1
|
Xie Q, Quan X, Lan Y, Yang X. Uterine infusion strategies for infertile patients with recurrent implantation failure: a systematic review and network meta-analysis. Reprod Biol Endocrinol 2024; 22:44. [PMID: 38627790 PMCID: PMC11020641 DOI: 10.1186/s12958-024-01221-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 04/10/2024] [Indexed: 04/19/2024] Open
Abstract
BACKGROUND Intra-uterine infusion treatments were reported to be beneficial to embryo implantation and pregnancy outcomes, and considered as potential therapies for infertile patients with recurrent implantation failure (RIF). Nevertheless, their efficiencies were controversial and there lack of consensus on which intrauterine treatment is the most effective. METHODS All prospective trials (in Chinese or English) were searched in Databases PubMed, Cochrane, Web of Science, and CNKI from July 2013 to July 2023. We included studies that investigated various uterine infusions, including chorionic gonadotropin, granulocyte colony-stimulating factor, monocytes, platelet-rich plasma, etc. during IVF treatment and reported subsequent pregnancy outcomes. RESULTS We finally included 56 researches, including 40 randomized controlled trials, 14 non-randomized controlled trials, and 3 prospective cohort studies. This study included a total of 11 uterine perfusion methods: Placebo, Human Chorionic Gonadotropin (HCG), Granulocyte Colony-Stimulating Factor (G-CSF), platelet-rich plasma (PRP), Peripheral Blood Mononuclear Cell (PBMC), Growth hormone (GH), dexamethasone (DEX), Embryo culture supernatant (ESC), PRP combined with G-CSF (PRP + G-CSF), RPR combined with subcutaneous injection of G-CSF (RPR + G-CSFsc), G-CSF combined with subcutaneous injection of AXaIU (G-CSF + AXaIUsc). Intrauterine infusion of HCG, PBMC, G-CSF, and PRP significantly improves pregnancy outcomes in patients with repeated implantation failure compared with blank controls or placebo, and PRP improved the clinical pregnancy and live birth most. GH and ESC infusion might improve the pregnancy outcomes, but uterine infusion of DEX was shown with high miscarriage. The combination therapy did not show a significant advantage over the mono-therapy. CONCLUSIONS Intrauterine infusion of HCG, PBMC, G-CSF, and PRP are promising strategies for improving pregnancy outcomes for infertile patients with recurrent implantation failure. Among these treatments, PRP may be the best. More researches are required to explore the effect of drug combinations and less commonly used drugs as well. TRIAL REGISTRATION Our study was registered in PROSPERO and the ID was CRD42023467188.
Collapse
Affiliation(s)
- Qin Xie
- Department of Obstetrics and Gynecology, Xiangyang Central Hospital, The Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, 441021, P. R. China
| | - Xiaozhen Quan
- Department of Obstetrics and Gynecology, Xiangyang Central Hospital, The Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, 441021, P. R. China
| | - Yanli Lan
- Department of Obstetrics and Gynecology, Xiangyang Central Hospital, The Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, 441021, P. R. China
| | - Xuezhou Yang
- Department of Obstetrics and Gynecology, Xiangyang Central Hospital, The Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, 441021, P. R. China.
| |
Collapse
|
2
|
Wei J, Huang L, Wu M, Lu X, Song Y, Wang Y, Guo Y. The relationship between human blood metabolites and preeclampsia-eclampsia: A Mendelian randomization study. Medicine (Baltimore) 2024; 103:e37505. [PMID: 38552089 PMCID: PMC10977518 DOI: 10.1097/md.0000000000037505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 02/14/2024] [Indexed: 04/02/2024] Open
Abstract
Preeclampsia and eclampsia are serious complications of pregnancy, leading to high rates of maternal and neonatal mortality. During pregnancy, there are changes in relevant serum metabolites in women. However, it remains unclear if these serum metabolites contribute to the development of associated disorders during pregnancy. Therefore, we conducted a Mendelian randomization study to explore the causal relationship between serum metabolites and preeclampsia and eclampsia. We utilized the inverse variance weighted model as our primary analysis approach. We complemented this with sensitivity analyses, including the heterogeneity test, horizontal pleiotropy test, and leave-one-out analysis, to ensure the robustness of our findings. Furthermore, we conducted linkage disequilibrium score regression, multivariable Mendelian randomization, and metabolic pathway analysis to further explore the genetic data. The Mendelian randomization analysis has identified γ-glutamylglutamine, inosine, and isoleucine 10 metabolites that are significantly associated with preeclampsia, and γ-glutamylglutamine and phenylacetate 8 metabolites that may potentially contribute to the development of eclampsia. Notably, γ-glutamylglutamine has been found to have a causal relationship with both preeclampsia and eclampsia. In the multivariable Mendelian randomization analysis, our research findings suggest that both isoleucine and X-14304-leucylalanine directly impact preeclampsia within the context of amino acids and peptides. Moreover, our observations reveal that carbohydrates can also have a direct effect on preeclampsia. Importantly, it should be emphasized that only 3-lactate in amino acids has been shown to have a direct influence on eclampsia. This research has the potential to enhance our understanding of the biological variances related to disease status, providing a foundation for future investigations.
Collapse
Affiliation(s)
- Jiping Wei
- School of Clinical Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Liyuan Huang
- School of Clinical Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Mingda Wu
- Precision Medical Center, Jilin Province General Hospital, Changchun, China
| | - Xiaodan Lu
- School of Clinical Medicine, Changchun University of Chinese Medicine, Changchun, China
- Precision Medical Center, Jilin Province General Hospital, Changchun, China
| | - Yongfu Song
- Department of Pediatrics, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Yongji Wang
- Department of Pediatrics, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Yan Guo
- School of Clinical Medicine, Changchun University of Chinese Medicine, Changchun, China
| |
Collapse
|
3
|
Xue P, Zhou W, Fan W, Jiang J, Kong C, Zhou W, Zhou J, Huang X, Yang H, Han Q, Zhang B, Xu L, Yu B, Chen L. Increased METTL3-mediated m 6A methylation inhibits embryo implantation by repressing HOXA10 expression in recurrent implantation failure. Reprod Biol Endocrinol 2021; 19:187. [PMID: 34906165 PMCID: PMC8670269 DOI: 10.1186/s12958-021-00872-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 12/02/2021] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Recurrent implantation failure (RIF) is a major limitation of assisted reproductive technology, which is associated with impaired endometrial receptivity. Although N6-methyladenosine (m6A) has been demonstrated to be involved in various biological processes, its potential role in the endometrium of women with RIF has been poorly studied. METHODS Global m6A levels and major m6A methyltransferases/demethylases mRNA levels in mid-secretory endometrium from normal and RIF women were examined by colorimetric m6A quantification strategy and quantitative real-time PCR, respectively. The effects of METTL3-mediated m6A modification on embryo attachment were evaluated by an vitro model of a confluent monolayer of Ishikawa cells co-cultured with BeWo spheroids, and the expression levels of homeo box A10 (HOXA10, a well-characterized marker of endometrial receptivity) and its downstream targets were evaluated by quantitative real-time PCR and Western blotting in METTL3-overexpressing Ishikawa cells. The molecular mechanism for METTL3 regulating HOXA10 expression was determined by methylated RNA immunoprecipitation assay and transcription inhibition assay. RESULTS Global m6A methylation and METTL3 expression were significantly increased in the endometrial tissues from women with RIF compared with the controls. Overexpression of METTL3 in Ishikawa cells significantly decreased the ration of BeWo spheroid attachment, and inhibited HOXA10 expression with downstream decreased β3-integrin and increased empty spiracles homeobox 2 expression. METTL3 catalyzed the m6A methylation of HOXA10 mRNA and contributed to its decay with shortened half-life. Enforced expression of HOXA10 in Ishikawa cells effectively rescued the impairment of METTL3 on the embryo attachment in vitro. CONCLUSION Increased METTL3-mediated m6A modification represents an adverse impact on embryo implantation by inhibiting HOXA10 expression, contributing to the pathogenesis of RIF.
Collapse
Affiliation(s)
- Pingping Xue
- Department of Reproductive Medicine Center, Changzhou Maternity and Child Health Care Hospital Affiliated to Nanjing Medical University, Changzhou, 213000, China
| | - Wenbo Zhou
- Department of Medical Genetics, Changzhou Maternity and Child Health Care Hospital Affiliated to Nanjing Medical University, Changzhou, 213000, China
| | - Wenqiang Fan
- Department of Mammary Surgery, Changzhou No.2 People's Hospital Affiliated to Nanjing Medical University, Changzhou, 213000, China
| | - Jianya Jiang
- Department of Reproductive Medicine Center, Changzhou Maternity and Child Health Care Hospital Affiliated to Nanjing Medical University, Changzhou, 213000, China
| | - Chengcai Kong
- Department of Reproductive Medicine Center, Changzhou Maternity and Child Health Care Hospital Affiliated to Nanjing Medical University, Changzhou, 213000, China
| | - Wei Zhou
- Department of Reproductive Medicine Center, Changzhou Maternity and Child Health Care Hospital Affiliated to Nanjing Medical University, Changzhou, 213000, China
| | - Jianmei Zhou
- Department of Reproductive Medicine Center, Changzhou Maternity and Child Health Care Hospital Affiliated to Nanjing Medical University, Changzhou, 213000, China
| | - Xiaoyang Huang
- Department of Reproductive Medicine Center, Changzhou Maternity and Child Health Care Hospital Affiliated to Nanjing Medical University, Changzhou, 213000, China
| | - Haiyan Yang
- Department of Reproductive Medicine Center, Changzhou Maternity and Child Health Care Hospital Affiliated to Nanjing Medical University, Changzhou, 213000, China
| | - Qian Han
- Department of Reproductive Medicine Center, Changzhou Maternity and Child Health Care Hospital Affiliated to Nanjing Medical University, Changzhou, 213000, China
| | - Bin Zhang
- Department of Medical Genetics, Changzhou Maternity and Child Health Care Hospital Affiliated to Nanjing Medical University, Changzhou, 213000, China
| | - Lingyun Xu
- Department of Mammary Surgery, Changzhou No.2 People's Hospital Affiliated to Nanjing Medical University, Changzhou, 213000, China.
| | - Bin Yu
- Department of Medical Genetics, Changzhou Maternity and Child Health Care Hospital Affiliated to Nanjing Medical University, Changzhou, 213000, China.
| | - Li Chen
- Department of Reproductive Medicine Center, Changzhou Maternity and Child Health Care Hospital Affiliated to Nanjing Medical University, Changzhou, 213000, China.
| |
Collapse
|
4
|
Bellofiore N, McKenna J, Ellery S, Temple-Smith P. The Spiny Mouse—A Menstruating Rodent to Build a Bridge From Bench to Bedside. FRONTIERS IN REPRODUCTIVE HEALTH 2021; 3:784578. [PMID: 36303981 PMCID: PMC9580678 DOI: 10.3389/frph.2021.784578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 11/08/2021] [Indexed: 11/13/2022] Open
Abstract
Menstruation, the cyclical breakdown of the uterine lining, is arguably one of evolution's most mysterious reproductive strategies. The complexity and rarity of menstruation within the animal kingdom is undoubtedly a leading contributor to our current lack of understanding about menstrual function and disorders. In particular, the molecular and environmental mechanisms that drive menstrual and fertility dysregulation remain ambiguous, owing to the restricted opportunities to study menstruation and model menstrual disorders in species outside the primates. The recent discovery of naturally occurring menstruation in the Egyptian spiny mouse (Acomys cahirinus) offers a new laboratory model with significant benefits for prospective research in women's health. This review summarises current knowledge of spiny mouse menstruation, with an emphasis on spiral artery formation, inflammation and endocrinology. We offer a new perspective on cycle variation in menstrual bleeding between individual animals, and propose that this is indicative of fertility success. We discuss how we can harness our knowledge of the unique physiology of the spiny mouse to better understand vascular remodelling and its implications for successful implantation, placentation, and foetal development. Our research suggests that the spiny mouse has the potential as a translational research model to bridge the gap between bench to bedside and provide improved reproductive health outcomes for women.
Collapse
Affiliation(s)
- Nadia Bellofiore
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC, Australia
- *Correspondence: Nadia Bellofiore
| | - Jarrod McKenna
- Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC, Australia
| | - Stacey Ellery
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC, Australia
| | - Peter Temple-Smith
- Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC, Australia
| |
Collapse
|
5
|
Hu M, Li J, Baker PN, Tong C. Revisiting preeclampsia: a metabolic disorder of the placenta. FEBS J 2021; 289:336-354. [PMID: 33529475 DOI: 10.1111/febs.15745] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 01/13/2021] [Accepted: 01/29/2021] [Indexed: 12/31/2022]
Abstract
Preeclampsia (PE) is a leading cause of maternal and neonatal mortality and morbidity worldwide, impacting the long-term health of both mother and offspring. PE has long been characterized by deficient trophoblast invasion into the uterus and consequent placental hypoperfusion, yet the upstream causative factors and effective interventional targets for PE remain unknown. Alterations in the metabolism of preeclamptic placentas are thought to result from placental ischemia, while disturbances of the metabolism and of metabolites in PE pathogenesis are largely ignored. In fact, as one of the largest fetal organs at birth, the placenta consumes a considerable amount of glucose and fatty acid. Increasing evidence suggests glucose and fatty acid exist as energy substrates and regulate placental development through bioactive derivates. Moreover, recent findings have revealed that the placental metabolism adapts readily to environmental changes, altering its response to nutrients and endocrine signals; this adaptability optimizes pregnancy outcomes by diversifying available carbon sources for energy production, hormone synthesis, angiogenesis, immune activation, and tolerance, and fetoplacental growth. These observations raise the possibility that carbohydrate and lipid metabolism abnormalities play a role in both the etiology and clinical progression of PE, sparking a renewed interest in the interrelationship between PE and metabolic dysregulation. This review will focus on key metabolic substrates and regulatory molecules in the placenta and aim to provide novel insights with respect to the metabolism's role in modulating placental development and functions. Further investigations from this perspective are poised to decipher the etiology of PE and suggest potential therapies.
Collapse
Affiliation(s)
- Mingyu Hu
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, China
| | - Ji Li
- Department of Surgery, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | | | - Chao Tong
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, China
| |
Collapse
|
6
|
Endometrial Decidualization: The Primary Driver of Pregnancy Health. Int J Mol Sci 2020; 21:ijms21114092. [PMID: 32521725 PMCID: PMC7312091 DOI: 10.3390/ijms21114092] [Citation(s) in RCA: 197] [Impact Index Per Article: 39.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 06/03/2020] [Accepted: 06/05/2020] [Indexed: 11/17/2022] Open
Abstract
Interventions to prevent pregnancy complications have been largely unsuccessful. We suggest this is because the foundation for a healthy pregnancy is laid prior to the establishment of the pregnancy at the time of endometrial decidualization. Humans are one of only a few mammalian viviparous species in which decidualization begins during the latter half of each menstrual cycle and is therefore independent of the conceptus. Failure to adequately prepare (decidualize) the endometrium hormonally, biochemically, and immunologically in anticipation of the approaching blastocyst—including the downregulation of genes involved in the pro- inflammatory response and resisting tissue invasion along with the increased expression of genes that promote angiogenesis, foster immune tolerance, and facilitate tissue invasion—leads to abnormal implantation/placentation and ultimately to adverse pregnancy outcome. We hypothesize, therefore, that the primary driver of pregnancy health is the quality of the soil, not the seed.
Collapse
|
7
|
Lee CJ, Hong SH, Yoon MJ, Lee KA, Ko JJ, Koo HS, Kim JH, Choi DH, Kwon H, Kang YJ. Endometrial profilin 1: a key player in embryo-endometrial crosstalk. Clin Exp Reprod Med 2020; 47:114-121. [PMID: 32466630 PMCID: PMC7315858 DOI: 10.5653/cerm.2019.03454] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 12/14/2019] [Indexed: 01/23/2023] Open
Abstract
Objective Despite extensive research on implantation failure, little is known about the molecular mechanisms underlying the crosstalk between the embryo and the maternal endometrium, which is critical for successful pregnancy. Profilin 1 (PFN1), which is expressed both in the embryo and in the endometrial epithelium, acts as a potent regulator of actin polymerization and the cytoskeletal network. In this study, we identified the specific role of endometrial PFN1 during embryo implantation. Methods Morphological alterations depending on the status of PFN1 expression were assessed in PFN1-depleted or control cells grown on Matrigel-coated cover glass. Day-5 mouse embryos were cocultured with Ishikawa cells. Comparisons of the rates of F-actin formation and embryo attachment were performed by measuring the stability of the attached embryo onto PFN1-depleted or control cells. Results Depletion of PFN1 in endometrial epithelial cells induced a significant reduction in cell-cell adhesion displaying less formation of colonies and a more circular cell shape. Mouse embryos co-cultured with PFN1-depleted cells failed to form actin cytoskeletal networks, whereas more F-actin formation in the direction of surrounding PFN1-intact endometrial epithelial cells was detected. Furthermore, significantly lower embryo attachment stability was observed in PFN1-depleted cells than in control cells. This may have been due to reduced endometrial receptivity caused by impaired actin cytoskeletal networks associated with PFN1 deficiency. Conclusion These observations definitively demonstrate an important role of PFN1 in mediating cell-cell adhesion during the initial stage of embryo implantation and suggest a potential therapeutic target or novel biomarker for patients suffering from implantation failure.
Collapse
Affiliation(s)
- Chang-Jin Lee
- Department of Biomedical Science, School of Life Science, CHA University, Seongnam, Korea
| | - Seon-Hwa Hong
- CHA Fertility Center Bundang, CHA University, Seongnam, Korea
| | - Min-Ji Yoon
- Department of Biomedical Science, School of Life Science, CHA University, Seongnam, Korea
| | - Kyung-Ah Lee
- Department of Biomedical Science, School of Life Science, CHA University, Seongnam, Korea
| | - Jung-Jae Ko
- Department of Biomedical Science, School of Life Science, CHA University, Seongnam, Korea
| | - Hwa Seon Koo
- CHA Fertility Center Bundang, CHA University, Seongnam, Korea
| | - Jee Hyun Kim
- CHA Fertility Center Bundang, CHA University, Seongnam, Korea
| | - Dong Hee Choi
- CHA Fertility Center Bundang, CHA University, Seongnam, Korea
| | - Hwang Kwon
- CHA Fertility Center Bundang, CHA University, Seongnam, Korea
| | - Youn-Jung Kang
- Department of Biomedical Science, School of Life Science, CHA University, Seongnam, Korea.,CHA Fertility Center Bundang, CHA University, Seongnam, Korea.,Department of Biochemistry, School of Medicine, CHA University, Seongnam, Korea
| |
Collapse
|
8
|
Abstract
Recurrent implantation failure (RIF) is an uncommon, imprecisely defined clinical disorder characterized by failure to achieve pregnancy after repeated embryo transfers. The diverse etiologies and incomplete understanding of RIF provide significant diagnostic and therapeutic challenges to patients and providers. Careful clinical evaluation prior to assisted reproduction can uncover many treatable causes, including thyroid dysfunction, submucosal myomas, and tobacco use. The more-subtle causes often require a more-targeted assessment. Undetected, small polyps or small areas of intrauterine synechiae are relatively common and easily treated contributors to RIF. Molecular and cellular abnormalities pose a greater therapeutic challenge. Putative causes of RIF, including progesterone resistance, shifted window of receptivity, decreased integrin expression, and immunologic disturbances, should be considered in the evaluation of a patient with otherwise unexplained RIF. It may also be true that a more complex and standardized definition of RIF would be helpful in these cases. In this paper, we review the diagnostic and therapeutic approaches to RIF, with emphasis on disorders of endometrial receptivity.
Collapse
Affiliation(s)
- Sarah Moustafa
- Division of Reproductive Endocrinology, Department of Obstetrics and Gynecology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Steven L Young
- Division of Reproductive Endocrinology, Department of Obstetrics and Gynecology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
9
|
Zhang L, Xu WH, Fu XH, Huang QX, Guo XY, Zhang L, Li SS, Zhu J, Shu J. Therapeutic role of granulocyte colony-stimulating factor (G-CSF) for infertile women under in vitro fertilization and embryo transfer (IVF-ET) treatment: a meta-analysis. Arch Gynecol Obstet 2018; 298:861-871. [PMID: 30220024 PMCID: PMC6182707 DOI: 10.1007/s00404-018-4892-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 09/06/2018] [Indexed: 11/30/2022]
Abstract
OBJECTIVE The aim of this meta-analysis is to explore the beneficial role of granulocyte colony-stimulating factor (G-CSF) on infertile women under artificial reproduction technology treatment. METHOD Medline, Embase and ISI Web of Science databases were searched to identify relevant randomized control trials. Studies before July, 2017 were included for primary screening. Meta-analysis of the total and subgroup patients was conducted, and relative risks (RRs) and their 95% confidence intervals (95% CI) were calculated by a fixed-effect model if no heterogeneity (evaluated as I2 statistic) existed. Otherwise, a random-effects model was adopted. Subgroup analysis was performed by administrating route or clinical indication. Egger test and influence analysis were conducted to evaluate the publication bias and study power, respectively. RESULTS The final selection enrolled 10 RCTs, involving 1016 IVF-ET cycles (521 distributed to the G-CSF group and 495 to the control). Compared with control group, G-CSF administration could significantly improve clinical pregnancy rate (CPR, RR 1.89, 95% CI 1.53-2.33), while it had no beneficial effect on embryo implantation rate (IR, RR 1.84, 95% CI 0.84-4.03). The subgroup analysis by administration route showed that both uterine infusion and subcutaneous injection can produce a substantial increase in CPR, with the pooled RRs (95% CI) 1.46 (1.04-2.05) and 2.23 (1.68-2.95), respectively. Nevertheless, most of included RCTs dealt with the RIF subjects, and the pooled analysis of this data showed a higher PR and IR in G-CSF group as compared to that in the control, with the RRs (95% CI) 2.07 (1.64-2.61) and 1.52 (1.08-2.14), respectively. Egger regression test did not demonstrate any significance for the publication bias. CONCLUSION G-CSF administration has a beneficial role on the clinical outcome after embryo transfer by both routes of local infusion and systematic administration, especially for the cases with RIF. Further RCTs are needed to investigate the role of G-CSF in thin endometrium patients.
Collapse
Affiliation(s)
- Ling Zhang
- Department of Reproductive Endocrinology, Hangzhou Medical College, Zhejiang Provincial People's Hospital, 158 Shangtang Road, Hangzhou, China
| | - Wei-Hai Xu
- Department of Reproductive Endocrinology, Hangzhou Medical College, Zhejiang Provincial People's Hospital, 158 Shangtang Road, Hangzhou, China
| | - Xiao-Hua Fu
- Department of Reproductive Endocrinology, Hangzhou Medical College, Zhejiang Provincial People's Hospital, 158 Shangtang Road, Hangzhou, China
| | - Qiong-Xiao Huang
- Department of Reproductive Endocrinology, Hangzhou Medical College, Zhejiang Provincial People's Hospital, 158 Shangtang Road, Hangzhou, China
| | - Xiao-Yan Guo
- Department of Reproductive Endocrinology, Hangzhou Medical College, Zhejiang Provincial People's Hospital, 158 Shangtang Road, Hangzhou, China
| | - Lin Zhang
- Department of Reproductive Endocrinology, Hangzhou Medical College, Zhejiang Provincial People's Hospital, 158 Shangtang Road, Hangzhou, China
| | - Shi-Shi Li
- Department of Reproductive Endocrinology, Hangzhou Medical College, Zhejiang Provincial People's Hospital, 158 Shangtang Road, Hangzhou, China
| | - Jing Zhu
- Department of Reproductive Endocrinology, Hangzhou Medical College, Zhejiang Provincial People's Hospital, 158 Shangtang Road, Hangzhou, China.
| | - Jing Shu
- Department of Reproductive Endocrinology, Hangzhou Medical College, Zhejiang Provincial People's Hospital, 158 Shangtang Road, Hangzhou, China.
| |
Collapse
|
10
|
Davidson LM, Coward K. Molecular mechanisms of membrane interaction at implantation. ACTA ACUST UNITED AC 2016; 108:19-32. [DOI: 10.1002/bdrc.21122] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 02/22/2016] [Indexed: 01/01/2023]
Affiliation(s)
- Lien M. Davidson
- Nuffield Department of Obstetrics and Gynaecology; University of Oxford, Level 3, Women's Centre, John Radcliffe Hospital; Headington Oxford OX3 9DU United Kingdom
| | - Kevin Coward
- Nuffield Department of Obstetrics and Gynaecology; University of Oxford, Level 3, Women's Centre, John Radcliffe Hospital; Headington Oxford OX3 9DU United Kingdom
| |
Collapse
|
11
|
Gardner DK. Lactate production by the mammalian blastocyst: manipulating the microenvironment for uterine implantation and invasion? Bioessays 2015; 37:364-71. [PMID: 25619853 PMCID: PMC4409083 DOI: 10.1002/bies.201400155] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The mammalian blastocyst exhibits a high capacity for aerobic glycolysis, a metabolic characteristic of tumours. It has been considered that aerobic glycolysis is a means to ensure a high carbon flux to fulfil biosynthetic demands. Here, alternative explanations for this pattern of metabolism are considered. Lactate creates a microenvironment of low pH around the embryo to assist the disaggregation of uterine tissues to facilitate trophoblast invasion. Further it is proposed that lactate acts as a signalling molecule (especially at the reduced oxygen tension present at implantation) to elicit bioactive VEGF recruitment from uterine cells, to promote angiogenesis. Finally it is suggested that the region of high lactate/low pH created by the blastocyst modulates the activity of the local immune response, helping to create immune tolerance. Consequently, the mammalian blastocyst offers a model to study the role of microenvironments, and how metabolites and pH are used in signalling.
Collapse
Affiliation(s)
- David K Gardner
- School of BioSciences, University of Melbourne, Melbourne, Australia
| |
Collapse
|
12
|
Kang YJ, Lees M, Matthews LC, Kimber SJ, Forbes K, Aplin JD. MiR-145 suppresses embryo-epithelial juxtacrine communication at implantation by modulating maternal IGF1R. J Cell Sci 2015; 128:804-14. [PMID: 25609710 DOI: 10.1242/jcs.164004] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Successful implantation requires the synchronization of viable embryonic development with endometrial receptivity. The mechanisms allowing for the initiation of crosstalk between the embryo and the endometrium remain elusive; however, recent studies have revealed that there are alterations in endometrial microRNAs (miRs) in women suffering repeated implantation failure and that one of the altered miRs is miR-145. We assessed the role of miR-145 and its target IGF1R, in early implantation. miR-145 overexpression and IGF1R knockdown were achieved in Ishikawa endometrial cells. Quantitative PCR, western blotting and 3'UTR luciferase reporter assays confirmed that IGF1R is a direct target of miR-145 in the endometrium. Attachment of mouse embryos or IGF1-coated beads to endometrial epithelial cells was used to study the effects of altered miR-145 and/or IGF1R expression on early implantation events. miR-145 overexpression or specific reduction of IGF1R impaired attachment in both cases. An IGF1R target protector prevented the miR-145-mediated reduction in IGF1R and reversed the effect of miR-145 overexpression on attachment. The data demonstrate that miR-145 influences embryo attachment by reducing the level of IGF1R in endometrium.
Collapse
Affiliation(s)
- Youn-Jung Kang
- Maternal and Fetal Health Research Centre, Institute of Human Development, University of Manchester, Manchester M13 9WL, UK St Mary's Hospital, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester M13 9WL, UK Nuffield Department of Obstetrics and Gynaecology, University of Oxford, Level 3, Women's Centre, John Radcliffe Hospital, Headington, Oxford OX3 9DU, UK
| | - Miranda Lees
- Maternal and Fetal Health Research Centre, Institute of Human Development, University of Manchester, Manchester M13 9WL, UK St Mary's Hospital, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester M13 9WL, UK
| | - Laura C Matthews
- Centre for Endocrinology & Diabetes, Institute of Human Development, University of Manchester, AV Hill Building, Oxford Road, Manchester, M13 9PT, UK
| | - Susan J Kimber
- Faculty of Life Sciences, Michael Smith Building, Oxford Road, Manchester, M13 9PT, UK
| | - Karen Forbes
- Maternal and Fetal Health Research Centre, Institute of Human Development, University of Manchester, Manchester M13 9WL, UK St Mary's Hospital, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester M13 9WL, UK
| | - John D Aplin
- Maternal and Fetal Health Research Centre, Institute of Human Development, University of Manchester, Manchester M13 9WL, UK St Mary's Hospital, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester M13 9WL, UK
| |
Collapse
|
13
|
Zhang S, Lin H, Kong S, Wang S, Wang H, Wang H, Armant DR. Physiological and molecular determinants of embryo implantation. Mol Aspects Med 2013; 34:939-80. [PMID: 23290997 DOI: 10.1016/j.mam.2012.12.011] [Citation(s) in RCA: 398] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Revised: 12/25/2012] [Accepted: 12/26/2012] [Indexed: 01/19/2023]
Abstract
Embryo implantation involves the intimate interaction between an implantation-competent blastocyst and a receptive uterus, which occurs in a limited time period known as the window of implantation. Emerging evidence shows that defects originating during embryo implantation induce ripple effects with adverse consequences on later gestation events, highlighting the significance of this event for pregnancy success. Although a multitude of cellular events and molecular pathways involved in embryo-uterine crosstalk during implantation have been identified through gene expression studies and genetically engineered mouse models, a comprehensive understanding of the nature of embryo implantation is still missing. This review focuses on recent progress with particular attention to physiological and molecular determinants of blastocyst activation, uterine receptivity, blastocyst attachment and uterine decidualization. A better understanding of underlying mechanisms governing embryo implantation should generate new strategies to rectify implantation failure and improve pregnancy rates in women.
Collapse
Affiliation(s)
- Shuang Zhang
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR China; Graduate School of the Chinese Academy of Sciences, Beijing 100039, PR China
| | | | | | | | | | | | | |
Collapse
|
14
|
Haouzi D, Dechaud H, Assou S, De Vos J, Hamamah S. Insights into human endometrial receptivity from transcriptomic and proteomic data. Reprod Biomed Online 2012; 24:23-34. [DOI: 10.1016/j.rbmo.2011.09.009] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2011] [Revised: 09/15/2011] [Accepted: 09/15/2011] [Indexed: 01/11/2023]
|