1
|
Li D, Wang Y, Zhu S, Hu X, Liang R. Recombinant fibrous protein biomaterials meet skin tissue engineering. Front Bioeng Biotechnol 2024; 12:1411550. [PMID: 39205856 PMCID: PMC11349559 DOI: 10.3389/fbioe.2024.1411550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 07/30/2024] [Indexed: 09/04/2024] Open
Abstract
Natural biomaterials, particularly fibrous proteins, are extensively utilized in skin tissue engineering. However, their application is impeded by batch-to-batch variance, limited chemical or physical versatility, and environmental concerns. Recent advancements in gene editing and fermentation technology have catalyzed the emergence of recombinant fibrous protein biomaterials, which are gaining traction in skin tissue engineering. The modular and highly customizable nature of recombinant synthesis enables precise control over biomaterial design, facilitating the incorporation of multiple functional motifs. Additionally, recombinant synthesis allows for a transition from animal-derived sources to microbial sources, thereby reducing endotoxin content and rendering recombinant fibrous protein biomaterials more amenable to scalable production and clinical use. In this review, we provide an overview of prevalent recombinant fibrous protein biomaterials (collagens, elastin, silk proteins and their chimeric derivatives) used in skin tissue engineering (STE) and compare them with their animal-derived counterparts. Furthermore, we discuss their applications in STE, along with the associated challenges and future prospects.
Collapse
Affiliation(s)
- Dipeng Li
- Hangzhou Ninth People’s Hospital, Hangzhou, China
| | - Yirong Wang
- Hangzhou Singclean Medical Products Co., Ltd., Hangzhou, China
| | - Shan Zhu
- Hangzhou Singclean Medical Products Co., Ltd., Hangzhou, China
| | - Xuezhong Hu
- Affiliated Cixi Hospital, Wenzhou Medical University, Ningbo, China
| | - Renjie Liang
- Hangzhou Ninth People’s Hospital, Hangzhou, China
- Hangzhou Singclean Medical Products Co., Ltd., Hangzhou, China
- School of Medicine, Southeast University, Nanjing, China
| |
Collapse
|
2
|
Ritter DJ, Choudhary D, Unlu G, Knapik EW. Rgp1 contributes to craniofacial cartilage development and Rab8a-mediated collagen II secretion. Front Endocrinol (Lausanne) 2023; 14:1120420. [PMID: 36843607 PMCID: PMC9947155 DOI: 10.3389/fendo.2023.1120420] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 01/24/2023] [Indexed: 02/11/2023] Open
Abstract
Rgp1 was previously identified as a component of a guanine nucleotide exchange factor (GEF) complex to activate Rab6a-mediated trafficking events in and around the Golgi. While the role of Rgp1 in protein trafficking has been examined in vitro and in yeast, the role of Rgp1 during vertebrate embryogenesis and protein trafficking in vivo is unknown. Using genetic, CRISPR-induced zebrafish mutants for Rgp1 loss-of-function, we found that Rgp1 is required for craniofacial cartilage development. Within live rgp1-/- craniofacial chondrocytes, we observed altered movements of Rab6a+ vesicular compartments, consistent with a conserved mechanism described in vitro. Using transmission electron microscopy (TEM) and immunofluorescence analyses, we show that Rgp1 plays a role in the secretion of collagen II, the most abundant protein in cartilage. Our overexpression experiments revealed that Rab8a is a part of the post-Golgi collagen II trafficking pathway. Following loss of Rgp1, chondrocytes activate an Arf4b-mediated stress response and subsequently respond with nuclear DNA fragmentation and cell death. We propose that an Rgp1-regulated Rab6a-Rab8a pathway directs secretion of ECM cargoes such as collagen II, a pathway that may also be utilized in other tissues where coordinated trafficking and secretion of collagens and other large cargoes is required for normal development and tissue function.
Collapse
Affiliation(s)
- Dylan J. Ritter
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, United States
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Dharmendra Choudhary
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Gokhan Unlu
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, United States
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Ela W. Knapik
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, United States
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| |
Collapse
|
3
|
Xu J, Luo X, Zhang Y, Gao J, Huang CC, Bai X, Zhang G. Extraction and characterization of bovine collagen Type V and its effects on cell behaviors. Regen Biomater 2022; 9:rbac028. [PMID: 35719205 PMCID: PMC9201972 DOI: 10.1093/rb/rbac028] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 04/13/2022] [Accepted: 04/20/2022] [Indexed: 11/28/2022] Open
Abstract
Collagen Type V (Col. V) plays an essential role in cell behaviors and has attracted increasing attention in recent years. High-purity Col. V is needed for evaluating its biological properties. In this research, the enzymatic hydrolysis process was combined with ultrafiltration to purify Col. V from the bovine cornea. The purity of Col. V was determined to be above 90% by both sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and high-performance liquid chromatography methods. The effect of Col. V on cell behaviors was evaluated. The circular dichroism spectroscopy results demonstrated that the extracted Col. V exhibited a complete triple helix structure. SDS-PAGE suggested that the molecular weight of Col. V was 440 kDa. The self-assembly experiment revealed that the proportion of Col. V in the collagen mixture can affect the Col. I fiber diameter. The cell culture results implied that Col. V can inhibit fibroblasts (L929) proliferation. The L929 showed maximum mobility when the addition of Col. V was 30%. Thus, Col. V has the effect of inhibiting L929 proliferation and promoting migration. The high-purity Col. V provides useful information for further understanding its biological implications.
Collapse
Affiliation(s)
- Jun Xu
- College of Food Science and Engineering, Engineering Research Center of Utilization of Tropical Polysaccharide Resources, Ministry of Education, Hainan University, Haikou 570228, China
- PARSD Biomedical Material Research Center (Changzhou), Changzhou 213176, China
| | - Xi Luo
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, CAS, Beijing 100190, China
| | - Yang Zhang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, CAS, Beijing 100190, China
| | - Jianping Gao
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, CAS, Beijing 100190, China
| | - Ching-Cheng Huang
- PARSD Biomedical Material Research Center (Changzhou), Changzhou 213176, China
- Department of Biomedical Engineering, Ming-Chuan University, 32033 Taiwan, China
| | - Xinpeng Bai
- College of Food Science and Engineering, Engineering Research Center of Utilization of Tropical Polysaccharide Resources, Ministry of Education, Hainan University, Haikou 570228, China
- PARSD Biomedical Material Research Center (Changzhou), Changzhou 213176, China
| | - Guifeng Zhang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, CAS, Beijing 100190, China
| |
Collapse
|
4
|
Jensen MM, Bonna A, Frederiksen SJ, Hamaia SW, Højrup P, Farndale RW, Karring H. Tyrosine-sulfated dermatopontin shares multiple binding sites and recognition determinants on triple-helical collagens with proteins implicated in cell adhesion and collagen folding, fibrillogenesis, cross-linking, and degradation. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2022; 1870:140771. [PMID: 35306228 DOI: 10.1016/j.bbapap.2022.140771] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 03/09/2022] [Accepted: 03/13/2022] [Indexed: 06/14/2023]
Abstract
Dermatopontin (DPT), a small extracellular matrix protein that stimulates collagen fibrillogenesis, contains sulfotyrosine residues but neither its level of sulfation nor its binding sites on fibrillar collagens are known. Here, we discovered that DPT is present in a relatively high mass concentration (~ 0.02%) in porcine corneal stroma, from which we purified five DPT charge variants (A-E) containing up to six sulfations. The major variant (C), containing four sulfotyrosine residues, was used to locate binding sites for DPT on triple-helical collagens II and III using the Collagen Toolkits. DPT-binding loci included the triple helix crosslinking sites and collagenase cleavage site. We find that strong DPT-binding sites on triple-helical collagen comprise an arginine-rich, positively-charged sequence that also contains hydrophobic residues. This collagen-binding signature of DPT is similar to that of the chaperone HSP47. Thus, we propose that DPT assumes the role of HSP47 as a collagen chaperone during and after the secretion. Peptide II-44, harbouring the conserved collagenase cleavage site, shows the strongest DPT-binding of the Collagen Toolkit II peptides. Substituting any of the three arginine residues (R) with alanine in the sequence GLAGQRGIVGLOGQRGER of II-44 resulted in almost complete loss of DPT binding. Since osteogenesis imperfecta, spondyloepiphyseal dysplasia, and spondyloepimetaphyseal dysplasia congenita are associated with missense mutations that substitute the corresponding arginine residues in collagens alpha-1(I) and alpha-1(II), we suggest that disrupted DPT binding to fibrillar collagens may contribute to these connective tissue disorders. In conclusion, the present work provides a cornerstone for further elucidation of the role of DPT.
Collapse
Affiliation(s)
- Morten M Jensen
- Department of Green Technology, University of Southern Denmark, 5230 Odense, Denmark
| | - Arkadiusz Bonna
- Department of Biochemistry, Downing Site, University of Cambridge, Cambridge CB2 1QW, United Kingdom
| | - Sigurd J Frederiksen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense, Denmark
| | - Samir W Hamaia
- Department of Biochemistry, Downing Site, University of Cambridge, Cambridge CB2 1QW, United Kingdom
| | - Peter Højrup
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense, Denmark
| | - Richard W Farndale
- Department of Biochemistry, Downing Site, University of Cambridge, Cambridge CB2 1QW, United Kingdom
| | - Henrik Karring
- Department of Green Technology, University of Southern Denmark, 5230 Odense, Denmark.
| |
Collapse
|
5
|
Fertala A. Three Decades of Research on Recombinant Collagens: Reinventing the Wheel or Developing New Biomedical Products? Bioengineering (Basel) 2020; 7:E155. [PMID: 33276472 PMCID: PMC7712652 DOI: 10.3390/bioengineering7040155] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/16/2020] [Accepted: 11/23/2020] [Indexed: 02/07/2023] Open
Abstract
Collagens provide the building blocks for diverse tissues and organs. Furthermore, these proteins act as signaling molecules that control cell behavior during organ development, growth, and repair. Their long half-life, mechanical strength, ability to assemble into fibrils and networks, biocompatibility, and abundance from readily available discarded animal tissues make collagens an attractive material in biomedicine, drug and food industries, and cosmetic products. About three decades ago, pioneering experiments led to recombinant human collagens' expression, thereby initiating studies on the potential use of these proteins as substitutes for the animal-derived collagens. Since then, scientists have utilized various systems to produce native-like recombinant collagens and their fragments. They also tested these collagens as materials to repair tissues, deliver drugs, and serve as therapeutics. Although many tests demonstrated that recombinant collagens perform as well as their native counterparts, the recombinant collagen technology has not yet been adopted by the biomedical, pharmaceutical, or food industry. This paper highlights recent technologies to produce and utilize recombinant collagens, and it contemplates their prospects and limitations.
Collapse
Affiliation(s)
- Andrzej Fertala
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Curtis Building, Room 501, 1015 Walnut Street, Philadelphia, PA 19107, USA
| |
Collapse
|
6
|
Abstract
Peripheral nerve injuries (PNI) resulting from trauma can be severe and permanently debilitating. Despite the armamentarium of meticulous microsurgical repair techniques that includes direct repair, grafting of defects with autograft nerve, and grafting with cadaveric allografts, approximately one-third of all PNI demonstrate incomplete recovery with poor restoration of function. This may include total loss or incomplete recovery of motor and/or sensory function, chronic pain, muscle atrophy, and profound weakness, which can result in lifelong morbidity. Much of this impaired nerve healing can be attributed to perineural scarring and fibrosis at the site of injury and repair. To date, this challenging clinical problem has not been adequately addressed. In this review, we summarize the existing literature surrounding biological aspects of perineural fibrosis following PNI, detail current strategies to limit nerve scarring, present our own work developing reliable nerve injury models in animal studies, and discuss potential future studies which may ultimately lead to new therapeutic strategies.
Collapse
Affiliation(s)
- Mark L Wang
- a Department of Orthopaedic Surgery, Sidney Kimmel Medical School , Thomas Jefferson University , Philadelphia , PA , USA.,b Hand Surgery Division , The Rothman Institute, at Thomas Jefferson University , Philadelphia , PA , USA
| | - Michael Rivlin
- a Department of Orthopaedic Surgery, Sidney Kimmel Medical School , Thomas Jefferson University , Philadelphia , PA , USA.,b Hand Surgery Division , The Rothman Institute, at Thomas Jefferson University , Philadelphia , PA , USA
| | - Jack G Graham
- a Department of Orthopaedic Surgery, Sidney Kimmel Medical School , Thomas Jefferson University , Philadelphia , PA , USA
| | - Pedro K Beredjiklian
- a Department of Orthopaedic Surgery, Sidney Kimmel Medical School , Thomas Jefferson University , Philadelphia , PA , USA.,b Hand Surgery Division , The Rothman Institute, at Thomas Jefferson University , Philadelphia , PA , USA
| |
Collapse
|
7
|
Banerjee J, Azevedo HS. Crafting of functional biomaterials by directed molecular self-assembly of triple helical peptide building blocks. Interface Focus 2017; 7:20160138. [PMID: 29147553 PMCID: PMC5665793 DOI: 10.1098/rsfs.2016.0138] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Collagen is the most abundant extracellular matrix protein in the body and has widespread use in biomedical research, as well as in clinics. In addition to difficulties in the production of recombinant collagen due to its high non-natural imino acid content, animal-derived collagen imposes several major drawbacks-variability in composition, immunogenicity, pathogenicity and difficulty in sequence modification-that may limit its use in the practical scenario. However, in recent years, scientists have shifted their attention towards developing synthetic collagen-like materials from simple collagen model triple helical peptides to eliminate the potential drawbacks. For this purpose, it is highly desirable to develop programmable self-assembling strategies that will initiate the hierarchical self-assembly of short peptides into large-scale macromolecular assemblies with recommendable bioactivity. Herein, we tried to elaborate our understanding related to the strategies that have been adopted by few research groups to trigger self-assembly in the triple helical peptide system producing fascinating supramolecular structures. We have also touched upon the major epitopes within collagen that can be incorporated into collagen mimetic peptides for promoting bioactivity.
Collapse
Affiliation(s)
| | - Helena S. Azevedo
- School of Engineering and Material Science, Institute of Bioengineering, University of London, Queen Mary, Mile End Road, London E1 4NS, UK
| |
Collapse
|
8
|
de Andrade Rosa I, Caruso MB, de Oliveira Santos E, Gonzaga L, Zingali RB, de Vasconcelos ATR, de Souza W, Benchimol M. The costa of trichomonads: A complex macromolecular cytoskeleton structure made of uncommon proteins. Biol Cell 2017; 109:238-253. [PMID: 28369980 DOI: 10.1111/boc.201600050] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 03/24/2017] [Accepted: 03/27/2017] [Indexed: 11/30/2022]
Abstract
BACKGROUND INFORMATION The costa is a prominent striated fibre that is found in protozoa of the Trichomonadidae family that present an undulating membrane. It is composed primarily of proteins that have not yet been explored. In this study, we used cell fractionation to obtain a highly enriched costa fraction whose structure and composition was further analysed by electron microscopy and mass spectrometry. RESULTS Electron microscopy of negatively stained samples revealed that the costa, which is a periodic structure with alternating electron-dense and electron-lucent bands, displays three distinct regions, named the head, neck and body. Fourier transform analysis showed that the electron-lucent bands present sub-bands with a regular pattern. An analysis of the costa fraction via one- and two-dimensional electrophoresis and liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) allowed the identification of 54 hypothetical proteins. Fourteen of those proteins were considered to be major components of the fraction. CONCLUSIONS The costa of T. foetus is a complex and organised cytoskeleton structure made of a large number of proteins which is assembled into filamentous structures. Some of these proteins exhibit uncharacterised domains and no function related according to gene ontology, suggesting that the costa structure may be formed by a new class of proteins that differ from those previously described in other organisms. Seven of these proteins contain prefoldin domains displaying coiled-coil regions. This propriety is shared with proteins of the striated fibres of other protozoan as well as in intermediate filaments. SIGNIFICANCE Our observations suggest the presence of a new class of the cytoskeleton filaments in T. foetus. We believe that our data could auxiliate in determining the specific locations of these proteins in the distinct regions that compose the costa, as well as to define the functional roles of each component. Therefore, our study will help in the better understanding of the organisation and function of this structure in unicellular organisms.
Collapse
Affiliation(s)
- Ivone de Andrade Rosa
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Instituto Nacional de Metrologia, Qualidade e Tecnologia, Inmetro, Rio de Janeiro, Brazil
| | - Marjolly Brigido Caruso
- Unidade de Espectrometria de Massas e Proteômica, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Eidy de Oliveira Santos
- Instituto Nacional de Metrologia, Qualidade e Tecnologia, Inmetro, Rio de Janeiro, Brazil.,UEZO-Universidade Estadual da Zona Oeste, Rio de Janeiro, Brazil
| | - Luiz Gonzaga
- Laboratório Nacional de Computação Cientifica (LNCC/MCT), Petrópolis, Rio de Janeiro, Brazil
| | - Russolina Benedeta Zingali
- Unidade de Espectrometria de Massas e Proteômica, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Instituto Nacional de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Wanderley de Souza
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Instituto Nacional de Metrologia, Qualidade e Tecnologia, Inmetro, Rio de Janeiro, Brazil.,Instituto Nacional de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marlene Benchimol
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Instituto Nacional de Metrologia, Qualidade e Tecnologia, Inmetro, Rio de Janeiro, Brazil.,Instituto Nacional de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,UNIGRANRIO-Universidade do Grande Rio, Caxias, Rio de Janeiro, Brazil
| |
Collapse
|
9
|
Abstract
There is a great deal of interest in obtaining recombinant collagen as an alternative source of material for biomedical applications and as an approach for obtaining basic structural and biological information. However, application of recombinant technology to collagen presents challenges, most notably the need for post-translational hydroxylation of prolines for triple-helix stability. Full length recombinant human collagens have been successfully expressed in cell lines, yeast, and several plant systems, while collagen fragments have been expressed in E. coli. In addition, bacterial collagen-like proteins can be expressed in high yields in E. coli and easily manipulated to incorporate biologically active sequences from human collagens. These expression systems allow manipulation of biologically active sequences within collagen, which has furthered our understanding of the relationships between collagen sequences, structure and function. Here, recombinant studies on collagen interactions with cell receptors, extracellular matrix proteins, and matrix metalloproteinases are reviewed, and discussed in terms of their potential biomaterial and biomedical applications.
Collapse
Affiliation(s)
- Barbara Brodsky
- Department of Biomedical Engineering, Tufts University, Medford, MA, USA.
| | - John A M Ramshaw
- CSIRO Manufacturing, Bayview Avenue, Clayton, VIC, 3169, Australia
| |
Collapse
|
10
|
Kalamajski S, Bihan D, Bonna A, Rubin K, Farndale RW. Fibromodulin Interacts with Collagen Cross-linking Sites and Activates Lysyl Oxidase. J Biol Chem 2016; 291:7951-60. [PMID: 26893379 PMCID: PMC4825002 DOI: 10.1074/jbc.m115.693408] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Indexed: 11/28/2022] Open
Abstract
The hallmark of fibrotic disorders is a highly cross-linked and dense collagen matrix, a property driven by the oxidative action of lysyl oxidase. Other fibrosis-associated proteins also contribute to the final collagen matrix properties, one of which is fibromodulin. Its interactions with collagen affect collagen cross-linking, packing, and fibril diameter. We investigated the possibility that a specific relationship exists between fibromodulin and lysyl oxidase, potentially imparting a specific collagen matrix phenotype. We mapped the fibromodulin-collagen interaction sites using the collagen II and III Toolkit peptide libraries. Fibromodulin interacted with the peptides containing the known collagen cross-linking sites and the MMP-1 cleavage site in collagens I and II. Interestingly, the interaction sites are closely aligned within the quarter-staggered collagen fibril, suggesting a multivalent interaction between fibromodulin and several collagen helices. Furthermore, we detected an interaction between fibromodulin and lysyl oxidase (a major collagen cross-linking enzyme) and mapped the interaction site to 12 N-terminal amino acids on fibromodulin. This interaction also increases the activity of lysyl oxidase. Together, the data suggest a fibromodulin-modulated collagen cross-linking mechanism where fibromodulin binds to a specific part of the collagen domain and also forms a complex with lysyl oxidase, targeting the enzyme toward specific cross-linking sites.
Collapse
Affiliation(s)
- Sebastian Kalamajski
- From the Department of Laboratory Medical Sciences, Lund University, Medicon Village 406-3, 22363 Lund, Sweden and
| | - Dominique Bihan
- the Department of Biochemistry, Downing Site, University of Cambridge, Cambridge CB2 1QW, United Kingdom
| | - Arkadiusz Bonna
- the Department of Biochemistry, Downing Site, University of Cambridge, Cambridge CB2 1QW, United Kingdom
| | - Kristofer Rubin
- From the Department of Laboratory Medical Sciences, Lund University, Medicon Village 406-3, 22363 Lund, Sweden and
| | - Richard W Farndale
- the Department of Biochemistry, Downing Site, University of Cambridge, Cambridge CB2 1QW, United Kingdom
| |
Collapse
|
11
|
Collagen interactions: Drug design and delivery. Adv Drug Deliv Rev 2016; 97:69-84. [PMID: 26631222 DOI: 10.1016/j.addr.2015.11.013] [Citation(s) in RCA: 175] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 11/19/2015] [Accepted: 11/20/2015] [Indexed: 12/25/2022]
Abstract
Collagen is a major component in a wide range of drug delivery systems and biomaterial applications. Its basic physical and structural properties, together with its low immunogenicity and natural turnover, are keys to its biocompatibility and effectiveness. In addition to its material properties, the collagen triple-helix interacts with a large number of molecules that trigger biological events. Collagen interactions with cell surface receptors regulate many cellular processes, while interactions with other ECM components are critical for matrix structure and remodeling. Collagen also interacts with enzymes involved in its biosynthesis and degradation, including matrix metalloproteinases. Over the past decade, much information has been gained about the nature and specificity of collagen interactions with its partners. These studies have defined collagen sequences responsible for binding and the high-resolution structures of triple-helical peptides bound to its natural binding partners. Strategies to target collagen interactions are already being developed, including the use of monoclonal antibodies to interfere with collagen fibril formation and the use of triple-helical peptides to direct liposomes to melanoma cells. The molecular information about collagen interactions will further serve as a foundation for computational studies to design small molecules that can interfere with specific interactions or target tumor cells. Intelligent control of collagen biological interactions within a material context will expand the effectiveness of collagen-based drug delivery.
Collapse
|
12
|
Kong X, Zhang J, Liao X, Huang X, Shi B. A facile synthesis of a highly stable superhydrophobic nanofibrous film for effective oil/water separation. RSC Adv 2016. [DOI: 10.1039/c6ra17832d] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
An oil/water separation film with excellent durability and stable recyclability is highly desired for the treatment of oil containing effluents, like industrial oily wastewater.
Collapse
Affiliation(s)
- Xian Kong
- Department of Biomass Chemistry and Engineering
- Sichuan University
- Chengdu 610065
- China
- National Engineering Laboratory for Clean Technology of Leather Manufacture
| | - Junming Zhang
- National Engineering Laboratory for Clean Technology of Leather Manufacture
- Sichuan University
- Chengdu 610065
- China
| | - Xuepin Liao
- National Engineering Laboratory for Clean Technology of Leather Manufacture
- Sichuan University
- Chengdu 610065
- China
| | - Xin Huang
- Department of Biomass Chemistry and Engineering
- Sichuan University
- Chengdu 610065
- China
- National Engineering Laboratory for Clean Technology of Leather Manufacture
| | - Bi Shi
- Department of Biomass Chemistry and Engineering
- Sichuan University
- Chengdu 610065
- China
- National Engineering Laboratory for Clean Technology of Leather Manufacture
| |
Collapse
|
13
|
Howes JM, Bihan D, Slatter DA, Hamaia SW, Packman LC, Knauper V, Visse R, Farndale RW. The recognition of collagen and triple-helical toolkit peptides by MMP-13: sequence specificity for binding and cleavage. J Biol Chem 2014; 289:24091-101. [PMID: 25008319 PMCID: PMC4148842 DOI: 10.1074/jbc.m114.583443] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Remodeling of collagen by matrix metalloproteinases (MMPs) is crucial to tissue homeostasis and repair. MMP-13 is a collagenase with a substrate preference for collagen II over collagens I and III. It recognizes a specific, well-known site in the tropocollagen molecule where its binding locally perturbs the triple helix, allowing the catalytic domain of the active enzyme to cleave the collagen α chains sequentially, at Gly775–Leu776 in collagen II. However, the specific residues upon which collagen recognition depends within and surrounding this locus have not been systematically mapped. Using our triple-helical peptide Collagen Toolkit libraries in solid-phase binding assays, we found that MMP-13 shows little affinity for Collagen Toolkit III, but binds selectively to two triple-helical peptides of Toolkit II. We have identified the residues required for the adhesion of both proMMP-13 and MMP-13 to one of these, Toolkit peptide II-44, which contains the canonical collagenase cleavage site. MMP-13 was unable to bind to a linear peptide of the same sequence as II-44. We also discovered a second binding site near the N terminus of collagen II (starting at helix residue 127) in Toolkit peptide II-8. The pattern of binding of the free hemopexin domain of MMP-13 was similar to that of the full-length enzyme, but the free catalytic subunit bound none of our peptides. The susceptibility of Toolkit peptides to proteolysis in solution was independent of the very specific recognition of immobilized peptides by MMP-13; the enzyme proved able to cleave a range of dissolved collagen peptides.
Collapse
Affiliation(s)
- Joanna-Marie Howes
- From the Department of Biochemistry, University of Cambridge, Downing Site, Cambridge CB2 1QW, United Kingdom
| | - Dominique Bihan
- From the Department of Biochemistry, University of Cambridge, Downing Site, Cambridge CB2 1QW, United Kingdom
| | - David A Slatter
- From the Department of Biochemistry, University of Cambridge, Downing Site, Cambridge CB2 1QW, United Kingdom
| | - Samir W Hamaia
- From the Department of Biochemistry, University of Cambridge, Downing Site, Cambridge CB2 1QW, United Kingdom
| | - Len C Packman
- From the Department of Biochemistry, University of Cambridge, Downing Site, Cambridge CB2 1QW, United Kingdom
| | - Vera Knauper
- the Cardiff University Dental School, Dental Drive, Cardiff CF14 4XY, United Kingdom, and
| | - Robert Visse
- the Kennedy Institute of Rheumatology, Hammersmith, London W6 8LH, United Kingdom
| | - Richard W Farndale
- From the Department of Biochemistry, University of Cambridge, Downing Site, Cambridge CB2 1QW, United Kingdom,
| |
Collapse
|
14
|
Development and utilization of a bovine type I collagen microfibril model. Int J Biol Macromol 2013; 53:20-5. [DOI: 10.1016/j.ijbiomac.2012.10.029] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Revised: 10/23/2012] [Accepted: 10/26/2012] [Indexed: 11/21/2022]
|
15
|
Streeter I, de Leeuw NH. Atomistic modeling of collagen proteins in their fibrillar environment. J Phys Chem B 2011; 114:13263-70. [PMID: 20873729 DOI: 10.1021/jp1059984] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Molecular dynamics simulations can aid studies of the structural and physicochemical properties of proteins, by predicting their dynamics, energetics, and interactions with their local environment at the atomistic level. We argue that nonstandard protocols are needed to realistically model collagen proteins, which in their biological state aggregate to form collagen fibrils, and so should not be treated as fully solvated molecules. A new modeling approach is presented that can account for the local environment of collagen molecules within a fibril and which therefore simulates aspects of their behavior that would not otherwise be distinguished. This modeling approach exploits periodic boundaries to replicate the supermolecular arrangement of collagen proteins within the fibril, in an approach that is more commonly associated with modeling crystalline solids rather than mesoscopic protein aggregates. Initial simulations show agreement with experimental observations and corroborate theories of the fibril's structure.
Collapse
Affiliation(s)
- Ian Streeter
- Department of Chemistry, University College London, 20 Gordon Street, London, United Kingdom WC1H 0AJ.
| | | |
Collapse
|
16
|
Ramshaw JAM, Peng YY, Glattauer V, Werkmeister JA. Collagens as biomaterials. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2009; 20 Suppl 1:S3-S8. [PMID: 18379858 DOI: 10.1007/s10856-008-3415-4] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2007] [Accepted: 02/26/2008] [Indexed: 05/26/2023]
Abstract
This paper reviews the structure, function and applications of collagens as biomaterials. The various formats for collagens, either as tissue-based devices or as reconstituted soluble collagens are discussed. The major emphasis is on the new technologies that are emerging that will lead to new and improved collagen-based medical devices. In particular, the development of recombinant collagens, especially using microorganism systems, is allowing the development of safe and reproducible collagen products. These systems also allow for the development of novel, non-natural structures, for example collagen like structures containing repeats of key functional domains or as chimeric structures where a collagen domain is covalently linked to another biologically active component.
Collapse
Affiliation(s)
- John A M Ramshaw
- CSIRO Molecular and Health Technologies, Bayview Avenue, Clayton, VIC 3168, Australia.
| | | | | | | |
Collapse
|
17
|
Yoshizumi A, Yu Z, Silva T, Thiagarajan G, Ramshaw JAM, Inouye M, Brodsky B. Self-association of streptococcus pyogenes collagen-like constructs into higher order structures. Protein Sci 2009; 18:1241-51. [PMID: 19472339 DOI: 10.1002/pro.134] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
A number of bacterial collagen-like proteins with Gly as every third residue and a high Pro content have been observed to form stable triple-helical structures despite the absence of hydroxyproline (Hyp). Here, the high yield cold-shock expression system is used to obtain purified recombinant collagen-like protein (V-CL) from Streptococcus pyogenes containing an N-terminal globular domain V followed by the collagen triple-helix domain CL and the modified construct with two tandem collagen domains V-CL-CL. Both constructs and their isolated collagenous domains form stable triple-helices characterized by very sharp thermal transitions at 35-37 degrees C and by high values of calorimetric enthalpy. Procedures for the formation of collagen SLS crystallites lead to parallel arrays of in register V-CL-CL molecules, as well as centrosymmetric arrays of dimers joined at their globular domains. At neutral pH and high concentrations, the bacterial constructs all show a tendency towards aggregation. The isolated collagen domains, CL and CL-CL, form units of diameter 4-5 nm which bundle together and twist to make larger fibrillar structures. Thus, although this S. pyogenes collagen-like protein is a cell surface protein with no indication of participation in higher order structure, the triple-helix domain has the potential of forming fibrillar structures even in the absence of hydroxyproline. The formation of fibrils suggests bacterial collagen proteins may be useful for biomaterials and tissue engineering applications.
Collapse
Affiliation(s)
- Ayumi Yoshizumi
- Department of Biochemistry, University of Medicine and Dentistry of New Jersey-Robert Wood Johnson Medical School, 675 Hoes Lane, Piscataway, NJ 08854, USA
| | | | | | | | | | | | | |
Collapse
|
18
|
Vakonakis I, Campbell ID. Extracellular matrix: from atomic resolution to ultrastructure. Curr Opin Cell Biol 2007; 19:578-83. [PMID: 17942296 PMCID: PMC4827755 DOI: 10.1016/j.ceb.2007.09.005] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2007] [Accepted: 09/05/2007] [Indexed: 11/17/2022]
Abstract
The extracellular matrix (ECM) is a highly organized multimolecular structure, essential for life in higher organisms. Although substantial high-resolution structural information is available for relatively small fragments of ECM components, the inherent difficulty in preparing and analyzing samples of large, fibrous polymers impedes structural efforts. Here, we review recent advances in understanding the structure of three important ECM components: collagen, fibrillin and fibronectin. Emphasis is placed on the key role of intermolecular interactions in assembling larger, microm scale, structures.
Collapse
Affiliation(s)
- Ioannis Vakonakis
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | | |
Collapse
|