1
|
Roberts BM, Staab JS, Caldwell AR, Sczuroski CE, Staab JE, Lutz LJ, Reynoso M, Geddis AV, Taylor KM, Guerriere KI, Walker LA, Hughes JM, Foulis SA. Sex Does Not Affect Changes in Body Composition and Insulin-Like Growth Factor-I During US Army Basic Combat Training. J Strength Cond Res 2024; 38:e304-e309. [PMID: 38320231 DOI: 10.1519/jsc.0000000000004735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
ABSTRACT Roberts, BM, Staab, JS, Caldwell, AR, Sczuroski, CE, Staab, JE, Lutz, LJ, Reynoso, M, Geddis, AV, Taylor, KM, Guerriere, KI, Walker, LA, Hughes, JM, and Foulis, SA. Sex does not affect changes in body composition and insulin-like growth factor-I during US Army basic combat training. J Strength Cond Res 38(6): e304-e309, 2024-Insulin-like growth factor 1 (IGF-I) has been implicated as a biomarker of health and body composition. However, whether changes in body composition are associated with changes in IGF-I is unclear. Therefore, we examined the relationship between body composition changes (i.e., fat mass and lean mass) and total serum IGF-I levels in a large cohort of young men ( n = 809) and women ( n = 397) attending US Army basic combat training (BCT). We measured body composition using dual energy x-ray absorptiometry and total serum IGF-I levels during week 1 and week 9 of BCT. We found that pre-BCT lean mass ( r = 0.0504, p = 0.082) and fat mass ( r = 0.0458, p = 0.082) were not associated with pre-BCT IGF-I. Body mass, body mass index, body fat percentage, and fat mass decreased, and lean mass increased during BCT (all p < 0.001). Mean (± SD ) IGF-I increased from pre-BCT (176 ± 50 ng·ml -1 ) to post-BCT (200 ± 50 ng·ml -1 , p < 0.001). Inspection of the partial correlations indicated that even when considering the unique contributions of other variables, increases in IGF-I during BCT were associated with both increased lean mass ( r = 0.0769, p = 0.023) and increased fat mass ( r = 0.1055, p < 0.001) with no sex differences. Taken together, our data suggest that although changes in IGF-I weakly correlated with changes in body composition, IGF-I, in isolation, is not an adequate biomarker for predicting changes in body composition during BCT in US Army trainees.
Collapse
Affiliation(s)
- Brandon M Roberts
- Military Performance Division, US Army Research of Environmental Medicine, Natick, Massachusetts
| | - Jeffery S Staab
- Military Performance Division, US Army Research of Environmental Medicine, Natick, Massachusetts
| | - Aaron R Caldwell
- Thermal & Mountain Medicine Division, US Army Research of Environmental Medicine, Natick, Massachusetts
| | - Cara E Sczuroski
- Military Performance Division, US Army Research of Environmental Medicine, Natick, Massachusetts
| | - Janet E Staab
- Military Performance Division, US Army Research of Environmental Medicine, Natick, Massachusetts
| | - Laura J Lutz
- Military Performance Division, US Army Research of Environmental Medicine, Natick, Massachusetts
| | - Marinaliz Reynoso
- Military Performance Division, US Army Research of Environmental Medicine, Natick, Massachusetts
| | - Alyssa V Geddis
- Military Performance Division, US Army Research of Environmental Medicine, Natick, Massachusetts
| | - Kathryn M Taylor
- Military Performance Division, US Army Research of Environmental Medicine, Natick, Massachusetts
| | - Katelyn I Guerriere
- Military Performance Division, US Army Research of Environmental Medicine, Natick, Massachusetts
| | - Leila A Walker
- Military Performance Division, US Army Research of Environmental Medicine, Natick, Massachusetts
| | - Julie M Hughes
- Military Performance Division, US Army Research of Environmental Medicine, Natick, Massachusetts
| | - Stephen A Foulis
- Military Performance Division, US Army Research of Environmental Medicine, Natick, Massachusetts
| |
Collapse
|
2
|
O’Leary TJ, Jackson S, Izard RM, Walsh NP, Coombs CV, Carswell AT, Oliver SJ, Tang JCY, Fraser WD, Greeves JP. Sex differences in iron status during military training: a prospective cohort study of longitudinal changes and associations with endurance performance and musculoskeletal outcomes. Br J Nutr 2024; 131:581-592. [PMID: 37732392 PMCID: PMC10803825 DOI: 10.1017/s0007114523001812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 07/20/2023] [Accepted: 08/09/2023] [Indexed: 09/22/2023]
Abstract
This study investigated sex differences in Fe status, and associations between Fe status and endurance and musculoskeletal outcomes, in military training. In total, 2277 British Army trainees (581 women) participated. Fe markers and endurance performance (2·4 km run) were measured at the start (week 1) and end (week 13) of training. Whole-body areal body mineral density (aBMD) and markers of bone metabolism were measured at week 1. Injuries during training were recorded. Training decreased Hb in men and women (mean change (-0·1 (95 % CI -0·2, -0·0) and -0·7 (95 % CI -0·9, -0·6) g/dl, both P < 0·001) but more so in women (P < 0·001). Ferritin decreased in men and women (-27 (95 % CI -28, -23) and -5 (95 % CI -8, -1) µg/l, both P ≤ 0·001) but more so in men (P < 0·001). Soluble transferrin receptor increased in men and women (2·9 (95 % CI 2·3, 3·6) and 3·8 (95 % CI 2·7, 4·9) nmol/l, both P < 0·001), with no difference between sexes (P = 0·872). Erythrocyte distribution width increased in men (0·3 (95 % CI 0·2, 0·4)%, P < 0·001) but not in women (0·1 (95 % CI -0·1, 0·2)%, P = 0·956). Mean corpuscular volume decreased in men (-1·5 (95 % CI -1·8, -1·1) fL, P < 0·001) but not in women (0·4 (95 % CI -0·4, 1·3) fL, P = 0·087). Lower ferritin was associated with slower 2·4 km run time (P = 0·018), sustaining a lower limb overuse injury (P = 0·048), lower aBMD (P = 0·021) and higher beta C-telopeptide cross-links of type 1 collagen and procollagen type 1 N-terminal propeptide (both P < 0·001) controlling for sex. Improving Fe stores before training may protect Hb in women and improve endurance and protect against injury.
Collapse
Affiliation(s)
- Thomas J. O’Leary
- Army Health and Performance Research, Army Headquarters, Andover, MA, UK
- Division of Surgery and Interventional Science, UCL, London, UK
| | - Sarah Jackson
- Army Health and Performance Research, Army Headquarters, Andover, MA, UK
| | - Rachel M. Izard
- Defence Science and Technology, Ministry of Defence, Porton Down, Porton, UK
| | - Neil P. Walsh
- Faculty of Science, Liverpool John Moores University, Liverpool, UK
| | | | - Alexander T. Carswell
- Norwich Medical School, University of East Anglia, Norwich, UK
- School of Health Sciences, University of East Anglia, Norwich, UK
| | | | - Jonathan C. Y. Tang
- Norwich Medical School, University of East Anglia, Norwich, UK
- Norfolk and Norwich University Hospital, Norwich, UK
| | - William D. Fraser
- Norwich Medical School, University of East Anglia, Norwich, UK
- Norfolk and Norwich University Hospital, Norwich, UK
| | - Julie P. Greeves
- Army Health and Performance Research, Army Headquarters, Andover, MA, UK
- Division of Surgery and Interventional Science, UCL, London, UK
- Norwich Medical School, University of East Anglia, Norwich, UK
| |
Collapse
|
3
|
Anderson RE, Casperson SL, Kho H, Flack KD. The Role of Dietary Protein in Body Weight Regulation among Active-Duty Military Personnel during Energy Deficit: A Systematic Review. Nutrients 2023; 15:3948. [PMID: 37764730 PMCID: PMC10536394 DOI: 10.3390/nu15183948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/06/2023] [Accepted: 09/09/2023] [Indexed: 09/29/2023] Open
Abstract
Active-duty military personnel are subjected to sustained periods of energy deficit during combat and training, leaving them susceptible to detrimental reductions in body weight. The importance of adequate dietary protein intake during periods of intense physical training is well established, where previous research has primarily focused on muscle protein synthesis, muscle recovery, and physical performance. Research on how protein intake may influence body weight regulation in this population is lacking; therefore, the objective of this review was to evaluate the role of dietary protein in body weight regulation among active-duty military during an energy deficit. A literature search based on fixed inclusion and exclusion criteria was performed. English language peer-reviewed journal articles from inception to 3 June 2023 were selected for extraction and quality assessment. Eight studies were identified with outcomes described narratively. The study duration ranged from eight days to six months. Protein was directly provided to participants in all studies except for one. Three studies supplied additional protein via supplementation. The Downs and Black Checklist was used to assess study quality. Five studies were classified as good, two as fair, and one as excellent. All studies reported mean weight loss following energy deficit: the most severe was 4.0 kg. Protein dose during energy deficit varied from 0.5 g/kg/day to 2.4 g/kg/day. Six studies reported mean reductions in fat mass, with the largest being 4.5 kg. Four studies reported mean reductions in fat-free mass, while two studies reported an increase. Results support the recommendation that greater than 0.8 g/kg/day is necessary to mitigate the impact of energy deficit on a decline in lean body mass, while intakes up to 1.6 g/kg/day may be preferred. However, exact recommendations cannot be inferred as the severity and duration of energy deficit varied across studies. Longer and larger investigations are needed to elucidate protein's role during energy deficit in active-duty military.
Collapse
Affiliation(s)
- Robert E. Anderson
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27517, USA
| | - Shanon L. Casperson
- Grand Forks Human Nutrition Research Center, Agricultural Research Service, U.S. Department of Agriculture, Grand Forks, ND 58203, USA
| | - Hannah Kho
- Department of Dietetics and Human Nutrition, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY 40506, USA
| | - Kyle D. Flack
- Department of Dietetics and Human Nutrition, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY 40506, USA
| |
Collapse
|
4
|
Beckner ME, Thompson L, Radcliffe PN, Cherian R, Wilson M, Barringer N, Margolis LM, Karl JP. Sex differences in body composition and serum metabolome responses to sustained, physical training suggest enhanced fat oxidation in women compared with men. Physiol Genomics 2023; 55:235-247. [PMID: 37012051 PMCID: PMC10190831 DOI: 10.1152/physiolgenomics.00180.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 03/02/2023] [Accepted: 03/28/2023] [Indexed: 04/05/2023] Open
Abstract
Sex differences in energy metabolism during acute, submaximal exercise are well documented. Whether these sex differences influence metabolic and physiological responses to sustained, physically demanding activities is not well characterized. This study aimed to identify sex differences within changes in the serum metabolome in relation to changes in body composition, physical performance, and circulating markers of endocrine and metabolic status during a 17-day military training exercise. Blood was collected, and body composition and lower body power were measured before and after the training on 72 cadets (18 women). Total daily energy expenditure (TDEE) was assessed using doubly labeled water in a subset throughout. TDEE was greater in men (4,085 ± 482 kcal/d) than in women (2,982 ± 472 kcal/d, P < 0.001), but not after adjustment for dry lean mass (DLM). Men tended to lose more DLM than women (mean change [95% CI]: -0.2[-0.3, -0.1] vs. -0.0[-0.0, 0.0] kg, P = 0.063, Cohen's d = 0.50) and have greater reductions in lower body power (-244[-314, -174] vs. -130[-209, -51] W, P = 0.085, d = 0.49). Reductions in DLM and lower body power were correlated (r = 0.325, P = 0.006). Women demonstrated greater fat oxidation than men (Δfat mass/DLM: -0.20[-0.24, -0.17] vs. -0.15[-0.17, -0.13] kg, P = 0.012, d = 0.64). Metabolites within pathways of fatty acid, endocannabinoid, lysophospholipid, phosphatidylcholine, phosphatidylethanolamine, and plasmalogen metabolism increased in women relative to men. Independent of sex, changes in metabolites related to lipid metabolism were inversely associated with changes in body mass and positively associated with changes in endocrine and metabolic status. These data suggest that during sustained military training, women preferentially mobilize fat stores compared with men, which may be beneficial for mitigating loss of lean mass and lower body power.NEW & NOTEWORTHY Women preferentially mobilize fat stores compared with men in response to sustained, physically demanding military training, as evidenced by increased lipid metabolites and enhanced fat oxidation, which may be beneficial for mitigating loss of lean mass and lower body power.
Collapse
Affiliation(s)
- Meaghan E Beckner
- U.S. Army Research Institute of Environmental Medicine, Natick, Massachusetts, United States
- Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee, United States
| | - Lauren Thompson
- U.S. Army Research Institute of Environmental Medicine, Natick, Massachusetts, United States
| | - Patrick N Radcliffe
- U.S. Army Research Institute of Environmental Medicine, Natick, Massachusetts, United States
- Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee, United States
| | - Rebecca Cherian
- U.S. Army Research Institute of Environmental Medicine, Natick, Massachusetts, United States
| | - Marques Wilson
- U.S. Army Research Institute of Environmental Medicine, Natick, Massachusetts, United States
| | - Nicholas Barringer
- Medical Center of Excellence, Joint Base San Antonio-Fort Sam Houston, Texas, United States
| | - Lee M Margolis
- U.S. Army Research Institute of Environmental Medicine, Natick, Massachusetts, United States
| | - J Philip Karl
- U.S. Army Research Institute of Environmental Medicine, Natick, Massachusetts, United States
| |
Collapse
|
5
|
Gwin JA, Hatch-McChesney A, Pitts KP, O'Brien RP, Karis AJ, Carrigan CT, McClung JP, Karl JP, Margolis LM. Initial military training modulates serum fatty acid and amino acid metabolites. Physiol Rep 2022; 10:e15385. [PMID: 35818300 PMCID: PMC9273871 DOI: 10.14814/phy2.15385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/21/2022] [Accepted: 06/26/2022] [Indexed: 11/24/2022] Open
Abstract
Initial military training (IMT) results in increased fat-free mass (FFM) and decreased fat mass (FM). The underlying metabolic adaptations facilitating changes in body composition during IMT are unknown. The objective of this study was to assess changes in body composition and the serum metabolome during 22-week US Army IMT. Fifty-four volunteers (mean ± SD; 22 ± 3 year; 24.6 ± 3.7 kg/m2 ) completed this longitudinal study. Body composition measurements (InBody 770) and blood samples were collected under fasting, rested conditions PRE and POST IMT. Global metabolite profiling was performed to identify metabolites involved in energy, carbohydrate, lipid, and protein metabolism (Metabolon, Inc.). There was no change in body mass (POST-PRE; 0.4 ± 5.1 kg, p = 0.59), while FM decreased (-1.7 ± 3.5 kg, p < 0.01), and FFM increased (2.1 ± 2.8 kg, p < 0.01) POST compared to PRE IMT. Of 677 identified metabolites, 340 differed at POST compared to PRE (p < 0.05, Q < 0.10). The majority of these metabolites were related to fatty acid (73%) and amino acid (26%) metabolism. Increases were detected in 41% of branched-chain amino acid metabolites, 53% of histidine metabolites, and 35% of urea cycle metabolites. Decreases were detected in 93% of long-chain fatty acid metabolites, while 58% of primary bile acid metabolites increased. Increases in amino acid metabolites suggest higher rates of protein turnover, while changes in fatty acid metabolites indicate increased fat oxidation, which likely contribute changes in body composition during IMT. Overall, changes in metabolomics profiles provide insight into metabolic adaptions underlying changes in body composition during IMT.
Collapse
Affiliation(s)
- Jess A Gwin
- U.S. Army Research Institute of Environmental Medicine, Natick, Massachusetts, USA
| | | | - Kenneth P Pitts
- U.S. Army Research Institute for the Behavioral and Social Sciences, Fort Benning, Georgia, USA
| | - Rory P O'Brien
- U.S. Army Maneuver Center of Excellence, Fort Benning, Georgia, USA
| | - Anthony J Karis
- U.S. Army Research Institute of Environmental Medicine, Natick, Massachusetts, USA
| | | | - James P McClung
- U.S. Army Research Institute of Environmental Medicine, Natick, Massachusetts, USA
| | - J Philip Karl
- U.S. Army Research Institute of Environmental Medicine, Natick, Massachusetts, USA
| | - Lee M Margolis
- U.S. Army Research Institute of Environmental Medicine, Natick, Massachusetts, USA
| |
Collapse
|