1
|
Sciorio R, De Paola L, Notari T, Ganduscio S, Amato P, Crifasi L, Marotto D, Billone V, Cucinella G, Perino A, Tramontano L, Marinelli S, Gullo G. Decoding the Puzzle of Male Infertility: The Role of Infection, Inflammation, and Autoimmunity. Diagnostics (Basel) 2025; 15:547. [PMID: 40075794 PMCID: PMC11899667 DOI: 10.3390/diagnostics15050547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 02/20/2025] [Accepted: 02/24/2025] [Indexed: 03/14/2025] Open
Abstract
Background/Objectives: Male infertility is a complex, multifactorial condition influenced by infectious, inflammatory, and autoimmune components. Immunological factors, though implicated in reproduction, remain poorly understood. This study aims to deepen the understanding of infections, inflammation, and autoimmune factors in male infertility, with a focus on immune-related disorders affecting the testes and epididymis-immunologically privileged but vulnerable sites. These factors can impair sperm quality through oxidative stress (ROS) and antisperm antibodies (ASA), further compromising fertility. Methods: A narrative review was conducted by analyzing scientific literature from the past 10 years conducted on PubMed using keywords such as "male infertility", "autoimmunity", and "inflammatory disease". Studies focusing on testicular and epididymal disorders, immunological impacts, and therapeutic approaches were included. Results: Our research highlights that conditions like epididymitis, vasectomy, testicular trauma, and previous surgeries can trigger inflammatory responses, leading to ASA formation and oxidative stress. ASA, particularly sperm-immobilizing antibodies, inhibits sperm motility and migration in the female reproductive tract. Infections caused by sexually transmitted bacteria or urinary pathogens frequently induce epididymo-orchitis, a primary contributor to male infertility. While standardized methodologies for ASA testing remain elusive, assisted reproductive treatments such as intracytoplasmic sperm injection (ICSI), in vitro fertilization (IVF), and intrauterine insemination (IUI) show promise in overcoming immune-mediated infertility. Conclusions: This review underscores the critical role of infection, inflammation, and autoimmune responses in male infertility. It highlights the necessity of improving diagnostic methods, understanding immune-pathological mechanisms, and addressing medicolegal issues associated with male infertility. This knowledge could pave the way for innovative therapies, ultimately enhancing fertility outcomes, and mitigating the societal and legal repercussions of infertility.
Collapse
Affiliation(s)
- Romualdo Sciorio
- Fertility Medicine and Gynecological Endocrinology Unit, Department Woman Mother Child, Lausanne University Hospital, 1011 Lausanne, Switzerland;
| | - Lina De Paola
- Department of Anatomical, Histological, Forensic and Orthopedic Sciences, Sapienza University of Rome, 00161 Rome, Italy
| | - Tiziana Notari
- Check-Up Poly-Diagnostic and Research Laboratory, Andrology Unit, 84131 Salerno, Italy
| | - Silvia Ganduscio
- Department of Obstetrics and Gynecology, IVF UNIT-AOOR Villa Sofia—Cervello, University of Palermo, 90127 Palermo, Italy
| | - Patrizia Amato
- Rheumatology Unit, ASL Salerno, 60th District, 84124 Salerno, Italy
| | - Laura Crifasi
- Department of Obstetrics and Gynecology, IVF UNIT-AOOR Villa Sofia—Cervello, University of Palermo, 90127 Palermo, Italy
| | | | - Valentina Billone
- Department of Obstetrics and Gynecology, IVF UNIT-AOOR Villa Sofia—Cervello, University of Palermo, 90127 Palermo, Italy
| | - Gaspare Cucinella
- Department of Obstetrics and Gynecology, IVF UNIT-AOOR Villa Sofia—Cervello, University of Palermo, 90127 Palermo, Italy
| | - Antonio Perino
- Department of Obstetrics and Gynecology, IVF UNIT-AOOR Villa Sofia—Cervello, University of Palermo, 90127 Palermo, Italy
| | - Luca Tramontano
- Département de Gynécologie-Obstétrique, Réseau Hospitalier Neuchâtelois, 2000 Neuchâtel, Switzerland
| | - Susanna Marinelli
- School of Law, Polytechnic University of Marche, 60121 Ancona, Italy
| | - Giuseppe Gullo
- Department of Obstetrics and Gynecology, IVF UNIT-AOOR Villa Sofia—Cervello, University of Palermo, 90127 Palermo, Italy
| |
Collapse
|
2
|
Ricci G, Perticarari S, Boscolo R, Presani G. Fas in human semen. J Reprod Immunol 2022; 154:103745. [PMID: 36087452 DOI: 10.1016/j.jri.2022.103745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 09/05/2022] [Indexed: 12/14/2022]
Affiliation(s)
- Giuseppe Ricci
- Institute for Maternal and Child Health, IRCCS Burlo Garofolo, 34137 Trieste, Italy; Department of Medicine, Surgery and Health Sciences, University of Trieste, 34127 Trieste, Italy.
| | - Sandra Perticarari
- Institute for Maternal and Child Health, IRCCS Burlo Garofolo, 34137 Trieste, Italy
| | - Rita Boscolo
- Institute for Maternal and Child Health, IRCCS Burlo Garofolo, 34137 Trieste, Italy
| | - Gianni Presani
- Institute for Maternal and Child Health, IRCCS Burlo Garofolo, 34137 Trieste, Italy
| |
Collapse
|
3
|
Cold Stress Induced Liver Injury of Mice through Activated NLRP3/Caspase-1/GSDMD Pyroptosis Signaling Pathway. Biomolecules 2022; 12:biom12070927. [PMID: 35883482 PMCID: PMC9312970 DOI: 10.3390/biom12070927] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/26/2022] [Accepted: 06/28/2022] [Indexed: 11/17/2022] Open
Abstract
The body needs to generate heat to ensure basic life activities when exposed to cold temperatures. The liver, as the largest glycogen storage organ in the body and main heat-producing organ at rest, may play a role in chronic cold exposure. Recent studies suggested that pyroptosis plays a crucial role in liver diseases. However, the role of pyroptosis in cold stress-induced liver injury is not clear. Hence, in this study, we attempted to investigate the effects of chronic cold exposure on liver function, apoptosis, oxidative stress and inflammation in mice by establishing a mouse model of chronic cold exposure, and to investigate whether pyroptosis pathways are involved in the process of chronic cold exposure. In vivo, our results show that inflammatory cell infiltration and other pathological changes in liver cells and the activity of liver enzyme evidently increased in the serum and liver of cold-exposed mice, suggesting cold stress may result in liver injury. Remarkably, increased expression of heat shock protein 70 (HSP70) and HSP90 proteins proved the cold stress model is successfully constructed. Then, elevated levels of apoptosis, inflammation, oxidative stress and pyroptosis related proteins and mRNAs, such as cysteinyl aspartate specific proteinase-3 (Caspase-3), inducible nitric oxide synthase (iNOS), nuclear factor erythroid2-related factor 2 (Nrf2) and gasdermins D (GSDMD), confirmed that cold exposure activated apoptosis, oxidative stress and pyroptosis, and released inflammation cytokines. Meanwhile, in vitro, we got similar results as in vivo. Further, adding an NLR family pyrin domain containing 3 (NLRP3) inhibitors found that suppression expression of NLRP3 results in the essential proteins of pyroptosis and antioxidant evidently reduced, and adding GSDMD inhibitor found that suppression expression of GSDMD accompanies with the level of Nrf2 and heme oxygenase-1 (HO-1) obviously reduced. In summary, these findings provide a new understanding of the underlying mechanisms of the cold stress response, which can inform the development of new strategies to combat the effects of hypothermia.
Collapse
|