1
|
Peng Y, Zhu P, Zou Y, Gao Q, Xiong S, Liang B, Xiao B. Overview of Functionalized Porous Materials for Rare-Earth Element Separation and Recovery. Molecules 2024; 29:2824. [PMID: 38930888 PMCID: PMC11206383 DOI: 10.3390/molecules29122824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/03/2024] [Accepted: 06/09/2024] [Indexed: 06/28/2024] Open
Abstract
The exceptional photoelectromagnetic characteristics of rare-earth elements contribute significantly to their indispensable position in the high-tech industry. The exponential expansion of the demand for high-purity rare earth and related compounds can be attributed to the swift advancement of contemporary technology. Nevertheless, rare-earth elements are finite and limited resources, and their excessive mining unavoidably results in resource depletion and environmental degradation. Hence, it is crucial to establish a highly effective approach for the extraction and reclamation of rare-earth elements. Adsorption is regarded as a promising technique for the recovery of rare-earth elements owing to its simplicity, environmentally friendly nature, and cost-effectiveness. The efficacy of adsorption is contingent upon the performance characteristics of the adsorbent material. Presently, there is a prevalent utilization of porous adsorbent materials with substantial specific surface areas and plentiful surface functional groups in the realm of selectively separating and recovering rare-earth elements. This paper presents a thorough examination of porous inorganic carbon materials, porous inorganic silicon materials, porous organic polymers, and metal-organic framework materials. The adsorption performance and processes for rare-earth elements are the focal points of discussion about these materials. Furthermore, this work investigates the potential applications of porous materials in the domain of the adsorption of rare-earth elements.
Collapse
Affiliation(s)
- Yong Peng
- Key Laboratory of Mine Geological Disaster Prevention and Control and Ecological Restoration, School of Resources and Civil Engineering, Gannan University of Science and Technology, Ganzhou 341000, China; (Y.P.); (P.Z.); (Y.Z.); (Q.G.); (B.L.)
| | - Pingxin Zhu
- Key Laboratory of Mine Geological Disaster Prevention and Control and Ecological Restoration, School of Resources and Civil Engineering, Gannan University of Science and Technology, Ganzhou 341000, China; (Y.P.); (P.Z.); (Y.Z.); (Q.G.); (B.L.)
| | - Yin Zou
- Key Laboratory of Mine Geological Disaster Prevention and Control and Ecological Restoration, School of Resources and Civil Engineering, Gannan University of Science and Technology, Ganzhou 341000, China; (Y.P.); (P.Z.); (Y.Z.); (Q.G.); (B.L.)
| | - Qingyi Gao
- Key Laboratory of Mine Geological Disaster Prevention and Control and Ecological Restoration, School of Resources and Civil Engineering, Gannan University of Science and Technology, Ganzhou 341000, China; (Y.P.); (P.Z.); (Y.Z.); (Q.G.); (B.L.)
| | - Shaohui Xiong
- Hunan Provincial Key Laboratory of Advanced Materials for New Energy Storage and Conversion, School of Materials Science and Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Binjun Liang
- Key Laboratory of Mine Geological Disaster Prevention and Control and Ecological Restoration, School of Resources and Civil Engineering, Gannan University of Science and Technology, Ganzhou 341000, China; (Y.P.); (P.Z.); (Y.Z.); (Q.G.); (B.L.)
| | - Bin Xiao
- Key Laboratory of Mine Geological Disaster Prevention and Control and Ecological Restoration, School of Resources and Civil Engineering, Gannan University of Science and Technology, Ganzhou 341000, China; (Y.P.); (P.Z.); (Y.Z.); (Q.G.); (B.L.)
- Key Laboratory of Ionic Rare Earth Resources and Environment, Ministry of Natural Resources of the People’s Republic of China, Jiangxi College of Applied Technology, Ganzhou 341000, China
| |
Collapse
|
2
|
Li G, Zheng X, Xu T, Zhang X, Ji B, Xu Z, Bao S, Mei J, Li Z. Preparation of imprinted bacterial cellulose aerogel with intelligent modulation of thermal response stimulation for selective adsorption of Gd(III) from wastewater. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:125806-125815. [PMID: 38006485 DOI: 10.1007/s11356-023-31184-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 11/18/2023] [Indexed: 11/27/2023]
Abstract
Research on recycling of used rare earth elements has been of great interest. Adsorption is one of the advantageous methods to recover gadolinium with high value. In the process of adsorption and separation of gadolinium from materials, the selectivity of materials for gadolinium can be significantly improved by using ion imprinting technique. However, gadolinium elution process is a traditional pickling process, which may affect the construction of imprinting sites. In this study, bacterial cellulose with three-dimensional spatial structure was used as the base material of aerogel material, and functional materials containing a large number of carboxyl groups were introduced by chemical grafting method. In combination with ion imprinting technology and N-polyacrylamide as intelligent temperature control valve, intelligent imprinting aerogel (PNBC-IIPS) with specific selectivity to gadolinium was prepared. The properties of aerogel materials were analyzed by SEM, FT-IR, and BET characterization. The experimental analysis shows that the desorption of gadolinium can be achieved by controlling the temperature change. The adsorption experiments show that PNBC-IIPS can selectively adsorb gadolinium ions from aqueous solution. The maximum adsorption capacity reached 95.51 mg g-1. Compared with unimprinted aerogel, the maximum adsorption capacity of gadolinium ion is significantly increased, which proves that the introduced ion imprinting technique plays a key role in the adsorption process. Cyclic experiments show that the adsorption capacity of PNBC-IIPS can still maintain 88% of the original adsorption capacity after 5 times of adsorption and desorption. In conclusion, PNBC-IIPS is a green adsorbent for selective recovery of gadolinium ions.
Collapse
Affiliation(s)
- Guomeng Li
- School of Environmental Science and Engineering, Changzhou University, Changzhou, 213164, People's Republic of China
| | - Xudong Zheng
- School of Environmental Science and Engineering, Changzhou University, Changzhou, 213164, People's Republic of China.
| | - Tongtong Xu
- School of Environmental Science and Engineering, Changzhou University, Changzhou, 213164, People's Republic of China
| | - Xi Zhang
- School of Environmental Science and Engineering, Changzhou University, Changzhou, 213164, People's Republic of China
| | - Biao Ji
- School of Environmental Science and Engineering, Changzhou University, Changzhou, 213164, People's Republic of China
| | - Zihuai Xu
- School of Environmental Science and Engineering, Changzhou University, Changzhou, 213164, People's Republic of China
| | - Sifan Bao
- School of Environmental Science and Engineering, Changzhou University, Changzhou, 213164, People's Republic of China
| | - Jinfeng Mei
- School of Environmental Science and Engineering, Changzhou University, Changzhou, 213164, People's Republic of China
| | - Zhongyu Li
- School of Environmental Science and Engineering, Changzhou University, Changzhou, 213164, People's Republic of China
| |
Collapse
|
3
|
Adsorptive removal of Cd2+, Pb2+, and Fe2+ from acid mine drainage using a mixture of waste orange and lemon activated carbon (WOLAC): equilibrium study. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2023. [DOI: 10.1007/s13738-022-02739-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
4
|
Li W, Huang L, Xiao B, Duan X, Li H, Li L, Huang W. Efficient and selective recovery of Gd(III) via polyethyleneimine modification of lanthanum-based metal–organic frameworks. J RARE EARTH 2022. [DOI: 10.1016/j.jre.2022.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
5
|
Synthesis of N, O-rich active site porous polymers and their efficient recovery of Gd(III) from solution. J RARE EARTH 2022. [DOI: 10.1016/j.jre.2022.08.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|