1
|
Ali RA, Mehdi AM, Rothnagel R, Hamilton NA, Gerle C, Landsberg MJ, Hankamer B. RAZA: A Rapid 3D z-crossings algorithm to segment electron tomograms and extract organelles and macromolecules. J Struct Biol 2017; 200:73-86. [PMID: 29032142 DOI: 10.1016/j.jsb.2017.10.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 10/06/2017] [Accepted: 10/09/2017] [Indexed: 11/30/2022]
Abstract
Resolving the 3D architecture of cells to atomic resolution is one of the most ambitious challenges of cellular and structural biology. Central to this process is the ability to automate tomogram segmentation to identify sub-cellular components, facilitate molecular docking and annotate detected objects with associated metadata. Here we demonstrate that RAZA (Rapid 3D z-crossings algorithm) provides a robust, accurate, intuitive, fast, and generally applicable segmentation algorithm capable of detecting organelles, membranes, macromolecular assemblies and extrinsic membrane protein domains. RAZA defines each continuous contour within a tomogram as a discrete object and extracts a set of 3D structural fingerprints (major, middle and minor axes, surface area and volume), enabling selective, semi-automated segmentation and object extraction. RAZA takes advantage of the fact that the underlying algorithm is a true 3D edge detector, allowing the axes of a detected object to be defined, independent of its random orientation within a cellular tomogram. The selectivity of object segmentation and extraction can be controlled by specifying a user-defined detection tolerance threshold for each fingerprint parameter, within which segmented objects must fall and/or by altering the number of search parameters, to define morphologically similar structures. We demonstrate the capability of RAZA to selectively extract subgroups of organelles (mitochondria) and macromolecular assemblies (ribosomes) from cellular tomograms. Furthermore, the ability of RAZA to define objects and their contours, provides a basis for molecular docking and rapid tomogram annotation.
Collapse
Affiliation(s)
- Rubbiya A Ali
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Ahmed M Mehdi
- Translational Research Institute, University of Queensland Diamantina Institute, Brisbane, QLD, Australia; Department of Electrical Engineering, University of Engineering and Technology, Lahore, Punjab, Pakistan
| | - Rosalba Rothnagel
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Nicholas A Hamilton
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Christoph Gerle
- Picobiology Institute, Department of Life Science, Graduate School of Life Science, University of Hyogo, Kamigori, Japan; Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Kawaguchi, Japan
| | - Michael J Landsberg
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia; School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Ben Hankamer
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia.
| |
Collapse
|
2
|
GraDeR: Membrane Protein Complex Preparation for Single-Particle Cryo-EM. Structure 2015; 23:1769-1775. [DOI: 10.1016/j.str.2015.06.029] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 06/02/2015] [Accepted: 06/04/2015] [Indexed: 12/21/2022]
|
3
|
Jiko C, Davies KM, Shinzawa-Itoh K, Tani K, Maeda S, Mills DJ, Tsukihara T, Fujiyoshi Y, Kühlbrandt W, Gerle C. Bovine F1Fo ATP synthase monomers bend the lipid bilayer in 2D membrane crystals. eLife 2015; 4:e06119. [PMID: 25815585 PMCID: PMC4413875 DOI: 10.7554/elife.06119] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 03/26/2015] [Indexed: 01/06/2023] Open
Abstract
We have used a combination of electron cryo-tomography, subtomogram averaging, and electron crystallographic image processing to analyse the structure of intact bovine F1Fo ATP synthase in 2D membrane crystals. ATPase assays and mass spectrometry analysis of the 2D crystals confirmed that the enzyme complex was complete and active. The structure of the matrix-exposed region was determined at 24 Å resolution by subtomogram averaging and repositioned into the tomographic volume to reveal the crystal packing. F1Fo ATP synthase complexes are inclined by 16° relative to the crystal plane, resulting in a zigzag topology of the membrane and indicating that monomeric bovine heart F1Fo ATP synthase by itself is sufficient to deform lipid bilayers. This local membrane curvature is likely to be instrumental in the formation of ATP synthase dimers and dimer rows, and thus for the shaping of mitochondrial cristae. DOI:http://dx.doi.org/10.7554/eLife.06119.001 Cells use a molecule called adenosine triphosphate (or ATP for short) to power many processes that are vital for life. Animals, plants, and fungi primarily make their ATP in a specialised compartment called the mitochondrion, which is found inside their cells. The mitochondrion is often referred to as the powerhouse of cells as it captures and stores the energy that animals gain from eating food in the molecule ATP. Other enzymes in the cell break apart ATP to release the stored energy, which they use to power various cellular processes. The interior architecture of the mitochondrion includes a highly folded inner membrane where electrical energy is transformed into chemical energy. The tight folding of the inner membrane is thought to make this process more efficient. An enzyme named ATP synthase performs the final steps of the energy transformation process by producing ATP (ATP synthase literally means ‘ATP maker’). This enzyme sits in pairs along the edges of the inner membrane folds. This raises the question: does the ATP synthase cause the membrane to fold or does this enzyme just ‘prefer’ these folded edges (which are instead caused by something else inside the mitochondrion)? To investigate this question, Jiko, Davies et al. extracted ATP synthase from the mitochondria of cow hearts and mixed them with modified fat molecules to form a ‘2D membrane crystal’: a membrane containing an ordered pattern of enzymes. An electron microscope was used to generate a three-dimensional volume of the 2D membrane crystal via a process similar to a MRI or CAT scan that one might have in hospital. In the three-dimensional volume of the membrane crystal, Jiko, Davies et al. discovered that instead of being flat as expected, the membrane of the 2D membrane crystal was rippled and that this ripple was caused by the membrane-embedded part of the ATP synthase. The geometry of the ripple exactly matched half of the bend at the edge of the membrane folds in the mitochondrion. Therefore, Jiko, Davies et al. concluded that a pair of ATP synthases, as found in mitochondria, was responsible for defining the tight folds of the inner mitochondrial membrane. DOI:http://dx.doi.org/10.7554/eLife.06119.002
Collapse
Affiliation(s)
- Chimari Jiko
- Institute for Protein Research, Osaka University, Osaka, Japan
| | - Karen M Davies
- Department of Structural Biology, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| | - Kyoko Shinzawa-Itoh
- Picobiology Institute, Department of Life Science, Graduate School of Life Science, University of Hyogo, Kamigori, Japan
| | - Kazutoshi Tani
- Cellular and Structural Physiology Institute, Nagoya University, Nagoya, Japan
| | - Shintaro Maeda
- Picobiology Institute, Department of Life Science, Graduate School of Life Science, University of Hyogo, Kamigori, Japan
| | - Deryck J Mills
- Department of Structural Biology, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| | - Tomitake Tsukihara
- Picobiology Institute, Department of Life Science, Graduate School of Life Science, University of Hyogo, Kamigori, Japan
| | - Yoshinori Fujiyoshi
- Cellular and Structural Physiology Institute, Nagoya University, Nagoya, Japan
| | - Werner Kühlbrandt
- Department of Structural Biology, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| | - Christoph Gerle
- Picobiology Institute, Department of Life Science, Graduate School of Life Science, University of Hyogo, Kamigori, Japan
| |
Collapse
|
4
|
Shimada S, Shinzawa-Itoh K, Amano S, Akira Y, Miyazawa A, Tsukihara T, Tani K, Gerle C, Yoshikawa S. Three-dimensional structure of bovine heart NADH: ubiquinone oxidoreductase (complex I) by electron microscopy of a single negatively stained two-dimensional crystal. Microscopy (Oxf) 2014; 63:167-74. [PMID: 24523515 DOI: 10.1093/jmicro/dft082] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Bovine heart NADH:ubiquinone oxidoreductase (complex I), which is the largest (about 1 MDa) membrane protein complex in the mitochondrial respiratory chain, catalyzes the electron transfer from NADH to ubiquinone, coupled with proton pumping. We have crystallized bovine complex I in reconstituted lipid bilayers and obtained a three-dimensional density map by the electron crystallographic analysis of a single negatively stained two-dimensional crystal. The asymmetric unit with dimensions of a = 388 Å, b = 129 Å and γ = 90° contains two molecules and is of P1 symmetry. Structural differences between the two molecules indicate flexibility of the hydrophilic domain relative to the membrane-embedded domain.
Collapse
|
5
|
Maeda S, Shinzawa-Itoh K, Mieda K, Yamamoto M, Nakashima Y, Ogasawara Y, Jiko C, Tani K, Miyazawa A, Gerle C, Yoshikawa S. Two-dimensional crystallization of intact F-ATP synthase isolated from bovine heart mitochondria. Acta Crystallogr Sect F Struct Biol Cryst Commun 2013; 69:1368-70. [PMID: 24316832 PMCID: PMC3855722 DOI: 10.1107/s1744309113029072] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Accepted: 10/22/2013] [Indexed: 11/10/2022]
Abstract
Mitochondrial F-ATP synthase produces the majority of ATP for cellular functions requiring free energy. The structural basis for proton motive force-driven rotational catalysis of ATP formation in the holoenzyme remains to be determined. Here, the purification and two-dimensional crystallization of bovine heart mitochondrial F-ATP synthase are reported. Two-dimensional crystals of up to 1 µm in size were grown by dialysis-mediated detergent removal from a mixture of decylmaltoside-solubilized 1,2-dimyristoyl-sn-glycero-3-phosphocholine and F-ATP synthase against a detergent-free buffer. A projection map calculated from an electron micrograph of a negatively stained two-dimensional crystal revealed unit-cell parameters of a = 185.0, b = 170.3 Å, γ = 92.5°.
Collapse
Affiliation(s)
- Shintaro Maeda
- Picobiology Institute, Graduate School of Life Science, University of Hyogo, 3-2-1 Kouto, Kamigori Akoh, Hyogo 678-1297, Japan
| | - Kyoko Shinzawa-Itoh
- Picobiology Institute, Graduate School of Life Science, University of Hyogo, 3-2-1 Kouto, Kamigori Akoh, Hyogo 678-1297, Japan
| | - Kaoru Mieda
- Picobiology Institute, Graduate School of Life Science, University of Hyogo, 3-2-1 Kouto, Kamigori Akoh, Hyogo 678-1297, Japan
| | - Mami Yamamoto
- Picobiology Institute, Graduate School of Life Science, University of Hyogo, 3-2-1 Kouto, Kamigori Akoh, Hyogo 678-1297, Japan
| | - Yumiko Nakashima
- Picobiology Institute, Graduate School of Life Science, University of Hyogo, 3-2-1 Kouto, Kamigori Akoh, Hyogo 678-1297, Japan
| | - Yumi Ogasawara
- Picobiology Institute, Graduate School of Life Science, University of Hyogo, 3-2-1 Kouto, Kamigori Akoh, Hyogo 678-1297, Japan
| | - Chimari Jiko
- Institute for Protein Research, Osaka University, 3-2 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Kazutoshi Tani
- Cellular and Structural Physiology Institute, Nagoya University, Chikusa-ku, Nagoya 464-8601, Japan
| | - Atsuo Miyazawa
- Department of Life Science, Graduate School of Life Science, University of Hyogo, 3-2-1 Kouto, Kamigori Akoh, Hyogo 678-1297, Japan
| | - Christoph Gerle
- Picobiology Institute, Graduate School of Life Science, University of Hyogo, 3-2-1 Kouto, Kamigori Akoh, Hyogo 678-1297, Japan
| | - Shinya Yoshikawa
- Picobiology Institute, Graduate School of Life Science, University of Hyogo, 3-2-1 Kouto, Kamigori Akoh, Hyogo 678-1297, Japan
| |
Collapse
|
6
|
Tani K, Arthur CP, Tamakoshi M, Yokoyama K, Mitsuoka K, Fujiyoshi Y, Gerle C. Visualization of two distinct states of disassembly in the bacterial V-ATPase from Thermus thermophilus. Microscopy (Oxf) 2013; 62:467-74. [PMID: 23572213 DOI: 10.1093/jmicro/dft020] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
V-ATPases are multisubunit, membrane-bound, energy-converting, cellular machines whose assembly and disassembly is innately connected to their activity in vivo. In vitro V-ATPases show a propensity for disassembly that greatly complicates their functional, and, in particular, structural characterization. Direct structural evidence for early stages of their disassembly has not been reported yet. We analyzed the structure of the V-ATPase from Thermus thermophilus in a single negatively stained two-dimensional (2-D) crystal both by electron tomography and by electron crystallography. Our analysis demonstrated that for 2-D crystals of fragile macromolecular complexes, which are too heterogenous or too few for the merging of image data from many crystals, single-crystal 3-D reconstructions by electron tomography and electron crystallography are expedient tools of analysis. The asymmetric unit in the 2-D crystal lattice contains two different V-ATPase complexes that appear to be in an early stage of disassembly and with either one or both peripheral stalks not being visualized, suggesting the involvement of the peripheral stalks in early stages of disassembly.
Collapse
Affiliation(s)
- Kazutoshi Tani
- Cellular and Structural Physiology Institute, Nagoya University, Nagoya 464-8601, Japan
| | | | | | | | | | | | | |
Collapse
|
7
|
Boesen T, Nissen P. V for victory--a V1-ATPase structure revealed. EMBO Rep 2009; 10:1211-2. [PMID: 19834508 DOI: 10.1038/embor.2009.231] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2009] [Accepted: 09/24/2009] [Indexed: 11/09/2022] Open
Affiliation(s)
- Thomas Boesen
- Department of Molecular Biology, Aarhus University, Gustav Wieds Vej 10C, DK-8000 Aarhus C, Denmark
| | | |
Collapse
|
8
|
Massover WH. On the experimental use of light metal salts for negative staining. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2008; 14:126-137. [PMID: 18312717 DOI: 10.1017/s1431927608080033] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2007] [Accepted: 07/21/2007] [Indexed: 05/26/2023]
Abstract
All common negative stains are salts of heavy metals. To remedy several technical defects inherent in the use of heavy metal compounds, this study investigates whether salts of the light metals sodium, magnesium, and aluminum can function as negative stains. Screening criteria require aqueous solubility at pH 7.0, formation of a smooth amorphous layer upon drying, and transmission electron microscope imaging of the 87-A (8.7-nm) lattice periodicity in thin catalase crystals. Six of 23 salts evaluated pass all three screens; detection of the protein shell in ferritin macromolecules indicates that light metal salts also provide negative staining of single particle specimens. Appositional contrast is less than that given by heavy metal negative stains; image density can be raised by increasing electron phase contrast and by selecting salts with phosphate or sulfate anions, thereby adding strong scattering from P or S atoms. Low-dose electron diffraction of catalase crystals negatively stained with 200 mM magnesium sulfate shows Bragg spots extending out to 4.4 A. Future experimental use of sodium phosphate buffer and magnesium sulfate for negative staining is anticipated, particularly in designing new cocktail (multicomponent) negative stains able to support and protect protein structure to higher resolution levels than are currently achieved.
Collapse
Affiliation(s)
- William H Massover
- Department of Biological Sciences, Rutgers University-Newark, Newark, NJ 07102, USA.
| |
Collapse
|
9
|
Transport ATPases into the year 2008: a brief overview related to types, structures, functions and roles in health and disease. J Bioenerg Biomembr 2008; 39:349-55. [DOI: 10.1007/s10863-007-9123-9] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|