1
|
Akin S, Cekin N. Preeclampsia and STOX1 (storkhead-box protein 1): Molecular evaluation of STOX1 in preeclampsia. Gene 2024; 927:148742. [PMID: 38969244 DOI: 10.1016/j.gene.2024.148742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/13/2024] [Accepted: 07/01/2024] [Indexed: 07/07/2024]
Abstract
Preeclampsia (PE) is clinically defined as a part of pregnancy characterized by hypertension and multiple organ failure. PE is broadly categorized into two types: "placental" and "maternal". Placental PE is associated with fetal growth restriction and adverse maternal and neonatal outcomes. STOX1 (Storkhead box 1), a transcription factor, discovered through a complete transcript analysis of the PE susceptibility locus of 70,000 bp on chromosome 10q22.1. So far, studies investigating the relationship between STOX1 and PE have focused on STOX1 overexpression, STOX1 isoform imbalance, and STOX1 variations that could have clinical consequence. Initially, the Y153H variation of STOX was associated with the placental form of PE. Additionally, studies focusing on the maternal and fetal interface have shown that NODAL and STOX1 variations play a role together in the unsuccessful remodeling of the spiral arteries. Research specifically addressing the overexpression of STOX1 has shown that its disruption of cellular hemoastasis, leading to impaired hypoxia response, disruption of the cellular antioxidant system, and nitroso/redox imbalance. Furthermore, functional studies have been conducted showing that the imbalance between STOX1 isoforms contributes to the pathogenesis of placental PE. Research indicates that STOX1B competes with STOX1A and that the overexpression of STOX1B reverses cellular changes that STOX1A induces to the pathogenesis of PE. In this review, we aimed at elucidating the relationship between STOX1 and PE as well as function of STOX1. In conclusion, based on a comprehensive literature review, numerous studies support the role of STOX1 in the pathogenesis of PE.
Collapse
Affiliation(s)
- Seyda Akin
- Sivas Cumhuriyet University, Faculty of Medicine, Department of Medical Biology, 58140 Sivas, Turkey.
| | - Nilgun Cekin
- Sivas Cumhuriyet University, Faculty of Medicine, Department of Medical Biology, 58140 Sivas, Turkey.
| |
Collapse
|
2
|
Bo D, Feng Y, Bai Y, Li J, Wang Y, You Z, Shen J, Bai Y. Whole-Genome Resequencing Reveals Genetic Diversity and Growth Trait-Related Genes in Pinan Cattle. Animals (Basel) 2024; 14:2163. [PMID: 39123689 PMCID: PMC11310955 DOI: 10.3390/ani14152163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/23/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024] Open
Abstract
The breeding of high-quality beef cattle breeds is crucial for the development of animal husbandry, and whole-genome resequencing is widely applicated in the field of molecular breeding. Advantages in growth and reproductive traits exist in Pinan cattle compared with other cattle breeds, but there is limited research on its genomic mechanism. Using whole-genome resequencing, the genetic structure and genomic selection signatures in Pinan cattle were investigated in this study. Phylogenetic, cluster, and admixture analysis results indicated that Pinan cattle have a closer genetic relationship with Kholmogory cattle and China north cattle breeds. Through a selective sweep strategy, 207 and 54 candidate genes related to growth and reproduction and immunity, respectively, were identified in the Pinan cattle population. Given the crucial role of the glutamate-cysteine ligase catalytic (GCLC) gene in muscle antioxidative defense, the high frequency of allele T of the GCLC c.429 C>T locus in the Pinan cattle population might partially contribute to the advantages of Pinan cattle in growth performance. This study laid the foundation for the genetic improvement in Chinese local beef cattle and provide background for the studies on the growth and development of Pinan cattle.
Collapse
Affiliation(s)
- Dongdong Bo
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (D.B.); (Y.F.); (Y.B.); (J.L.); (Y.W.); (Z.Y.); (J.S.)
- Key Laboratory of Innovative Utilization of Local Cattle and Sheep Germplasm Resources (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Zhengzhou 450001, China
| | - Yuqing Feng
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (D.B.); (Y.F.); (Y.B.); (J.L.); (Y.W.); (Z.Y.); (J.S.)
- Key Laboratory of Innovative Utilization of Local Cattle and Sheep Germplasm Resources (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Zhengzhou 450001, China
| | - Yilin Bai
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (D.B.); (Y.F.); (Y.B.); (J.L.); (Y.W.); (Z.Y.); (J.S.)
- Key Laboratory of Innovative Utilization of Local Cattle and Sheep Germplasm Resources (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Zhengzhou 450001, China
| | - Jing Li
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (D.B.); (Y.F.); (Y.B.); (J.L.); (Y.W.); (Z.Y.); (J.S.)
- Key Laboratory of Innovative Utilization of Local Cattle and Sheep Germplasm Resources (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Zhengzhou 450001, China
| | - Yuanyuan Wang
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (D.B.); (Y.F.); (Y.B.); (J.L.); (Y.W.); (Z.Y.); (J.S.)
- Key Laboratory of Innovative Utilization of Local Cattle and Sheep Germplasm Resources (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Zhengzhou 450001, China
| | - Zerui You
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (D.B.); (Y.F.); (Y.B.); (J.L.); (Y.W.); (Z.Y.); (J.S.)
- Key Laboratory of Innovative Utilization of Local Cattle and Sheep Germplasm Resources (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Zhengzhou 450001, China
| | - Jiameng Shen
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (D.B.); (Y.F.); (Y.B.); (J.L.); (Y.W.); (Z.Y.); (J.S.)
- Key Laboratory of Innovative Utilization of Local Cattle and Sheep Germplasm Resources (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Zhengzhou 450001, China
| | - Yueyu Bai
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (D.B.); (Y.F.); (Y.B.); (J.L.); (Y.W.); (Z.Y.); (J.S.)
- Key Laboratory of Innovative Utilization of Local Cattle and Sheep Germplasm Resources (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Zhengzhou 450001, China
- Henan Animal Health Supervision, Zhengzhou 450046, China
| |
Collapse
|
3
|
Parchem JG, Kanasaki K, Lee SB, Kanasaki M, Yang JL, Xu Y, Earl KM, Keuls RA, Gattone VH, Kalluri R. STOX1 deficiency is associated with renin-mediated gestational hypertension and placental defects. JCI Insight 2021; 6:141588. [PMID: 33301424 PMCID: PMC7934881 DOI: 10.1172/jci.insight.141588] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 12/03/2020] [Indexed: 11/17/2022] Open
Abstract
The pathogenesis of preeclampsia and other hypertensive disorders of pregnancy remains poorly defined despite the substantial burden of maternal and neonatal morbidity associated with these conditions. In particular, the role of genetic variants as determinants of disease susceptibility is understudied. Storkhead-box protein 1 (STOX1) was first identified as a preeclampsia risk gene through family-based genetic linkage studies in which loss-of-function variants were proposed to underlie increased preeclampsia susceptibility. We generated a genetic Stox1 loss-of-function mouse model (Stox1 KO) to evaluate whether STOX1 regulates blood pressure in pregnancy. Pregnant Stox1-KO mice developed gestational hypertension evidenced by a significant increase in blood pressure compared with WT by E17.5. While severe renal, placental, or fetal growth abnormalities were not observed, the Stox1-KO phenotype was associated with placental vascular and extracellular matrix abnormalities. Mechanistically, we found that gestational hypertension in Stox1-KO mice resulted from activation of the uteroplacental renin-angiotensin system. This mechanism was supported by showing that treatment of pregnant Stox1-KO mice with an angiotensin II receptor blocker rescued the phenotype. Our study demonstrates the utility of genetic mouse models for uncovering links between genetic variants and effector pathways implicated in the pathogenesis of hypertensive disorders of pregnancy.
Collapse
Affiliation(s)
- Jacqueline G Parchem
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, Texas, USA.,Department of Obstetrics, Gynecology and Reproductive Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Texas, USA
| | - Keizo Kanasaki
- Division of Matrix Biology, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Soo Bong Lee
- Division of Matrix Biology, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Megumi Kanasaki
- Division of Matrix Biology, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Joyce L Yang
- Division of Matrix Biology, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Yong Xu
- Division of Matrix Biology, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Kadeshia M Earl
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Rachel A Keuls
- Development, Disease Models & Therapeutics Graduate Program, Center for Cell and Gene Therapy, and Stem Cells and Regenerative Medicine Center, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Vincent H Gattone
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Raghu Kalluri
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, Texas, USA.,Division of Matrix Biology, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
4
|
Dunk CE, van Dijk M, Choudhury R, Wright TJ, Cox B, Leavey K, Harris LK, Jones RL, Lye SJ. Functional Evaluation of STOX1 (STORKHEAD-BOX PROTEIN 1) in Placentation, Preeclampsia, and Preterm Birth. Hypertension 2020; 77:475-490. [PMID: 33356399 DOI: 10.1161/hypertensionaha.120.15619] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Revaluation of the association of the STOX1 (STORKHEAD_BOX1 PROTEIN 1) transcription factor mutation (Y153H, C allele) with the early utero-vascular origins of placental pathology is warranted. To investigate if placental STOX1 Y153H genotype affects utero-vascular remodeling-compromised in both preterm birth and preeclampsia-we utilized extravillous trophoblast (EVT) explant and placental decidual coculture models, transfection of STOX1 wild-type and mutant plasmids into EVT-like trophoblast cell lines, and a cohort of 75 placentas from obstetric pathologies. Primary EVT and HTR8/SVneo cells carrying STOX1 Y153H secreted lower levels of IL (interleukin) 6, and IL-8, and higher CXCL16 (chemokine [C-X-C motif] ligand 16) and TRAIL (tumor necrosis factor-related apoptosis-inducing ligand) than wild-type EVT and Swan71 cells. Media from wild-type EVT or Swan71 cells transfected with wild-type STOX1 stimulated: endothelial chemokine expression, angiogenesis, and decidual natural killer cell and monocyte migration. In contrast, Y153H EVT conditioned medium, Swan71 transfected with the Y153H plasmid, or HTR8/SVneo media had no effect. Genotyping of placental decidual cocultures demonstrated association of the placental STOX1 CC allele with failed vascular remodeling. Decidual GG NODAL R165H increased in failed cocultures carrying the placental CC alleles of STOX1. Multivariate analysis of the placental cohort showed that the STOX1 C allele correlated with premature birth, with or without severe early-onset preeclampsia, and small for gestational age babies. In conclusion, placental STOX1 Y153H is a precipitating factor in preterm birth and placental preeclampsia due to defects in early utero-placental development.
Collapse
Affiliation(s)
- Caroline E Dunk
- From the Research Centre for Women's and Infants' Health, Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health System, Toronto, Canada (C.E.D., S.J.L.)
| | - Marie van Dijk
- Reproductive Biology Laboratory, Amsterdam University Medical Centers, the Netherlands (M.V.D.)
| | - Ruhul Choudhury
- Maternal and Fetal Health Research Centre, Faculty of Biology Medicine and Health (R.C., L.K.H., R.L.J.), University of Manchester, United Kingdom.,Academic Health Science Centre, St Mary's Hospital, Manchester, United Kingdom (R.C., L.K.H., R.L.J.)
| | - Thomas J Wright
- Department of Ophthalmology, Kensington Eye Institute (T.J.W.), University of Toronto, Canada
| | - Brian Cox
- Department of Physiology, Faculty of Medicine (B.C., K.L., S.J.L.), University of Toronto, Canada
| | - Katherine Leavey
- Department of Physiology, Faculty of Medicine (B.C., K.L., S.J.L.), University of Toronto, Canada
| | - Lynda K Harris
- Maternal and Fetal Health Research Centre, Faculty of Biology Medicine and Health (R.C., L.K.H., R.L.J.), University of Manchester, United Kingdom.,Division of Pharmacy and Optometry (L.K.H.), University of Manchester, United Kingdom.,Academic Health Science Centre, St Mary's Hospital, Manchester, United Kingdom (R.C., L.K.H., R.L.J.)
| | - Rebecca L Jones
- Maternal and Fetal Health Research Centre, Faculty of Biology Medicine and Health (R.C., L.K.H., R.L.J.), University of Manchester, United Kingdom.,Academic Health Science Centre, St Mary's Hospital, Manchester, United Kingdom (R.C., L.K.H., R.L.J.)
| | - Stephen J Lye
- From the Research Centre for Women's and Infants' Health, Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health System, Toronto, Canada (C.E.D., S.J.L.).,Department of Physiology, Faculty of Medicine (B.C., K.L., S.J.L.), University of Toronto, Canada.,Department of Obstetrics and Gynaecology, Faculty of Medicine (S.J.L.), University of Toronto, Canada
| |
Collapse
|
5
|
Pinarbasi E, Cekin N, Bildirici AE, Akin S, Yanik A. STOX1 gene Y153H polymorphism is associated with early-onset preeclampsia in Turkish population. Gene 2020; 754:144894. [PMID: 32534058 DOI: 10.1016/j.gene.2020.144894] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 05/30/2020] [Accepted: 06/08/2020] [Indexed: 12/11/2022]
Abstract
Preeclampsia (PE) is a disease of pregnancy that causes of maternal and prenatal morbidity worldwide. Studies indicate that variations in STOX1 gene may be a direct risk factor to PE but controversial results regarding the relationship of Y153H variation in the second exon of STOX1 gene with PE have been ongoing since 2005. The aim of this study was to identify if there is any correlation between Y153H polymorphisms and PE in Turkish preeclampsia patients. We performed polymerase chain reaction- restriction fragment lengthpolymorphism(PCR-RFLP) analysis in 500 pregnant women, of whom 373 pregnant women with early onset PE (EOPE) and 500 normal pregnant women. The relationship between STOX1 Y153H polymorphism and EOPE/LOPE was evaluated by statistical analysis. We found that STOX1 Y153H polymorphism is a risk factor for EOPE (p = 0.03). The odds ratio was 1,45 (CI 95% = 1,03-2,05). No relationship between STOX1 Y153H polymorphisms and LOPE (p = 0.13) was found. STOX1 gene Y153H polymorphism is associated with the risk ofearly onset of pre-eclampsiain a Turkish population. The results provide further evidence of the role of STOX1 in the pathophysiology of this disease.
Collapse
Affiliation(s)
- Ergun Pinarbasi
- Cumhuriyet University, Faculty of Medicine, Department of Medical Biology, Sivas, Turkey.
| | - Nilgun Cekin
- Cumhuriyet University, Faculty of Medicine, Department of Medical Biology, Sivas, Turkey
| | - Aslihan Esra Bildirici
- Cumhuriyet University, Faculty of Medicine, Department of Medical Biology, Sivas, Turkey
| | - Seyda Akin
- Cumhuriyet University, Faculty of Medicine, Department of Medical Biology, Sivas, Turkey
| | - Ali Yanik
- Cumhuriyet University, Faculty of Medicine, Department of Obstetrics and Gynecology, Sivas, Turkey
| |
Collapse
|
6
|
He Y, Chen L, Liu C, Han Y, Liang C, Xie Q, Zhou J, Cheng Z. Aspirin modulates STOX1 expression and reverses STOX1-induced insufficient proliferation and migration of trophoblast cells. Pregnancy Hypertens 2020; 19:170-176. [PMID: 32018223 DOI: 10.1016/j.preghy.2019.12.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 12/22/2019] [Accepted: 12/24/2019] [Indexed: 12/18/2022]
Abstract
BACKGROUND A major cause of preeclampsia is the placental ischemia caused by insufficient trophoblast cells, invading into the spiral artery. Storkhead-box protein 1 (STOX1) is highly associated with preeclampsia. Meanwhile, low-dose aspirin for patients with preeclampsia is effective in reducing the incidence of preeclampsia. The aim of the present study was to explore the underlying mechanism, and the relationship between STOX1 and aspirin in preeclampsia. METHODS The human choriocarcinoma cell line JEG-3 was employed to mimic trophoblast cells and establish a model for trophoblast cells overexpressing STOX1 and knockdown of JEG cell lines, which were treated with aspirin afterwards. Cell counting kit-8 (CCK-8) assay was utilized to estimate cell proliferation and optimal concentration of aspirin for further experiments. Meanwhile, transwell assay was used to detect migration, and flow cytometry was used to measure apoptosis. Quantitative reverse transcription polymerase chain reaction (RT-qPCR) and Western blotting were applied to analyze the expression levels of STOX1 and related genes. RESULTS Overexpression of STOX1 inhibited proliferation of JEG-3 cells through epidermal growth factor (EGF), vascular EGF (VEGF), and transforming growth factor beta 1 (TGF-β1) proteins, while suppressed migration through MMP2, MMP9, and E-cadherin proteins. In contrast, apoptosis of JEG-3 cells was elevated by STOX1 through Bcl-2, Bax, and Cox-2 proteins. Furthermore, we found that aspirin modulated the expression level of STOX1 and reversed proliferation and migration of STOX1-induced insufficient trophoblast cells. CONCLUSION The present study suggested that inhibition of the expression of STOX1 could promote the effects of aspirin in the treatment of preeclampsia.
Collapse
Affiliation(s)
- Yuanying He
- Department of Gynecology and Obstetrics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301, Yanchangzhong Road, Shanghai 200072, China.
| | - Li Chen
- Department of Gynecology and Obstetrics, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, 2800 Gongwei Road, Pudong, Shanghai 201399, China
| | - Chunhong Liu
- Department of Gynecology and Obstetrics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301, Yanchangzhong Road, Shanghai 200072, China
| | - Ying Han
- Department of Gynecology and Obstetrics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301, Yanchangzhong Road, Shanghai 200072, China
| | - Chao Liang
- Department of Gynecology and Obstetrics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301, Yanchangzhong Road, Shanghai 200072, China
| | - Qigui Xie
- Department of Gynecology and Obstetrics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301, Yanchangzhong Road, Shanghai 200072, China.
| | - Jianhong Zhou
- Department of Gynecology and Obstetrics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301, Yanchangzhong Road, Shanghai 200072, China.
| | - Zhongping Cheng
- Department of Gynecology and Obstetrics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301, Yanchangzhong Road, Shanghai 200072, China.
| |
Collapse
|
7
|
Molecular Targets of Aspirin and Prevention of Preeclampsia and Their Potential Association with Circulating Extracellular Vesicles during Pregnancy. Int J Mol Sci 2019; 20:ijms20184370. [PMID: 31492014 PMCID: PMC6769718 DOI: 10.3390/ijms20184370] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Revised: 07/30/2019] [Accepted: 08/26/2019] [Indexed: 12/26/2022] Open
Abstract
Uncomplicated healthy pregnancy is the outcome of successful fertilization, implantation of embryos, trophoblast development and adequate placentation. Any deviation in these cascades of events may lead to complicated pregnancies such as preeclampsia (PE). The current incidence of PE is 2–8% in all pregnancies worldwide, leading to high maternal as well as perinatal mortality and morbidity rates. A number of randomized controlled clinical trials observed the association between low dose aspirin (LDA) treatment in early gestational age and significant reduction of early onset of PE in high-risk pregnant women. However, a substantial knowledge gap exists in identifying the particular mechanism of action of aspirin on placental function. It is already established that the placental-derived exosomes (PdE) are present in the maternal circulation from 6 weeks of gestation, and exosomes contain bioactive molecules such as proteins, lipids and RNA that are a “fingerprint” of their originating cells. Interestingly, levels of exosomes are higher in PE compared to normal pregnancies, and changes in the level of PdE during the first trimester may be used to classify women at risk for developing PE. The aim of this review is to discuss the mechanisms of action of LDA on placental and maternal physiological systems including the role of PdE in these phenomena. This review article will contribute to the in-depth understanding of LDA-induced PE prevention.
Collapse
|
8
|
Curtin K, Theilen LH, Fraser A, Smith KR, Varner MW, Hageman GS. Hypertensive disorders of pregnancy increase the risk of developing neovascular age-related macular degeneration in later life. Hypertens Pregnancy 2019; 38:141-148. [PMID: 30977693 PMCID: PMC6642000 DOI: 10.1080/10641955.2019.1597107] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Accepted: 03/14/2019] [Indexed: 01/11/2023]
Abstract
Background: Hypertensive disorders of pregnancy (HDP) and short-term adverse outcomes have long been recognized; however, survivors remain at risk of long-term complications. We investigated whether HDP is associated with the development of choroidal neovascular age-related macular degeneration (CNV AMD). Methods: We identified 31,454 women who experienced HDP based on Utah birth certificates and 62,908 unexposed women matched 2:1 to the exposed. Risk of CNV AMD was estimated using Cox models. Findings: Women with HDP exhibited an 80% higher risk for early CNV AMD (age < 70 y; 95%CI 1.23-2.58). Conclusion: Our findings may have implications forearlier CNV AMD screening and detection.
Collapse
Affiliation(s)
- Karen Curtin
- Department of Internal Medicine, University of Utah School of Medicine
- Pedigree and Population Resource, Huntsman Cancer Institute, University of Utah
- Department of Ophthalmology and Visual Sciences, John A. Moran Eye Center, Steele Center for Translational Medicine, University of Utah
| | - Lauren H. Theilen
- Department of Obstetrics/Gynecology, University of Utah School of Medicine
| | - Alison Fraser
- Pedigree and Population Resource, Huntsman Cancer Institute, University of Utah
| | - Ken R. Smith
- Pedigree and Population Resource, Huntsman Cancer Institute, University of Utah
- Family Studies & Population Sciences, University of Utah
| | - Michael W. Varner
- Department of Obstetrics/Gynecology, University of Utah School of Medicine
| | - Gregory S. Hageman
- Department of Ophthalmology and Visual Sciences, John A. Moran Eye Center, Steele Center for Translational Medicine, University of Utah
| |
Collapse
|
9
|
Li Z, Zhou G, Jiang L, Xiang H, Cao Y. Effect of STOX1 on recurrent spontaneous abortion by regulating trophoblast cell proliferation and migration via the PI3K/AKT signaling pathway. J Cell Biochem 2019; 120:8291-8299. [PMID: 30548667 PMCID: PMC6590170 DOI: 10.1002/jcb.28112] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 10/29/2018] [Indexed: 01/24/2023]
Abstract
STOX1 is a transcription factor that is implicated in the high prevalence of human gestational diseases. It has been studied in various types of gestational diseases using different molecular and cellular biological technologies. However, the effect and detailed mechanism of storkhead box 1 (STOX1) in recurrent spontaneous abortion (RSA) remain unknown. This study aimed to explore the effect and detailed mechanism of STOX1 in human trophoblast cells. The result showed that downregulation of STOX1 by short hairpin RNA (shRNA) led to a decrease in proliferation and migration in HTR-8/SVneo cells, while it induced the apoptosis of HTR-8/SVneo cells. Moreover, the result showed that trophoblast cells expressed lower levels of pAKT and p85 subunits after treatment with STOX1 shRNA when compared with control. However, overexpression of STOX1 obviously increased the pAKT and p85 protein expressions. Transfection of pcDNA-AKT plasmid increased cell proliferation and migration in HTR-8/SVneo cells while suppressed the apoptosis of HTR-8/SVneo cells. Furthermore, inhibition of the PI3K/Akt pathway by a specific inhibitor promoted cell apoptosis and aggravatedly suppressed cell proliferation and migration of HTR-8/SVneo cells. On the other hand, upregulation of the PI3K/Akt pathway could increase the relative expression level of Bcl-2 and decrease the relative expression levels of Bax and Bim, while inhibition of the PI3K/Akt pathway led to adverse results. Our results demonstrated that inhibition of STOX1 could suppress trophoblast cell proliferation and migration, while promote apoptosis through inhibiting the PI3K/Akt signaling pathway. These findings might provide a new fundamental mechanism for regulating RSA and could be used to prevent and treat RSA in clinic.
Collapse
Affiliation(s)
- Zhifang Li
- Reproductive Medicine Center, The First Affiliated Hospital, Anhui Medical UniversityHefeiChina,Anqing Municipal Hospital, Anhui Medical UniversityAnqingChina
| | - Guiju Zhou
- Reproductive Medicine Center, The First Affiliated Hospital, Anhui Medical UniversityHefeiChina,Department Gynecology, The Second Affiliated Hospital, Anhui Medical UniversityHefeiChina
| | - Longfan Jiang
- Anqing Municipal Hospital, Anhui Medical UniversityAnqingChina
| | - Huifen Xiang
- Reproductive Medicine Center, The First Affiliated Hospital, Anhui Medical UniversityHefeiChina
| | - Yunxia Cao
- Reproductive Medicine Center, The First Affiliated Hospital, Anhui Medical UniversityHefeiChina
| |
Collapse
|
10
|
Osol G, Ko NL, Mandalà M. Altered Endothelial Nitric Oxide Signaling as a Paradigm for Maternal Vascular Maladaptation in Preeclampsia. Curr Hypertens Rep 2017; 19:82. [PMID: 28942512 DOI: 10.1007/s11906-017-0774-6] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
PURPOSE OF REVIEW The goal of this review is to present the newest insights into what we view as a central failure of cardiovascular adaptation in preeclampsia (PE) by focusing on one clinically significant manifestation of maternal endothelial dysfunction: nitric oxide signaling. The etiology, symptoms, and current theories of the PE syndrome are described first, followed by a review of the available evidence, and underlying causes of reduced endothelial nitric oxide (NO) signaling in PE. RECENT FINDINGS PE maladaptations include, but are not limited to, altered physiological stimulatory inputs (e.g., estrogen; VEGF/PlGF; shear stress) and substrates (L-Arg; ADMA), augmented placental secretion of anti-angiogenic and inflammatory factors such as sFlt-1 and Eng, changes in eNOS (polymorphisms, expression), and reduced bioavailability of NO secondary to oxidative stress. PE is a complex obstetrical syndrome that is associated with maternal vascular dysfunction. Diminished peripheral endothelial vasodilator influence in general, and of NO signaling specifically, are key in driving disease progression and severity.
Collapse
Affiliation(s)
- George Osol
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Vermont College of Medicine, Given H.S.C. C-217A 89 Beaumont Ave, Burlington, VT, 5405, USA.
| | - Nga Ling Ko
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Vermont College of Medicine, Given H.S.C. C-217A 89 Beaumont Ave, Burlington, VT, 5405, USA
| | - Maurizio Mandalà
- Department of Biology, Ecology and Earth Science, University of Calabria, Cosenza, Italy
| |
Collapse
|
11
|
Madar-Shapiro L, Karady I, Trahtenherts A, Syngelaki A, Akolekar R, Poon L, Cohen R, Sharabi-Nov A, Huppertz B, Sammar M, Juhasz K, Than NG, Papp Z, Romero R, Nicolaides KH, Meiri H. Predicting the Risk to Develop Preeclampsia in the First Trimester Combining Promoter Variant -98A/C of LGALS13 (Placental Protein 13), Black Ethnicity, Previous Preeclampsia, Obesity, and Maternal Age. Fetal Diagn Ther 2017; 43:250-265. [PMID: 28728156 PMCID: PMC5882584 DOI: 10.1159/000477933] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 05/30/2017] [Indexed: 01/10/2023]
Abstract
BACKGROUND LGALS13 (placental protein 13 [PP13]) promoter DNA polymorphisms was evaluated in predicting preeclampsia (PE), given PP13's effects on hypotension, angiogenesis, and immune tolerance. METHODS First-trimester plasma samples (49 term and 18 intermediate) of PE cases matched with 196 controls were collected from King's College Hospital, London, repository. Cell-free DNA was extracted and the LGALS13 exons were sequenced after PCR amplification. Expression of LGALS13 promoter reporter constructs was determined in BeWo trophoblast-like cells with luciferase assays. Adjusted odds ratio (OR) was calculated for the A/A genotype combined with maternal risk factors. RESULTS The A/A, A/C, and C/C genotypes in the -98 promoter position were in Hardy-Weinberg equilibrium in the control but not in the PE group (p < 0.036). The dominant A/A genotype had higher frequency in the PE group (p < 0.001). The A/C and C/C genotypes protected from PE (p < 0.032). The ORs to develop term and all PE, calculated for the A/A genotype, previous PE, body mass index (BMI) >35, black ethnicity, and maternal age >40 were 15.6 and 11.0, respectively (p < 0.001). In luciferase assays, the "-98A" promoter variant had lower expression than the "-98C" variant in non-differentiated (-13%, p = 0.04) and differentiated (-26%, p < 0.001) BeWo cells. Forskolin-induced differentiation led to a larger expression increase in the "-98C" variant than in the "-98A" variant (4.55-fold vs. 3.85-fold, p < 0.001). CONCLUSION Lower LGALS13 (PP13) expression with the "A" nucleotide in the -98 promoter region position (compared to "C") and high OR calculated for the A/A genotype in the -98A/C promoter region position, history of previous PE, BMI >35, advanced maternal age >40, and black ethnicity could serve to aid in PE prediction in the first trimester.
Collapse
|
12
|
Abstract
INTRODUCTION Preeclampsia is a major pregnancy disease, explained partly by genetic predispositions. STOX1, a transcription factor discovered in 2005, was the first gene directly associated with genetic forms of the disease. Alterations of STOX1 expression as well as STOX1 variants have also been associated to Alzheimer's disease. These observations make of this gene a putative therapeutic target. Area covered: Two major isoforms (STOX1A and STOX1B) are encoded by the gene and are theoretically able to compete for the same binding site, while only the most complete (STOX1A) is supposed to be able to activate gene expression. This makes the ratio between STOX1A and STOX1B as well as their position inside the cell (nucleus or cytoplasm) crucial to understand how STOX1 functions. STOX1 appears to have multiple gene targets, especially in pathways connected to inflammation, oxidative stress, and cell cycle. Expert opinion: STOX1-directed therapies, could be directed either towards its targets (genes or pathways), or directly at STOX1. For this the addressing of STOX1 to various cell compartments could theoretically be modified; also it could be possible of altering the balance between the two isoforms, through selectively inhibiting one of them, possibly improving the outcomes in severe preeclampsia.
Collapse
Affiliation(s)
- Daniel Vaiman
- a Department of Development, Reproduction and Cancer , Institut Cochin , Paris , France
| | - Francisco Miralles
- a Department of Development, Reproduction and Cancer , Institut Cochin , Paris , France
| |
Collapse
|
13
|
Doridot L, Miralles F, Barbaux S, Vaiman D. Trophoblasts, invasion, and microRNA. Front Genet 2013; 4:248. [PMID: 24312123 PMCID: PMC3836020 DOI: 10.3389/fgene.2013.00248] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Accepted: 10/30/2013] [Indexed: 12/15/2022] Open
Abstract
MicroRNAs (miRNAs) have recently become essential actors in various fields of physiology and medicine, especially as easily accessible circulating biomarkers, or as modulators of cell differentiation. To this respect, terminal differentiation of trophoblasts (the characteristic cells of the placenta in Therian mammals) into syncytiotrophoblast, villous trophoblast, or extravillous trophoblast constitutes a good example of such a choice, where miRNAs have recently been shown to play an important role. The aim of this review is to provide a snapshot of what is known today in placentation mechanisms that are mediated by miRNA, under the angles of materno–fetal immune dialog regulation, trophoblast differentiation, and angiogenesis at the materno–fetal interface. Also, two aspects of regulation of these issues will be highlighted: the part played by oxygen concentration and the specific function of imprinted genes in the developing placenta.
Collapse
Affiliation(s)
- Ludivine Doridot
- Institut Cochin, INSERM U1016-CNRS UMR8104, Université Paris Descartes Paris, France
| | | | | | | |
Collapse
|
14
|
Abstract
Preeclampsia (PE) is a deadly gestational disease affecting up to 10% of women and specific of the human species. Preeclampsia is clearly multifactorial, but the existence of a genetic basis for this disease is now clearly established by the existence of familial cases, epidemiological studies and known predisposing gene polymorphisms. PE is very common despite the fact that Darwinian pressure should have rapidly eliminated or strongly minimized the frequency of predisposing alleles. Consecutive pregnancies with the same partner decrease the risk and severity of PE. Here, we show that, due to this peculiar feature, preeclampsia predisposing-alleles can be differentially maintained according to the familial structure. Thus, we suggest that an optimal frequency of PE-predisposing alleles in human populations can be achieved as a result of a trade-off between benefits of exogamy, importance for maintaining genetic diversity and increase of the fitness owing to a stable paternal investment.
Collapse
|
15
|
Doridot L, Méhats C, Vaiman D. [Comparative analysis of mice models for preeclampsia]. Ann Cardiol Angeiol (Paris) 2012; 61:234-8. [PMID: 22626651 DOI: 10.1016/j.ancard.2012.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Accepted: 04/15/2012] [Indexed: 10/28/2022]
Abstract
Preeclampsia is a multifactorial disease of pregnancy. It is a major cause of maternal and perinatal mortality and morbidity and is defined by the de novo onset of hypertension and proteinuria after the 20th week of pregnancy. This pathology manifests during the early stages of pregnancy, making it hard to predict and very difficult to study in humans (presymptomatic phase and lack of tissues access). Animal models are therefore necessary to study the physiopathology of preeclampsia, however, since this pathology is specifically human, there are no spontaneous models. Animal models have thus been engineered. In this review, the models obtained in mice are described and compared. These models are essential for the development of new therapeutic strategies.
Collapse
Affiliation(s)
- L Doridot
- Inserm U1016, institut Cochin, 24, rue du Faubourg-Saint-Jacques, 75014 Paris, France
| | | | | |
Collapse
|
16
|
Prevention of gravidic endothelial hypertension by aspirin treatment administered from the 8th week of gestation. Hypertens Res 2011; 34:1116-20. [DOI: 10.1038/hr.2011.111] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
17
|
Fenstad MH, Johnson MP, Løset M, Mundal SB, Roten LT, Eide IP, Bjørge L, Sande RK, Johansson AK, Dyer TD, Forsmo S, Blangero J, Moses EK, Austgulen R. STOX2 but not STOX1 is differentially expressed in decidua from pre-eclamptic women: data from the Second Nord-Trondelag Health Study. Mol Hum Reprod 2010; 16:960-8. [PMID: 20643876 PMCID: PMC2989830 DOI: 10.1093/molehr/gaq064] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2010] [Revised: 07/09/2010] [Accepted: 07/14/2010] [Indexed: 02/07/2023] Open
Abstract
Variation in the Storkhead box-1 (STOX1) gene has previously been associated with pre-eclampsia. In this study, we assess candidate single nucleotide polymorphisms (SNPs) in STOX1 in an independent population cohort of pre-eclamptic (n = 1.139) and non-pre-eclamptic (n = 2.269) women (the HUNT2 study). We also compare gene expression levels of STOX1 and its paralogue, Storkhead box-2 (STOX2) in decidual tissue from pregnancies complicated by pre-eclampsia and/or fetal growth restriction (FGR) (n = 40) to expression levels in decidual tissue from uncomplicated pregnancies (n = 59). We cannot confirm association of the candidate SNPs to pre-eclampsia (P > 0.05). For STOX1, no differential gene expression was observed in any of the case groups, whereas STOX2 showed significantly lower expression in deciduas from pregnancies complicated by both pre-eclampsia and FGR as compared with controls (P = 0.01). We further report a strong correlation between transcriptional alterations reported previously in choriocarcinoma cells over expressing STOX1A and alterations observed in decidual tissue of pre-eclamptic women with FGR.
Collapse
Affiliation(s)
- M H Fenstad
- Department of Cancer Research and Molecular Medicine, Faculty of Medicine, Norwegian University of Science and Technology (NTNU), Trondheim 7006, Norway.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Auer J, Camoin L, Guillonneau F, Rigourd V, Chelbi ST, Leduc M, Laparre J, Mignot TM, Vaiman D. Serum profile in preeclampsia and intra-uterine growth restriction revealed by iTRAQ technology. J Proteomics 2010; 73:1004-17. [DOI: 10.1016/j.jprot.2009.12.014] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2009] [Revised: 12/14/2009] [Accepted: 12/30/2009] [Indexed: 12/24/2022]
|
19
|
Benayoun BA, Caburet S, Dipietromaria A, Georges A, D'Haene B, Pandaranayaka PJE, L'Hôte D, Todeschini AL, Krishnaswamy S, Fellous M, De Baere E, Veitia RA. Functional exploration of the adult ovarian granulosa cell tumor-associated somatic FOXL2 mutation p.Cys134Trp (c.402C>G). PLoS One 2010; 5:e8789. [PMID: 20098707 PMCID: PMC2808356 DOI: 10.1371/journal.pone.0008789] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2009] [Accepted: 12/29/2009] [Indexed: 01/09/2023] Open
Abstract
Background The somatic mutation in the FOXL2 gene c.402C>G (p.Cys134Trp) has recently been identified in the vast majority of adult ovarian granulosa cell tumors (OGCTs) studied. In addition, this mutation seems to be specific to adult OGCTs and is likely to be a driver of malignant transformation. However, its pathogenic mechanisms remain elusive. Methodology/Principal Findings We have sequenced the FOXL2 open reading frame in a panel of tumor cell lines (NCI-60, colorectal carcinoma cell lines, JEG-3, and KGN cells). We found the FOXL2 c.402C>G mutation in the adult OGCT-derived KGN cell line. All other cell lines analyzed were negative for the mutation. In order to gain insights into the pathogenic mechanism of the p.Cys134Trp mutation, the subcellular localization and mobility of the mutant protein were studied and found to be no different from those of the wild type (WT). Furthermore, its transactivation ability was in most cases similar to that of the WT protein, including in conditions of oxidative stress. A notable exception was an artificial promoter known to be coregulated by FOXL2 and Smad3, suggesting a potential modification of their interaction. We generated a 3D structural model of the p.Cys134Trp variant and our analysis suggests that homodimer formation might also be disturbed by the mutation. Conclusions/Significance Here, we confirm the specificity of the FOXL2 c.402C>G mutation in adult OGCTs and begin the exploration of its molecular significance. This is the first study demonstrating that the p.Cys134Trp mutant does not have a strong impact on FOXL2 localization, solubility, and transactivation abilities on a panel of proven target promoters, behaving neither as a dominant-negative nor as a loss-of-function mutation. Further studies are required to understand the specific molecular effects of this outstanding FOXL2 mutation.
Collapse
Affiliation(s)
- Bérénice A. Benayoun
- Programme de Pathologie Moléculaire et Cellulaire, Institut Jacques Monod, Paris, France
- Université Paris Diderot/Paris 7, Paris, France
| | - Sandrine Caburet
- Programme de Pathologie Moléculaire et Cellulaire, Institut Jacques Monod, Paris, France
- Université Paris Diderot/Paris 7, Paris, France
| | - Aurélie Dipietromaria
- Programme de Pathologie Moléculaire et Cellulaire, Institut Jacques Monod, Paris, France
- Université Paris Diderot/Paris 7, Paris, France
| | - Adrien Georges
- Programme de Pathologie Moléculaire et Cellulaire, Institut Jacques Monod, Paris, France
- Université Paris Diderot/Paris 7, Paris, France
- Ecole Normale Supérieure de Paris, Paris, France
| | - Barbara D'Haene
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | | | - David L'Hôte
- Programme de Pathologie Moléculaire et Cellulaire, Institut Jacques Monod, Paris, France
- Université Paris Diderot/Paris 7, Paris, France
| | - Anne-Laure Todeschini
- Programme de Pathologie Moléculaire et Cellulaire, Institut Jacques Monod, Paris, France
- Université Paris Diderot/Paris 7, Paris, France
| | | | - Marc Fellous
- Département de Génétique et Développement, Institut Cochin, Paris, France
| | - Elfride De Baere
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - Reiner A. Veitia
- Programme de Pathologie Moléculaire et Cellulaire, Institut Jacques Monod, Paris, France
- Université Paris Diderot/Paris 7, Paris, France
- * E-mail:
| |
Collapse
|