1
|
Sun L, Zhu Y, Yuan Y. NLRs in tumor chemotherapy resistance: A double-edged sword. Chem Biol Interact 2025; 414:111499. [PMID: 40180110 DOI: 10.1016/j.cbi.2025.111499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 02/16/2025] [Accepted: 04/01/2025] [Indexed: 04/05/2025]
Abstract
Nucleotide-binding oligomerization domain (NOD)-like receptors (NLRs) are a numerous family of cytoplasmic proteins. Members of this family not only function as innate immune sensors, but also serve as transcriptional regulators of major histocompatibility complex class II (MHC II) and major histocompatibility complex class I (MHC I) genes to activate adaptive immunity. Furthermore, NLRs are involved in mediating various signaling pathways, including the inflammasome. To date, extensive research has been conducted on the contradictory roles and mechanisms of NLRs in the occurrence, development, invasion, and metastasis of tumors within the tumor microenvironment (TME). The double-edged sword effect (either positive or negative role) of NLRs in the treatment of malignant tumors has attracted increasing attention in recent years, making these a promising bidirectional therapeutic target for such tumors. Rational utilization of the double-edged sword nature of NLRs can provide a feasible solution for improving the efficacy of malignant tumor treatment and overcoming chemotherapy resistance. This article provides a systematic review of the influence of the NLR family on chemosensitivity in different malignant tumors and the regulatory mechanisms of their upstream and downstream signaling pathways. In doing do, we aim to elucidate the dual role of NLRs in promoting and combating tumor chemotherapy resistance, and elucidate their application value in tumor chemotherapy resistance.
Collapse
Affiliation(s)
- Lili Sun
- Department of Pathology, Cancer Hospital of China Medical University (Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute), Shenyang, 110042, China; Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, Shenyang, 110001, China; Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, The First Hospital of China Medical University, Shenyang, 110001, China; Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Yanmei Zhu
- Department of Pathology, Cancer Hospital of China Medical University (Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute), Shenyang, 110042, China.
| | - Yuan Yuan
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, Shenyang, 110001, China; Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, The First Hospital of China Medical University, Shenyang, 110001, China; Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, The First Hospital of China Medical University, Shenyang, 110001, China.
| |
Collapse
|
2
|
Wan C, Wang P, Xu Y, Zhu Y, Chen H, Cao X, Gu Y. Mechanism and role of H. pylori CagA-induced NLRP3 inflammasome in gastric cancer immune cell infiltration. Sci Rep 2025; 15:14335. [PMID: 40274924 PMCID: PMC12022178 DOI: 10.1038/s41598-025-98301-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 04/10/2025] [Indexed: 04/26/2025] Open
Abstract
The high incidence of gastric cancer in China is strongly associated with widespread Helicobacter pylori infection. While the bacterium's role in gastric cancer initiation and progression is well-established, the precise molecular mechanisms remain incompletely characterized. Current clinical challenges include limited early detection methods and poor therapeutic efficacy in advanced stages. Immune checkpoint inhibitors have shown clinical benefits in subsets of patients; however, many exhibit primary resistance or acquire secondary resistance, though the mechanisms underlying this resistance remain poorly understood. Emerging evidence suggests that H.pylori infection may remodel the tumor microenvironment, thereby influencing gastric cancer pathogenesis, progression, and therapeutic response. This study investigates the CagA virulence factor-mediated signal-transduction pathway during H.pylori infection, elucidating its role in NLRP3 inflammasome activation and subsequent pathological modulation of gastric epithelial cells. We further analyze correlations between NLRP3 expression and clinicopathological features, evaluating its prognostic value in predicting clinical outcomes. Additionally, we examine how this signaling axis regulates immune cell infiltration and modulates molecular pathology within the tumor immune microenvironment, laying a foundation for novel diagnostic and immunotherapeutic strategies.
Collapse
Affiliation(s)
- Chuandan Wan
- Central Laboratory, Changshu Medical Examination Institute, Suzhou, 215500, China
| | - Ping Wang
- School of Basic Medical Sciences, Wannan Medical College, Wuhu, 241002, China
| | - Yeqiong Xu
- Central Laboratory, Changshu Medical Examination Institute, Suzhou, 215500, China
| | - Yanping Zhu
- Central Laboratory, Changshu Medical Examination Institute, Suzhou, 215500, China
| | - Huanhuan Chen
- Central Laboratory, Changshu Medical Examination Institute, Suzhou, 215500, China
| | - Xuexian Cao
- Department of Oncology and Radiotherapy, Changshu Hospital Affiliated to Nantong University, Suzhou, 215500, China
| | - Yulan Gu
- Department of Oncology and Radiotherapy, Changshu Hospital Affiliated to Nantong University, Suzhou, 215500, China.
| |
Collapse
|
3
|
Hushmandi K, Alimohammadi M, Heiat M, Hashemi M, Nabavi N, Tabari T, Raei M, Aref AR, Farahani N, Daneshi S, Taheriazam A. Targeting Wnt signaling in cancer drug resistance: Insights from pre-clinical and clinical research. Pathol Res Pract 2025; 267:155837. [PMID: 39954370 DOI: 10.1016/j.prp.2025.155837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 12/22/2024] [Accepted: 02/10/2025] [Indexed: 02/17/2025]
Abstract
Cancer drug resistance, encompassing both acquired and intrinsic chemoresistance, remains a significant challenge in the clinical management of tumors. While advancements in drug discovery and the development of various small molecules and anti-cancer compounds have improved patient responses to chemotherapy, the frequent and prolonged use of these drugs continues to pose a high risk of developing chemoresistance. Therefore, understanding the primary mechanisms underlying drug resistance is crucial. Wnt proteins, as secreted signaling molecules, play a pivotal role in transmitting signals from the cell surface to the nucleus. Aberrant expression of Wnt proteins has been observed in a variety of solid and hematological tumors, where they contribute to key processes such as proliferation, metastasis, stemness, and immune evasion, often acting in an oncogenic manner. Notably, the role of the Wnt signaling pathway in modulating chemotherapy response in human cancers has garnered significant attention. This review focuses on the involvement of Wnt signaling and its related molecular pathways in drug resistance, highlighting their associations with cancer hallmarks, stemness, and tumorigenesis linked to chemoresistance. Additionally, the overexpression of Wnt proteins has been shown to accelerate cancer drug resistance, with regulation mediated by non-coding RNAs. Elevated Wnt activity reduces cell death in cancers, particularly by affecting mechanisms like apoptosis, autophagy, and ferroptosis. Furthermore, pharmacological compounds and small molecules have demonstrated the potential to modulate Wnt signaling in cancer therapy. Given its impact, Wnt expression can also serve as a prognostic marker and a factor influencing survival outcomes in human cancers.
Collapse
Affiliation(s)
- Kiavash Hushmandi
- Nephrology and Urology Research Center, Clinical Sciences Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Mina Alimohammadi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Heiat
- Baqiyatallah Research Center for Gastroenterology and Liver Diseases (BRCGL), Clinical Sciences Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Noushin Nabavi
- Independent Researcher, Victoria, British Columbia V8V 1P7, Canada
| | - Teimour Tabari
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Mehdi Raei
- Health Research Center, Life Style Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Amir Reza Aref
- Department of Vitro Vision, DeepkinetiX, Inc, Boston, MA, USA
| | - Najma Farahani
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Salman Daneshi
- Department of Public Health, School of Health, Jiroft University of Medical Sciences, Jiroft, Iran
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
4
|
Wu D, Yang S, Yuan C, Zhang K, Tan J, Guan K, Zeng H, Huang C. Targeting purine metabolism-related enzymes for therapeutic intervention: A review from molecular mechanism to therapeutic breakthrough. Int J Biol Macromol 2024; 282:136828. [PMID: 39447802 DOI: 10.1016/j.ijbiomac.2024.136828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 10/02/2024] [Accepted: 10/21/2024] [Indexed: 10/26/2024]
Abstract
Purines are ancient metabolites with established and emerging metabolic and non-metabolic signaling attributes. The expression of purine metabolism-related genes is frequently activated in human malignancies, correlating with increased cancer aggressiveness and chemoresistance. Importantly, under certain stimulating conditions, the purine biosynthetic enzymes can assemble into a metabolon called "purinosomes" to enhance purine flux. Current evidence suggests that purine flux is regulated by a complex circuit that encompasses transcriptional, post-translational, metabolic, and association-dependent regulatory mechanisms. Furthermore, purines within the tumor microenvironment modulate cancer immunity through signaling mediated by purinergic receptors. The deregulation of purine metabolism has significant metabolic consequences, particularly hyperuricemia. Herbal-based therapeutics have emerged as valuable pharmacological interventions for the treatment of hyperuricemia by inhibiting the activity of hepatic XOD, modulating the expression of renal urate transporters, and suppressing inflammatory responses. This review summarizes recent advancements in the understanding of purine metabolism in clinically relevant malignancies and metabolic disorders. Additionally, we discuss the role of herbal interventions and the interaction between the host and gut microbiota in the regulation of purine homeostasis. This information will fuel the innovation of therapeutic strategies that target the disease-associated rewiring of purine metabolism for therapeutic applications.
Collapse
Affiliation(s)
- Di Wu
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China
| | - Shengqiang Yang
- School of Basic Medicine, Youjiang Medical University for Nationalities, Baise 533000, China
| | - Chenyang Yuan
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Kejia Zhang
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China
| | - Jiachen Tan
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China
| | - Kaifeng Guan
- School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China.
| | - Hong Zeng
- School of Basic Medicine, Youjiang Medical University for Nationalities, Baise 533000, China.
| | - Chunjie Huang
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China.
| |
Collapse
|
5
|
Fayedeh F, Khorashadizadeh S, Yousefi M, Abbasifar S, Erfanian N, Rafiee M, Ghasemi F. CTLA-4 expression and polymorphisms in Schizophrenia; a systematic review of literature. Mol Biol Rep 2024; 51:431. [PMID: 38520576 DOI: 10.1007/s11033-024-09299-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 01/29/2024] [Indexed: 03/25/2024]
Abstract
Schizophrenia constitutes a severe psychiatric disorder with detrimental impacts on individuals, their support systems, and the broader economy. Extensive research has revealed a notable association between variations in the Cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) gene and an increased susceptibility to schizophrenia.This study represents the first systematic review of the literature investigating the impact of CTLA-4 polymorphisms and expression on the development and progression of schizophrenia.Our investigation involved a comprehensive search strategy, using a combination of title, abstract, and MESH terms in four databases, including PubMed, Scopus, Web of Science, and Google Scholar, until August 29th, 2023. The complete texts of the identified records were obtained and rigorously assessed based on predefined exclusion and inclusion criteria. Out of the numerous records, a total of 88 were identified through the databases. 10 studies met the criteria; therefore, their quality was assessed and included in this systematic study. The records were then categorized into polymorphism and expression groups. Our investigation emphasizes an association between rs3087243, rs231779, rs231777, rs16840252, rs5742909, and rs231775 polymorphisms and the development of schizophrenia. The results demonstrate a correlation between CTLA-4 polymorphisms and schizophrenia, compelling the need for further research to thoroughly examine the role of CTLA-4 in schizophrenia and other psychiatric disorders.
Collapse
Affiliation(s)
- Farzad Fayedeh
- Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran
| | | | - Mohammad Yousefi
- Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran
| | - Sara Abbasifar
- Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran
| | - Nafiseh Erfanian
- Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran
| | - Mitra Rafiee
- Cellular and Molecular Research Center, Department of Immunology, Birjand University of Medical Sciences, Birjand, Iran.
| | - Fahimeh Ghasemi
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran.
- Department of Medical Biotechnology, School of Medicine, Birjand University of Medical Sciences, Birjand, Iran.
| |
Collapse
|
6
|
Sha Y, Liang W, Mo C, Hou X, Ou M. Multi‑dimensional analysis reveals NCKAP5L is a promising biomarker for the diagnosis and prognosis of human cancers, especially colorectal cancer. Oncol Lett 2024; 27:53. [PMID: 38192666 PMCID: PMC10773189 DOI: 10.3892/ol.2023.14186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 11/15/2023] [Indexed: 01/10/2024] Open
Abstract
The Nck-associated protein 5-like (NCKAP5L) gene, also known as Cep169, is associated with certain cancers. However, the diagnosis and prognosis value of NCKAP5L in several types of human cancer, including colorectal cancer, is not fully understood. In the present study, a comprehensive pan-cancer analysis of NCKAP5L was performed using several approaches, including gene expression and alteration, protein phosphorylation, immune infiltration, survival prognosis analyses and gene enrichment using the following: The University of California Santa Cruz Genome Browser Human Dec. 2013 (GRCh38/hg38) Assembly, Tumor Immune Estimation Resource (version 2), Human Protein Atlas, Gene Expression Profiling Interactive Analysis (version 2), University of Alabama at Birmingham Cancer Data Analysis portal, the Kaplan-Meier Plotter, cBioportal, Search Tool for the Retrieval of Interacting Genes/Proteins, Jvenn and the Metascape server. The role of NCKAP5L in colorectal cancer was further assessed by reverse transcription-quantitative PCR. The results demonstrated that NCKAP5L was upregulated in the majority of cancer types, including colorectal cancer. The high expression of NCKAP5L was significantly correlated with patient survival prognosis and immune infiltration of cancer-associated fibroblasts in numerous types of cancer, including colorectal cancer. Furthermore, Gene Ontology analysis identified that NCKAP5L may serve an important role in metabolic and cellular processes in human cancers. In summary, the data from the present study demonstrate that NCKAP5L is a potential tumor biomarker for the diagnosis and prognosis of human cancers, especially colorectal cancer.
Collapse
Affiliation(s)
- Yu Sha
- Central Laboratory, Guangxi Health Commission Key Laboratory of Glucose and Lipid Metabolism Disorders, The Second Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541199, P.R. China
| | - Wenken Liang
- Central Laboratory, Guangxi Health Commission Key Laboratory of Glucose and Lipid Metabolism Disorders, The Second Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541199, P.R. China
| | - Chune Mo
- Central Laboratory, Guangxi Health Commission Key Laboratory of Glucose and Lipid Metabolism Disorders, The Second Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541199, P.R. China
| | - Xianliang Hou
- Central Laboratory, Guangxi Health Commission Key Laboratory of Glucose and Lipid Metabolism Disorders, The Second Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541199, P.R. China
| | - Minglin Ou
- Central Laboratory, Guangxi Health Commission Key Laboratory of Glucose and Lipid Metabolism Disorders, The Second Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541199, P.R. China
| |
Collapse
|
7
|
Yu W, Zeng F, Xiao Y, Chen L, Qu H, Hong J, Qu C, Cheng G. Targeting PKM2 improves the gemcitabine sensitivity of intrahepatic cholangiocarcinoma cells via inhibiting β-catenin signaling pathway. Chem Biol Interact 2024; 387:110816. [PMID: 38000456 DOI: 10.1016/j.cbi.2023.110816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/09/2023] [Accepted: 11/20/2023] [Indexed: 11/26/2023]
Abstract
Gemcitabine is considered the standard first-line chemotherapeutic agent for patients with intrahepatic cholangiocarcinoma (ICC). However, its therapeutic efficacy is hampered by the development of chemoresistance. Pyruvate kinase M2 (PKM2), a crucial mediator of the final step in glycolysis, has been implicated in the origination and advancement of diverse malignancies. Its expression is increased in many tumor types and this may correlate with increased drug sensitivity. However, the specific effect of PKM2 on the gemcitabine sensitivity in ICC remains to be elucidated. In this research, we aimed to elucidate the role and functional significance of PKM2 in ICC, as well as the heightened susceptibility of ICC cells to gemcitabine by targeting PKM2 and the underlying molecular mechanisms. Immunohistochemical and immunofluorescence analyses revealed elevated expression of PKM2 in both tumor cells and macrophages in human ICC tissues. Reducing PKM2 levels significantly restrained the proliferation of tumor cells, impeded cell cycle advance, induced programmed cell death, and suppressed metastasis. In addition, knockdown or pharmacological inhibition of PKM2 could enhance the response of ICC cells to gemcitabine in vitro. Interestingly, conditioned medium co-culture system suggested that conditioned medium from M2 macrophages increased gemcitabine sensitivity of ICC cells. However, silencing PKM2 or pharmacological inhibition of PKM2 in M2 macrophages did not ameliorate the gemcitabine resistance mediated by M2 macrophages derived conditioned medium. Mechanistically, downregulation of PKM2 repressed the expression of β-catenin and its downstream transcriptional targets, thereby hindering the propagation of β-catenin signaling cascade. Finally, the results of the subcutaneous xenograft experiment in nude mice provided compelling evidence of a synergistic interaction between PKM2-IN-1 and gemcitabine in vivo. In summary, we reported that PKM2 may function as an advantageous target for increasing the sensitivity of ICC to gemcitabine treatment. Targeting PKM2 improves the gemcitabine sensitivity of ICC cells via inhibiting β-catenin signaling pathway.
Collapse
Affiliation(s)
- Wenna Yu
- College of Pharmacy, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Fuling Zeng
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, Guangdong, 510630, China
| | - Yang Xiao
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, Guangdong, 510630, China
| | - Liuyan Chen
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, Guangdong, 510630, China
| | - Hengdong Qu
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, Guangdong, 510630, China
| | - Jian Hong
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, Guangdong, 510630, China; State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Chen Qu
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, Guangdong, 510630, China.
| | - Guohua Cheng
- College of Pharmacy, Jinan University, Guangzhou, Guangdong, 510632, China.
| |
Collapse
|
8
|
Ghasemi F, Farkhondeh T, Samarghandian S, Ghasempour A, Shakibaie M. Oncogenic Alterations of Metabolism Associated with Resistance to Chemotherapy. Curr Mol Med 2024; 24:856-866. [PMID: 37350008 DOI: 10.2174/1566524023666230622104625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 04/12/2023] [Accepted: 04/20/2023] [Indexed: 06/24/2023]
Abstract
Metabolic reprogramming in cancer cells is a strategy to meet high proliferation rates, invasion, and metastasis. Also, several researchers indicated that the cellular metabolism changed during the resistance to chemotherapy. Since glycolytic enzymes play a prominent role in these alterations, the ability to reduce resistance to chemotherapy drugs is promising for cancer patients. Oscillating gene expression of these enzymes was involved in the proliferation, invasion, and metastasis of cancer cells. This review discussed the roles of some glycolytic enzymes associated with cancer progression and resistance to chemotherapy in the various cancer types.
Collapse
Affiliation(s)
- Fahimeh Ghasemi
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
- Department of Medical Biotechnology, School of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Tahereh Farkhondeh
- Department of Toxicology and Pharmacology, School of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran
| | - Saeed Samarghandian
- Healthy Ageing Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Alireza Ghasempour
- Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran
| | - Mehdi Shakibaie
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
- Department of Pharmaceutics and Nanotechnology, School of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran
| |
Collapse
|
9
|
Cheng Y, Wang P, Liu L. PFKFB3 Regulates the Growth and Migration of Ovarian Cancer Cells through Pyroptosis and Warburg Effect Progression. J Environ Pathol Toxicol Oncol 2024; 43:53-64. [PMID: 39016141 DOI: 10.1615/jenvironpatholtoxicoloncol.2024052948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024] Open
Abstract
Ovarian cancer is one of the most common malignant tumors in female reproductive organs. Its incidence rate is second only to uterine body cancer and cervical cancer, posing a serious threat to women's health. Herein, we explored that PFKFB3 in cancer progression of ovarian cancer and its underlying mechanism. All the serum samples from ovarian cancer were collected by our hospital. PFKFB3 mRNA expressions in patients with ovarian cancer and ovarian cancer cell lines were up-regulated. PFKFB3 protein expressions in ovarian cancer cells were induced. ovarian cancer patients with high PFKFB3expression had lower survival rate. The PFKFB3gene promoted cell proliferation and EDU cells, and increased cell metastasis of ovarian cancer. Si-PFKFB3 reduced cell proliferation and EDU cells, and decreased cell metastasis of ovarian cancer. PFKFB3 gene up-regulation reduced caspase-3/9 activity levels of ovarian cancer. Si-PFKFB3 also promoted caspase-3/9 activity levels of ovarian cancer. PFKFB3 gene promoted Warburg effect progression of ovarian cancer. PFKFB3 gene reduced NLRP3-induced pyroptosis of ovarian cancer. PFKFB3 suppressed NLRP3 expression. NLRP3 was one target spot for PFKFB3 on pyroptosis of ovarian cancer. Taken together, we conclude that PFKFB3 suppressed NLRP3 axis to reduce pyroptosis and increase Warburg effect progression of ovarian cancer, and provide molecular insight into the mechanisms by which the PFKFB3 regulates pyroptosis of ovarian cancer.
Collapse
Affiliation(s)
- Ye Cheng
- Department of Obstetrics and Gynecology, Wuhan No. 1 Hospital, Wuhan 430030, China
| | - Ping Wang
- Department of Obstetrics and Gynecology, Wuhan No. 1 Hospital, Wuhan 430030, China
| | | |
Collapse
|
10
|
Xu J, Chen J, Wang D, Li Y, Lian P, Wu X, Yan R. Nafamostat mesylate sensitizes ovarian cancer cells to carboplatin by promoting the ZNF24-mediated inhibition of WNT2B. J Toxicol Sci 2024; 49:467-479. [PMID: 39496384 DOI: 10.2131/jts.49.467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2024]
Abstract
Resistance to chemotherapeutic medicines complicates and eventually kills people with ovarian cancer. Nafamostat mesylate (NM) has been used as an adjuvant therapy to enhance chemotherapy sensitivity in several cancers. This study aimed to evaluate the effect of NM on ovarian cancer cells susceptible to carboplatin (CBP) and to determine the underlying mechanism involved. Herein, qRT-PCR, western blot, and IHC were used to analyze mRNA and protein expression. Cell viability and proliferation were measured using the MTT and colony formation assays. Cell migration and invasion were examined using the Transwell assay. Flow cytometry was employed to detect cell apoptosis. The interaction between zinc finger protein 24 (ZNF24) and wingless-type MMTV integration site family member 2b (WNT2B) was validated via the dual-luciferase reporter and Chromatin immunoprecipitation assays. A xenograft nude mouse model was used to assess the effect of NM on CBP sensitivity in vivo. Our results showed that NM intervention inhibited the viability, proliferation, migration, and invasion and facilitated the apoptosis of CBP-resistant ovarian cancer cells. Furthermore, NM sensitized ovarian cancer cells to CBP by upregulating ZNF24. ZNF24 inactivated Wnt/β-catenin signaling by inhibiting the transcription of WNT2B. Additionally, NM enhanced the inhibitory effect of CBP on tumor growth in vivo. Taken together, NM enhanced the CBP sensitivity of ovarian cancer cells by promoting the ZNF24-mediated inactivation of the WNT2B/Wnt/β-catenin axis. These findings suggest a viable treatment approach for improving CBP resistance in ovarian cancer.
Collapse
Affiliation(s)
- Jiehuan Xu
- Changsha Health Vocational College, China
| | - Jianlin Chen
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The Second Xiangya Hospital, Central South University, China
| | - Dao Wang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The Second Xiangya Hospital, Central South University, China
| | - Yaojun Li
- Changsha Health Vocational College, China
| | - Ping Lian
- Changsha Health Vocational College, China
| | - Xiaozhu Wu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The Second Xiangya Hospital, Central South University, China
| | - Rong Yan
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The Second Xiangya Hospital, Central South University, China
| |
Collapse
|
11
|
Zheng X, Zhao D, Jin Y, Liu Y, Liu D. Role of the NLRP3 inflammasome in gynecological disease. Biomed Pharmacother 2023; 166:115393. [PMID: 37660654 DOI: 10.1016/j.biopha.2023.115393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/20/2023] [Accepted: 08/26/2023] [Indexed: 09/05/2023] Open
Abstract
The NLR family pyrin domain containing 3 (NLRP3) inflammasome is involved in the innate immune system and is a three-part macromolecular complex comprising the NLRP3 protein, apoptosis-associated speck-like protein containing a CARD (ASC) and the cysteine protease pro-caspase-1. When the NLRP3 inflammasome is activated, it can produce interleukin (IL)- 1β and IL-18 and eventually lead to inflammatory cell pyroptosis. Related studies have demonstrated that the NLRP3 inflammasome can induce an immune response and is related to the occurrence and development of gynecological diseases, such as endometriosis, polycystic ovary syndrome and breast cancer. NLRP3 inflammasome inhibitors are beneficial for maintaining cellular homeostasis and tissue health and have been found effective in targeting some gynecological diseases. However, excessive inhibitor concentrations have been found to cause adverse effects. Therefore, proper control of NLRP3 inflammasome activity is critical. This paper summarizes the structure and function of the NLRP3 inflammasome and highlights the therapeutic potential of targeting it in gynecological diseases, such as endometriosis, polycystic ovary syndrome and breast cancer The application of NLRP3 inflammasome inhibitors is also discussed.
Collapse
Affiliation(s)
- Xu Zheng
- College of Acupuncture and Massage, Changchun University of Chinese Medicine, Changchun 130117, Jilin, China
| | - Dan Zhao
- College of Acupuncture and Massage, Changchun University of Chinese Medicine, Changchun 130117, Jilin, China
| | - Ye Jin
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, Jilin, China.
| | - Yang Liu
- Acupuncture department,Affiliated Hospital of Changchun University of Chinese Medicine, Changchun 130117, Jilin, China.
| | - Da Liu
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, Jilin, China.
| |
Collapse
|
12
|
Wang J, Hua S, Bao H, Yuan J, Zhao Y, Chen S. Pyroptosis and inflammasomes in cancer and inflammation. MedComm (Beijing) 2023; 4:e374. [PMID: 37752941 PMCID: PMC10518439 DOI: 10.1002/mco2.374] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 08/20/2023] [Accepted: 08/22/2023] [Indexed: 09/28/2023] Open
Abstract
Nonprogrammed cell death (NPCD) and programmed cell death (PCD) are two types of cell death. Cell death is significantly linked to tumor development, medication resistance, cancer recurrence, and metastatic dissemination. Therefore, a comprehensive understanding of cell death is essential for the treatment of cancer. Pyroptosis is a kind of PCD distinct from autophagy and apoptosis in terms of the structure and function of cells. The defining features of pyroptosis include the release of an inflammatory cascade reaction and the expulsion of lysosomes, inflammatory mediators, and other cellular substances from within the cell. Additionally, it displays variations in osmotic pressure both within and outside the cell. Pyroptosis, as evidenced by a growing body of research, is critical for controlling the development of inflammatory diseases and cancer. In this paper, we reviewed the current level of knowledge on the mechanism of pyroptosis and inflammasomes and their connection to cancer and inflammatory diseases. This article presents a theoretical framework for investigating the potential of therapeutic targets in cancer and inflammatory diseases, overcoming medication resistance, establishing nanomedicines associated with pyroptosis, and developing risk prediction models in refractory cancer. Given the link between pyroptosis and the emergence of cancer and inflammatory diseases, pyroptosis-targeted treatments may be a cutting-edge treatment strategy.
Collapse
Affiliation(s)
- Jie‐Lin Wang
- Department of Obstetrics and GynecologyGuangzhou Key Laboratory of Targeted Therapy for Gynecologic OncologyGuangdong Provincial Key Laboratory of Major Obstetric DiseasesThe Third Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
- Department of Gynecologic Oncology Research OfficeGuangzhou Key Laboratory of Targeted Therapy for Gynecologic OncologyGuangdong Provincial Key Laboratory of Major Obstetric DiseasesThe Third Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
| | - Sheng‐Ni Hua
- Department of Radiation OncologyZhuhai Peoples HospitalZhuhai Hospital Affiliated with Jinan UniversityZhuhaiChina
| | - Hai‐Juan Bao
- Department of Obstetrics and GynecologyGuangzhou Key Laboratory of Targeted Therapy for Gynecologic OncologyGuangdong Provincial Key Laboratory of Major Obstetric DiseasesThe Third Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
- Department of Gynecologic Oncology Research OfficeGuangzhou Key Laboratory of Targeted Therapy for Gynecologic OncologyGuangdong Provincial Key Laboratory of Major Obstetric DiseasesThe Third Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
| | - Jing Yuan
- Department of Obstetrics and GynecologyGuangzhou Key Laboratory of Targeted Therapy for Gynecologic OncologyGuangdong Provincial Key Laboratory of Major Obstetric DiseasesThe Third Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
- Department of Gynecologic Oncology Research OfficeGuangzhou Key Laboratory of Targeted Therapy for Gynecologic OncologyGuangdong Provincial Key Laboratory of Major Obstetric DiseasesThe Third Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
| | - Yang Zhao
- Department of Obstetrics and GynecologyGuangzhou Key Laboratory of Targeted Therapy for Gynecologic OncologyGuangdong Provincial Key Laboratory of Major Obstetric DiseasesThe Third Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
- Department of Gynecologic Oncology Research OfficeGuangzhou Key Laboratory of Targeted Therapy for Gynecologic OncologyGuangdong Provincial Key Laboratory of Major Obstetric DiseasesThe Third Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
| | - Shuo Chen
- Department of Obstetrics and GynecologyGuangzhou Key Laboratory of Targeted Therapy for Gynecologic OncologyGuangdong Provincial Key Laboratory of Major Obstetric DiseasesThe Third Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
- Department of Gynecologic Oncology Research OfficeGuangzhou Key Laboratory of Targeted Therapy for Gynecologic OncologyGuangdong Provincial Key Laboratory of Major Obstetric DiseasesThe Third Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
| |
Collapse
|
13
|
Li W, Zhao X, Zhang R, Xie J, Zhang G. Silencing of NLRP3 Sensitizes Chemoresistant Ovarian Cancer Cells to Cisplatin. Mediators Inflamm 2023; 2023:7700673. [PMID: 37304662 PMCID: PMC10256449 DOI: 10.1155/2023/7700673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 01/16/2023] [Accepted: 03/25/2023] [Indexed: 06/13/2023] Open
Abstract
Background Ovarian cancer is a fatal gynecological malignancy. The resistance to chemotherapy in ovarian cancer treatment has been a thorny issue. This study is aimed at probing the molecular mechanism of cisplatin (DDP) resistance in ovarian cancer. Methods Bioinformatics analysis was conducted to examine the role of Nod-like receptor protein 3 (NLRP3) in ovarian cancer. The NLRP3 level in DDP-resistant ovarian cancer tumors and cell lines (SKOV3/DDP and A2780/DDP) was evaluated by applying immunohistochemical staining, western blot, and qRT-PCR. Cell transfection was conducted to regulate the NLRP3 level. Cell abilities to proliferate, migrate, invade, and apoptosis were measured employing colony formation, CCK-8, wound healing, transwell, and TUNEL assays, respectively. Cell cycle analysis was completed via flow cytometry. Corresponding protein expression was measured by western blot. Results NLRP3 was overexpressed in ovarian cancer, correlated with poor survival, and upregulated in DDP-resistant ovarian cancer tumors and cells. NLRP3 silencing exerted antiproliferative, antimigrative, anti-invasive, and proapoptotic effects in A2780/DDP and SKOV3/DDP cells. Additionally, NLRP3 silencing inactivated NLRPL3 inflammasome and blocked epithelial-mesenchymal transition via enhancing E-cadherin and lowering vimentin, N-cadherin, and fibronectin. Conclusion NLRP3 was overexpressed in DDP-resistant ovarian cancer. NLRP3 knockdown hindered the malignant process of DDP-resistant ovarian cancer cells, providing a potential target for DPP-based ovarian cancer chemotherapy.
Collapse
Affiliation(s)
- Weijia Li
- Department of Gynecology, Harbin Medical University, Harbin, 150081 Heilongjiang, China
| | - Xibo Zhao
- Department of Gynecology, The First Affiliated Hospital of Harbin Medical University, Harbin, 150081 Heilongjiang, China
| | - Rujian Zhang
- Department of Gynecology, Southern Medical University Affiliated Maternal and Child Health Hospital of Foshan, Foshan, 528000 Guangdong, China
| | - Jiabin Xie
- Department of Gynecology, Southern Medical University Affiliated Maternal and Child Health Hospital of Foshan, Foshan, 528000 Guangdong, China
| | - Guangmei Zhang
- Department of Gynecology, The First Affiliated Hospital of Harbin Medical University, Harbin, 150081 Heilongjiang, China
| |
Collapse
|
14
|
Huang Y, Peng J, Liang Q. Identification of key ferroptosis genes in diabetic retinopathy based on bioinformatics analysis. PLoS One 2023; 18:e0280548. [PMID: 36689408 PMCID: PMC9870164 DOI: 10.1371/journal.pone.0280548] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 12/19/2022] [Indexed: 01/24/2023] Open
Abstract
OBJECTIVES Diabetic retinopathy (DR) is a retinal microvascular disease associated with diabetes. Ferroptosis is a new type of programmed cell death that may participate in the occurrence and development of DR. Therefore, this study aimed to identify the DR ferroptosis-related genes by bioinformatics methods. METHODS The RNAseq data of DR and healthy control retinas were downloaded from the gene expression synthesis (GEO) database and analyzed using the R package DESeq2. The key modules were obtained using the WGCNA algorithm, and their genes were intersected with ferroptosis-related genes in the FerrDb database to obtain differentially expressed ferroptosis-related genes (DE-FRGs). Enrichment analysis was conducted to understand the function and enrichment pathways of ferroptosis genes in DR, and hub genes were identified by protein-protein interaction (PPI) analysis. The diagnostic accuracy of hub genes for DR was evaluated according to the area under the ROC curve. The TRRUST database was then used to predict the regulatory relationship between transcription factors and target genes, with the mirDIP, ENCORI, RNAnter, RNA22, miRWalk and miRDB databases used to predict the regulatory relationship between miRNAs and target genes. Finally, another data set was used to verify the hub genes. RESULTS In total, 52 ferroptosis-related DEGs (43 up-regulated and 9 down-regulated) were identified using 15 DR samples and 3 control samples and were shown to be significantly enriched in the intrinsic apoptotic signaling pathway, autophagosome, iron ion binding and p53 signaling pathway. Seven hub genes of DR ferroptosis were identified through PPI network analysis, but only HMOX1 and PTGS2 were differentially expressed in another data set. The miRNAs prediction showed that hsa-miR-873-5p was the key miRNA regulating HMOX1, while hsa-miR-624-5p and hsa-miR-542-3p were the key miRNAs regulating PTGS2. Furthermore, HMOX1 and PTGS2 were regulated by 13 and 20 transcription factors, respectively. CONCLUSION The hub genes HMOX1 and PTGS2, and their associated transcription factors and miRNAs, may be involved in ferroptosis in diabetic retinopathy. Therefore, the specific mechanism is worthy of further investigation.
Collapse
Affiliation(s)
- Yan Huang
- Clinical College of Jining Medical University, Jining, China
| | - Jun Peng
- The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Qiuhua Liang
- Department of Endocrinology, Affiliated Hospital of Jining Medical University, Jining, China
| |
Collapse
|
15
|
Liu J, Hong S, Yang J, Zhang X, Wang Y, Wang H, Peng J, Hong L. Targeting purine metabolism in ovarian cancer. J Ovarian Res 2022; 15:93. [PMID: 35964092 PMCID: PMC9375293 DOI: 10.1186/s13048-022-01022-z] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 07/17/2022] [Indexed: 11/10/2022] Open
Abstract
Purine, an abundant substrate in organisms, is a critical raw material for cell proliferation and an important factor for immune regulation. The purine de novo pathway and salvage pathway are tightly regulated by multiple enzymes, and dysfunction in these enzymes leads to excessive cell proliferation and immune imbalance that result in tumor progression. Maintaining the homeostasis of purine pools is an effective way to control cell growth and tumor evolution, and exploiting purine metabolism to suppress tumors suggests interesting directions for future research. In this review, we describe the process of purine metabolism and summarize the role and potential therapeutic effects of the major purine-metabolizing enzymes in ovarian cancer, including CD39, CD73, adenosine deaminase, adenylate kinase, hypoxanthine guanine phosphoribosyltransferase, inosine monophosphate dehydrogenase, purine nucleoside phosphorylase, dihydrofolate reductase and 5,10-methylenetetrahydrofolate reductase. Purinergic signaling is also described. We then provide an overview of the application of purine antimetabolites, comprising 6-thioguanine, 6-mercaptopurine, methotrexate, fludarabine and clopidogrel. Finally, we discuss the current challenges and future opportunities for targeting purine metabolism in the treatment-relevant cellular mechanisms of ovarian cancer.
Collapse
Affiliation(s)
- Jingchun Liu
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Shasha Hong
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jiang Yang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xiaoyi Zhang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Ying Wang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Haoyu Wang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jiaxin Peng
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Li Hong
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
16
|
Yang C, Mai Z, Liu C, Yin S, Cai Y, Xia C. Natural Products in Preventing Tumor Drug Resistance and Related Signaling Pathways. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27113513. [PMID: 35684449 PMCID: PMC9181879 DOI: 10.3390/molecules27113513] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 05/26/2022] [Accepted: 05/27/2022] [Indexed: 12/13/2022]
Abstract
Drug resistance is still an obstacle in cancer therapy, leading to the failure of tumor treatment. The emergence of tumor drug resistance has always been a main concern of oncologists. Therefore, overcoming tumor drug resistance and looking for new strategies for tumor treatment is a major focus in the field of tumor research. Natural products serve as effective substances against drug resistance because of their diverse chemical structures and pharmacological effects. We reviewed the signaling pathways involved in the development of tumor drug resistance, including Epidermal growth factor receptor (EGFR), Renin-angiotensin system (Ras), Phosphatidylinositol-3-kinase/protein kinase B (PI3K/Akt), Wnt, Notch, Transforming growth factor-beta (TGF-β), and their specific signaling pathway inhibitors derived from natural products. This can provide new ideas for the prevention of drug resistance in cancer therapy.
Collapse
Affiliation(s)
- Chuansheng Yang
- Department of Head-Neck and Breast Surgery, Yuebei People’s Hospital of Shantou University, Shaoguan 512027, China;
| | - Zhikai Mai
- Affiliated Foshan Maternity and Chlid Healthcare Hospital, Southern Medical University, Foshan 528000, China; (Z.M.); (C.L.); (S.Y.)
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Can Liu
- Affiliated Foshan Maternity and Chlid Healthcare Hospital, Southern Medical University, Foshan 528000, China; (Z.M.); (C.L.); (S.Y.)
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Shuanghong Yin
- Affiliated Foshan Maternity and Chlid Healthcare Hospital, Southern Medical University, Foshan 528000, China; (Z.M.); (C.L.); (S.Y.)
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yantao Cai
- Affiliated Foshan Maternity and Chlid Healthcare Hospital, Southern Medical University, Foshan 528000, China; (Z.M.); (C.L.); (S.Y.)
- Correspondence: (Y.C.); (C.X.)
| | - Chenglai Xia
- Affiliated Foshan Maternity and Chlid Healthcare Hospital, Southern Medical University, Foshan 528000, China; (Z.M.); (C.L.); (S.Y.)
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
- Correspondence: (Y.C.); (C.X.)
| |
Collapse
|