manufacturing, Yantai Zhongke Research Institute of Advanced Materials and Green Chemical Engineering, Yantai 264000, PR China
| | - Xinmei Zheng
- National Engineering Research Center for Fine Petrochemical Intermediates, and State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, PR China
| | - Chuanwei Zhang
- National Engineering Research Center for Fine Petrochemical Intermediates, and State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, PR China
| | - Yanxing Qi
- National Engineering Research Center for Fine Petrochemical Intermediates, and State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, PR China; Shandong Laboratory of Yantai Advanced Materials and Green Manufacturing, Yantai Zhongke Research Institute of Advanced Materials and Green Chemical Engineering, Yantai 264000, PR China.
| |
Collapse
|
3
|
Sun Y, Fang S, Xu J, Zhang T, Wu Z, Li J, Gao E, Wang W, Dai L, Liu W, Zhang B, Zhang J, Yao S, Zhu J. Unveiling the Surface Chemical Reactions during Multi-Phase Catalytic Oxidation of Soot on Nanoengineering/Interfacing/Doping-Prepared Mn-CeO 2 Catalysts Using TG-MS and Operando DRIFTS-MS. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:15773-15784. [PMID: 37883132 DOI: 10.1021/acs.langmuir.3c02409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Abstract
The aerosol pyrolysis method from nitrate precursors was used to prepare the Mn-CeO2 catalyst containing Mn2O3, CeO2, and Mn-doped CeO2 nanoparticles for catalyzing carbonous soot oxidation. The prepared Mn-CeO2 catalysts have high specific surface areas, Ce3+ ratio, and oxygen vacancy defects; these are a benefit for soot oxidation. The T50 for soot oxidation on the 0.57Mn-CeO2 catalyst is as low as 355 °C, which is 329 °C lower than that for soot oxidation without a catalyst. The catalysts were characterized using XRD, SEM-EDS, HRTEM, XPS, Raman spectroscopy, H2-TPR-MS, O2-TPD-MS, soot-TPR-MS, and operando DRIFTS-MS. The functions of Mn2O3, CeO2, and Mn-doped CeO2 in the 0.57Mn-CeO2 catalyst are unveiled. Mn-doped CeO2 plays a key role and CeO2 participates in soot oxidation, while Mn2O3 is used to enhance higher ratios of Ce3+, via the reaction of Mn3+ + Ce4+ = Mn4+ + Ce3+. The mechanism of soot oxidation on Mn-CeO2 was proposed.
Collapse
Affiliation(s)
- Yan Sun
- School of Environmental Science and Engineering, Changzhou University, Changzhou 213164, China
| | - Shiyu Fang
- School of Environmental Science and Engineering, Changzhou University, Changzhou 213164, China
| | - Jiacheng Xu
- School of Environmental Science and Engineering, Changzhou University, Changzhou 213164, China
- School of Material Science and Engineering, Changzhou University, Changzhou 213164, China
| | - Tiantian Zhang
- School of Environmental Science and Engineering, Changzhou University, Changzhou 213164, China
| | - Zuliang Wu
- School of Environmental Science and Engineering, Changzhou University, Changzhou 213164, China
- Key Laboratory of Advanced Plasma Catalysis Engineering for China Petrochemical Industry, Changzhou 213164, China
| | - Jing Li
- School of Environmental Science and Engineering, Changzhou University, Changzhou 213164, China
- Key Laboratory of Advanced Plasma Catalysis Engineering for China Petrochemical Industry, Changzhou 213164, China
| | - Erhao Gao
- School of Environmental Science and Engineering, Changzhou University, Changzhou 213164, China
- Key Laboratory of Advanced Plasma Catalysis Engineering for China Petrochemical Industry, Changzhou 213164, China
| | - Wei Wang
- School of Environmental Science and Engineering, Changzhou University, Changzhou 213164, China
- Key Laboratory of Advanced Plasma Catalysis Engineering for China Petrochemical Industry, Changzhou 213164, China
| | - Lianxin Dai
- Jiangxi Xintai Functional Materials Technology Co., Ltd., Ji'an, Jiangxi 343100, China
| | - Weihua Liu
- Jiangxi Xintai Functional Materials Technology Co., Ltd., Ji'an, Jiangxi 343100, China
| | - Buhe Zhang
- Jiangxi Xintai Functional Materials Technology Co., Ltd., Ji'an, Jiangxi 343100, China
| | - Junwei Zhang
- Jiangxi Xintai Functional Materials Technology Co., Ltd., Ji'an, Jiangxi 343100, China
| | - Shuiliang Yao
- School of Environmental Science and Engineering, Changzhou University, Changzhou 213164, China
- School of Material Science and Engineering, Changzhou University, Changzhou 213164, China
- Key Laboratory of Advanced Plasma Catalysis Engineering for China Petrochemical Industry, Changzhou 213164, China
| | - Jiali Zhu
- School of Environmental Science and Engineering, Changzhou University, Changzhou 213164, China
- Key Laboratory of Advanced Plasma Catalysis Engineering for China Petrochemical Industry, Changzhou 213164, China
| |
Collapse
|
4
|
Yang J, Li J, Kang J, Liu W, Kuang Y, Tan H, Yu Z, Yang L, Yang X, Yu K, Fan Y. Preparation of Ce-MnO x Composite Oxides via Coprecipitation and Their Catalytic Performance for CO Oxidation. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2158. [PMID: 37570476 PMCID: PMC10421365 DOI: 10.3390/nano13152158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/17/2023] [Accepted: 07/20/2023] [Indexed: 08/13/2023]
Abstract
Ce-MnOx composite oxide catalysts with different proportions were prepared using the coprecipitation method, and the CO-removal ability of the catalysts with the tested temperature range of 60-140 °C was investigated systematically. The effect of Ce and Mn ratios on the catalytic oxidation performance of CO was investigated using X-ray diffraction (XRD), X-ray energy dispersive spectroscopy (EDS), scanning electron microscopy (SEM), H2 temperature programmed reduction (H2-TPR), CO-temperature programmed desorption (CO-TPD), and in situ infrared spectra. The experimental results reveal that under the same test conditions, the CO conversion rate of pure Mn3O4 reaches 95.4% at 170 °C. Additionally, at 140 °C, the Ce-MnOx series composite oxide catalyst converts CO at a rate of over 96%, outperforming single-phase Mn3O4 in terms of catalytic performance. With the decrement in Ce content, the performance of Ce-MnOx series composite oxide catalysts first increase and then decrease. The Ce MnOx catalyst behaves best when Ce:Mn = 1:1, with a CO conversion rate of 99.96% at 140 °C and 91.98% at 100 °C.
Collapse
Affiliation(s)
- Junsheng Yang
- College of Mechanical Engineering, Wuhan Polytechnic University, Wuhan 430048, China; (J.Y.); (J.L.); (W.L.); (Y.K.); (Z.Y.); (L.Y.); (X.Y.)
| | - Jie Li
- College of Mechanical Engineering, Wuhan Polytechnic University, Wuhan 430048, China; (J.Y.); (J.L.); (W.L.); (Y.K.); (Z.Y.); (L.Y.); (X.Y.)
| | - Jiangang Kang
- Zhongye Changtian International Engineering Co., Ltd., Changsha 410205, China;
| | - Wenkang Liu
- College of Mechanical Engineering, Wuhan Polytechnic University, Wuhan 430048, China; (J.Y.); (J.L.); (W.L.); (Y.K.); (Z.Y.); (L.Y.); (X.Y.)
| | - Yijian Kuang
- College of Mechanical Engineering, Wuhan Polytechnic University, Wuhan 430048, China; (J.Y.); (J.L.); (W.L.); (Y.K.); (Z.Y.); (L.Y.); (X.Y.)
| | - Hua Tan
- State Key Laboratory of Material Processing and Die & Mould Technology, Wuhan 430074, China;
- School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Zhensen Yu
- College of Mechanical Engineering, Wuhan Polytechnic University, Wuhan 430048, China; (J.Y.); (J.L.); (W.L.); (Y.K.); (Z.Y.); (L.Y.); (X.Y.)
| | - Liu Yang
- College of Mechanical Engineering, Wuhan Polytechnic University, Wuhan 430048, China; (J.Y.); (J.L.); (W.L.); (Y.K.); (Z.Y.); (L.Y.); (X.Y.)
| | - Xuejin Yang
- College of Mechanical Engineering, Wuhan Polytechnic University, Wuhan 430048, China; (J.Y.); (J.L.); (W.L.); (Y.K.); (Z.Y.); (L.Y.); (X.Y.)
| | - Kui Yu
- College of Mechanical Engineering, Wuhan Polytechnic University, Wuhan 430048, China; (J.Y.); (J.L.); (W.L.); (Y.K.); (Z.Y.); (L.Y.); (X.Y.)
| | - Yiquan Fan
- College of Mechanical Engineering, Wuhan Polytechnic University, Wuhan 430048, China; (J.Y.); (J.L.); (W.L.); (Y.K.); (Z.Y.); (L.Y.); (X.Y.)
| |
Collapse
|
5
|
Zhu Y, Chen Z, Li H, Wang Q, Liu X, Hu Y, Su C, Duan R, Chen S, Lan L. Effect of oxygen vacancy and highly dispersed MnO x on soot combustion in cerium manganese catalyst. Sci Rep 2023; 13:3386. [PMID: 36854804 PMCID: PMC9975190 DOI: 10.1038/s41598-023-30465-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 02/23/2023] [Indexed: 03/03/2023] Open
Abstract
Cerium manganese bimetallic catalysts have become the focus of current research because of their excellent catalytic performance for soot combustion. Two series of cerium manganese catalysts (Na-free catalysts and Na-containing catalysts) were prepared by coprecipitation method and characterized using XRD, N2 adsorption-desorption, SEM, Raman, XPS, H2-TPR, O2-TPD, Soot-TPR-MS and in situ IR. The effects of abundant oxygen vacancies and surface highly dispersed MnOx on soot catalytic combustion of cerium manganese catalysts prepared by different precipitants were analyzed. The activity test results show that the active oxygen species released by a large number of oxygen vacancies in the cerium manganese catalyst are more favorable to the soot catalytic combustion than MnOx which is highly dispersed on the surface of the catalyst and has good redox performance at low temperature. Because the catalytic effect of MnOx on the surface of Na-free catalysts is more dependent on the contact condition between the catalyst and the soot, this phenomenon can be observed more easily under the loose contact condition than under the tight contact condition. The activity cycle test results show that these two series of catalysts show good stability and repeated use will hardly cause any deactivation of the catalysts.
Collapse
Affiliation(s)
- Yi Zhu
- College of Chemistry Biology and Environment, Yuxi Normal University, Yuxi, 653100, China. .,Institute of Biology and Environmental Engineering, Yuxi Normal University, Yuxi, 653100, China.
| | - Zhen Chen
- grid.464483.90000 0004 1799 4419College of Chemistry Biology and Environment, Yuxi Normal University, Yuxi, 653100 China ,grid.464483.90000 0004 1799 4419Institute of Biology and Environmental Engineering, Yuxi Normal University, Yuxi, 653100 China
| | - Hongmei Li
- grid.464483.90000 0004 1799 4419College of Chemistry Biology and Environment, Yuxi Normal University, Yuxi, 653100 China ,grid.464483.90000 0004 1799 4419Institute of Biology and Environmental Engineering, Yuxi Normal University, Yuxi, 653100 China
| | - Quan Wang
- grid.464483.90000 0004 1799 4419College of Chemistry Biology and Environment, Yuxi Normal University, Yuxi, 653100 China ,grid.464483.90000 0004 1799 4419Institute of Biology and Environmental Engineering, Yuxi Normal University, Yuxi, 653100 China
| | - Xingyu Liu
- grid.464483.90000 0004 1799 4419College of Chemistry Biology and Environment, Yuxi Normal University, Yuxi, 653100 China
| | - You Hu
- grid.464483.90000 0004 1799 4419College of Chemistry Biology and Environment, Yuxi Normal University, Yuxi, 653100 China
| | - Cuimei Su
- grid.464483.90000 0004 1799 4419College of Chemistry Biology and Environment, Yuxi Normal University, Yuxi, 653100 China
| | - Rui Duan
- grid.464483.90000 0004 1799 4419College of Chemistry Biology and Environment, Yuxi Normal University, Yuxi, 653100 China
| | - Shanhu Chen
- grid.411864.e0000 0004 1761 3022College of Chemistry and Chemical Engineering, Jiangxi Science and Technology Normal University, Nanchang, 330013 China
| | - Li Lan
- College of Materials and Mechatronics, Jiangxi Science and Technology Normal University, Nanchang, 330013, China.
| |
Collapse
|
6
|
Insight into catalytic activity of K-Ce catalysts and K-Ce based mixed catalysts on diesel soot combustion. MOLECULAR CATALYSIS 2023. [DOI: 10.1016/j.mcat.2022.112905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
7
|
Qi B, Li Z, Lou D, Zhang Y. Experimental investigation on the effects of DPF Cs-V-based non-precious metal catalysts and their coating forms on non-road diesel engine emission characteristics. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:9401-9415. [PMID: 36053419 DOI: 10.1007/s11356-022-22656-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 08/17/2022] [Indexed: 06/15/2023]
Abstract
Non-precious metal catalysts with good soot catalytic properties and a low cost have great potential for application in diesel particulate filters (DPF). In this study, we compared the effects of DPF supported by Cs2V4O11 (Cs-V-based) non-precious metal catalysts and conventional Pt-Pd-based precious metal catalysts on the performance of a non-road diesel engine. Furthermore, the effects of on-wall coating and in-wall coating of Cs-V-based catalysts on DPF performance were also investigated. The results indicated that the particulate emissions from DPF with Cs-V-based catalysts were reduced slightly less than that with Pt-Pd-based catalysts; however, the particle number (PN) and particulate matter (PM) emissions were still reduced by 94.4% and 91.7%, respectively, meeting the non-road China IV limits under the non-road steady cycle (NRSC). In addition, CO, HC, and NO can also be slightly oxidized by the non-precious metal catalysts. On the other hand, the DPF with in-wall coating induced comparatively higher gaseous substances and particulate emissions and caused a higher exhaust back pressure (EBP), which was 9.6% higher than the on-wall coating under NRSC, negatively affecting engine performance. Additionally, the geometric mean diameter (GMD) for the DPF with in-wall coating was only 33.3 nm because of the large emission proportion of nuclear mode particles.
Collapse
Affiliation(s)
- Boyang Qi
- National Engineering Laboratory for Mobile Source Emission Control Technology, China Automotive Technology & Research Center Co., Ltd., Tianjin, 300300, China
- School of Automotive Studies, Tongji University, Shanghai, 201804, China
| | - Zhenguo Li
- National Engineering Laboratory for Mobile Source Emission Control Technology, China Automotive Technology & Research Center Co., Ltd., Tianjin, 300300, China.
| | - Diming Lou
- School of Automotive Studies, Tongji University, Shanghai, 201804, China
| | - Yunhua Zhang
- School of Automotive Studies, Tongji University, Shanghai, 201804, China.
| |
Collapse
|
8
|
Performance of mesoporous CeO2-Cr2O3 mixed metal oxides applied to benzene catalytic combustion. J RARE EARTH 2022. [DOI: 10.1016/j.jre.2022.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
9
|
Liu X, Guo Y, He Q, Zhang C, Li Y. Core-shell MnCeO catalysts for NO oxidation and mild temperature diesel soot combustion. J RARE EARTH 2022. [DOI: 10.1016/j.jre.2022.06.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
10
|
Yang Y, Fang J, Meng Z, Pu P, Zhang Q, Yi C, Pan S, Li Y. Catalytic activity and influence factors of Mn-Ce mixed oxides by hydrothermal method on diesel soot combustion. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112334] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|