1
|
Parray ZA, Shahid M, Islam A. Insights into Fluctuations of Structure of Proteins: Significance of Intermediary States in Regulating Biological Functions. Polymers (Basel) 2022; 14:polym14081539. [PMID: 35458289 PMCID: PMC9025146 DOI: 10.3390/polym14081539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/30/2022] [Accepted: 04/05/2022] [Indexed: 02/01/2023] Open
Abstract
Proteins are indispensable to cellular communication and metabolism. The structure on which cells and tissues are developed is deciphered from proteins. To perform functions, proteins fold into a three-dimensional structural design, which is specific and fundamentally determined by their characteristic sequence of amino acids. Few of them have structural versatility, allowing them to adapt their shape to the task at hand. The intermediate states appear momentarily, while protein folds from denatured (D) ⇔ native (N), which plays significant roles in cellular functions. Prolific effort needs to be taken in characterizing these intermediate species if detected during the folding process. Protein folds into its native structure through definite pathways, which involve a limited number of transitory intermediates. Intermediates may be essential in protein folding pathways and assembly in some cases, as well as misfolding and aggregation folding pathways. These intermediate states help to understand the machinery of proper folding in proteins. In this review article, we highlight the various intermediate states observed and characterized so far under in vitro conditions. Moreover, the role and significance of intermediates in regulating the biological function of cells are discussed clearly.
Collapse
Affiliation(s)
- Zahoor Ahmad Parray
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India;
- Department of Chemistry, Indian Institute of Technology Delhi, IIT Campus, Hauz Khas, New Delhi 110016, India
| | - Mohammad Shahid
- Department of Basic Medical Sciences, College of Medicine, Prince Sattam bin Abdulaziz University, Al Kharj 11942, Saudi Arabia;
| | - Asimul Islam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India;
- Correspondence: ; Tel.: +91-93-1281-2007
| |
Collapse
|
2
|
Zha J, Zhang Y, Xia K, Gräter F, Xia F. Coarse-Grained Simulation of Mechanical Properties of Single Microtubules With Micrometer Length. Front Mol Biosci 2021; 7:632122. [PMID: 33659274 PMCID: PMC7917235 DOI: 10.3389/fmolb.2020.632122] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 12/30/2020] [Indexed: 01/03/2023] Open
Abstract
Microtubules are one of the most important components in the cytoskeleton and play a vital role in maintaining the shape and function of cells. Because single microtubules are some micrometers long, it is difficult to simulate such a large system using an all-atom model. In this work, we use the newly developed convolutional and K-means coarse-graining (CK-CG) method to establish an ultra-coarse-grained (UCG) model of a single microtubule, on the basis of the low electron microscopy density data of microtubules. We discuss the rationale of the micro-coarse-grained microtubule models of different resolutions and explore microtubule models up to 12-micron length. We use the devised microtubule model to quantify mechanical properties of microtubules of different lengths. Our model allows mesoscopic simulations of micrometer-level biomaterials and can be further used to study important biological processes related to microtubule function.
Collapse
Affiliation(s)
- Jinyin Zha
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| | - Yuwei Zhang
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| | - Kelin Xia
- Division of Mathematical Sciences, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, Singapore.,School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Frauke Gräter
- Interdisciplinary Centre for Scientific Computing (IWR), Heidelberg University, Heidelberg, Germany.,Heidelberg Institute for Theoretical Studies (HITS), Schloβ-Wolfsbrunnenweg 35, Heidelberg, Germany.,Max Planck School Matter to Life, Jahnstraβe 29, Heidelberg, Germany
| | - Fei Xia
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China.,Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, NYU-ECNU Center for Computational Chemistry at NYU Shanghai, Shanghai, China
| |
Collapse
|
3
|
Zhang Y, Xia K, Cao Z, Gräter F, Xia F. A new method for the construction of coarse-grained models of large biomolecules from low-resolution cryo-electron microscopy data. Phys Chem Chem Phys 2019; 21:9720-9727. [PMID: 31025999 DOI: 10.1039/c9cp01370a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The rapid development of cryo-electron microscopy (cryo-EM) has led to the generation of significant low-resolution electron density data of biomolecules. However, the atomistic details of huge biomolecules usually cannot be obtained because it is very difficult to construct all-atom models for MD simulations. Thus, it is still a challenge to make use of the rich low-resolution cryo-EM data for computer simulation and functional study. In this study, we proposed a new method called Convolutional and K-means Coarse-Graining (CK-CG) for the efficient coarse-graining of large biological systems. Using the CK-CG method, we could directly map the cryo-EM data into coarse-grained (CG) beads. Furthermore, the CG beads were parameterized with an empirical harmonic potential to construct a new CG model. We subjected the CK-CG models of the fibrillar protein assemblies F-actin and collagen to external forces in pulling dynamic simulations to assess their mechanical response. The agreement between the estimated tensile stiffness between CG models and experiments demonstrates the validity of the CK-CG method. Thus, our method provides a practical strategy for the direct construction of a structural model from low-resolution data for biological function studies.
Collapse
Affiliation(s)
- Yuwei Zhang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China.
| | | | | | | | | |
Collapse
|
4
|
Palyanov AY, Chekmarev SF. Hydrodynamic description of protein folding: the decrease of the probability fluxes as an indicator of transition states in two-state folders. J Biomol Struct Dyn 2017; 35:3152-3160. [DOI: 10.1080/07391102.2016.1248490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Andrey Yu. Palyanov
- Ershov Institute of Informatics Systems, SB RAS, Novosibirsk, 630090Russia
- Department of Natural Sciences, Novosibirsk State University, 630090Russia
| | - Sergei F. Chekmarev
- Institute of Thermophysics, SB RAS, 630090Russia
- Department of Physics, Novosibirsk State University, 630090Russia
| |
Collapse
|
5
|
Mártonfalvi Z, Bianco P, Naftz K, Ferenczy GG, Kellermayer M. Force generation by titin folding. Protein Sci 2017; 26:1380-1390. [PMID: 28097712 DOI: 10.1002/pro.3117] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 01/08/2017] [Accepted: 01/09/2017] [Indexed: 12/19/2022]
Abstract
Titin is a giant protein that provides elasticity to muscle. As the sarcomere is stretched, titin extends hierarchically according to the mechanics of its segments. Whether titin's globular domains unfold during this process and how such unfolded domains might contribute to muscle contractility are strongly debated. To explore the force-dependent folding mechanisms, here we manipulated skeletal-muscle titin molecules with high-resolution optical tweezers. In force-clamp mode, after quenching the force (<10 pN), extension fluctuated without resolvable discrete events. In position-clamp experiments, the time-dependent force trace contained rapid fluctuations and a gradual increase of average force, indicating that titin can develop force via dynamic transitions between its structural states en route to the native conformation. In 4 M urea, which destabilizes H-bonds hence the consolidated native domain structure, the net force increase disappeared but the fluctuations persisted. Thus, whereas net force generation is caused by the ensemble folding of the elastically-coupled domains, force fluctuations arise due to a dynamic equilibrium between unfolded and molten-globule states. Monte-Carlo simulations incorporating a compact molten-globule intermediate in the folding landscape recovered all features of our nanomechanics results. The ensemble molten-globule dynamics delivers significant added contractility that may assist sarcomere mechanics, and it may reduce the dissipative energy loss associated with titin unfolding/refolding during muscle contraction/relaxation cycles.
Collapse
Affiliation(s)
- Zsolt Mártonfalvi
- Department of Biophysics and Radiation Biology, Semmelweis University, Budapest H1094, Hungary
| | - Pasquale Bianco
- Physiolab, Department of Biology, University of Florence, 50019 Sesto Fiorentino, FI, Italy
| | - Katalin Naftz
- Department of Biophysics and Radiation Biology, Semmelweis University, Budapest H1094, Hungary
| | - György G Ferenczy
- Department of Biophysics and Radiation Biology, Semmelweis University, Budapest H1094, Hungary
| | - Miklós Kellermayer
- Department of Biophysics and Radiation Biology, Semmelweis University, Budapest H1094, Hungary.,MTA-SE Molecular Biophysics Research Group, Semmelweis University, Budapest H1094, Hungary
| |
Collapse
|
6
|
Ge L, Villinger S, Mari SA, Giller K, Griesinger C, Becker S, Müller DJ, Zweckstetter M. Molecular Plasticity of the Human Voltage-Dependent Anion Channel Embedded Into a Membrane. Structure 2016; 24:585-594. [PMID: 27021164 PMCID: PMC5654509 DOI: 10.1016/j.str.2016.02.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 02/12/2016] [Accepted: 02/22/2016] [Indexed: 12/28/2022]
Abstract
The voltage-dependent anion channel (VDAC) regulates the flux of metabolites and ions across the outer mitochondrial membrane. Regulation of ion flow involves conformational transitions in VDAC, but the nature of these changes has not been resolved to date. By combining single-molecule force spectroscopy with nuclear magnetic resonance spectroscopy we show that the β barrel of human VDAC embedded into a membrane is highly flexible. Its mechanical flexibility exceeds by up to one order of magnitude that determined for β strands of other membrane proteins and is largest in the N-terminal part of the β barrel. Interaction with Ca(2+), a key regulator of metabolism and apoptosis, considerably decreases the barrel's conformational variability and kinetic free energy in the membrane. The combined data suggest that physiological VDAC function depends on the molecular plasticity of its channel.
Collapse
Affiliation(s)
- Lin Ge
- Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule (ETH) Zürich, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Saskia Villinger
- Department of NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Stefania A Mari
- Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule (ETH) Zürich, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Karin Giller
- Department of NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Christian Griesinger
- Department of NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Stefan Becker
- Department of NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Daniel J Müller
- Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule (ETH) Zürich, Mattenstrasse 26, 4058 Basel, Switzerland.
| | - Markus Zweckstetter
- Department of NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany; Structural Biology in Dementia, German Center for Neurodegenerative Diseases (DZNE), Von-Siebold-Strasse 3a, 37075 Göttingen, Germany; Department of Neurology, University Medical Center Göttingen, University of Göttingen, Am Waldweg 33, 37073 Göttingen, Germany.
| |
Collapse
|
7
|
Kumar R, Grubmüller H. Elastic properties and heterogeneous stiffness of the phi29 motor connector channel. Biophys J 2014; 106:1338-48. [PMID: 24655509 DOI: 10.1016/j.bpj.2014.01.028] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Revised: 01/08/2014] [Accepted: 01/23/2014] [Indexed: 12/31/2022] Open
Abstract
The DNA packaging motor of the bacteriophage ϕ29, comprising head-tail connector, ATPase, and pRNA, transports the viral DNA inside the procapsid against pressure differences of up to ∼60 atm during replication. Several models for the DNA packaging mechanism have been proposed, which attribute different roles to the connector, and require specific mechanical properties of the connector. To characterize these properties at the atomic level, and to understand how the connector withstands this large pressure, we have carried out molecular dynamics simulations of the whole connector both in equilibrium and under mechanical stress. The simulations revealed a quite heterogeneous distribution of stiff and soft regions, resembling that of typical composite materials that are also optimized to resist mechanical stress. In particular, the conserved middle α-helical region is found to be remarkably stiff, similar only to structural proteins forming viral shell, silk, or collagen. In contrast, large parts of the peripheral interface to the ϕ29 procapsid turned out to be rather soft. Force probe and umbrella sampling simulations showed that large connector deformations are remarkably reversible, and served to calculate the free energies required for these deformations. In particular, for an untwisting deformation by 12°, as postulated by the untwist-twist model, more than four times' larger energy is required than is available from hydrolysis of one ATP molecule. Combined with previous experiments, this result is incompatible with the untwist-twist model. In contrast, our simulations support the recently proposed one-way revolution model and suggest in structural terms how the connector blocks DNA leakage. In particular, conserved loops at the rim of the central channel, which are in direct contact with the DNA, are found to be rather flexible and tightly anchored to the rigid central region. These findings suggest a check-valve mechanism, with the flexible loops obstructing the channel by interacting with the viral DNA.
Collapse
Affiliation(s)
- Rajendra Kumar
- Max-Planck-Institute for Biophysical Chemistry, Department of Theoretical and Computational Biophysics, Göttingen, Germany
| | - Helmut Grubmüller
- Max-Planck-Institute for Biophysical Chemistry, Department of Theoretical and Computational Biophysics, Göttingen, Germany.
| |
Collapse
|
8
|
Jiao F, Fan H, Yang G, Zhang F, He P. Directly investigating the interaction between aptamers and thrombin by atomic force microscopy. J Mol Recognit 2014; 26:672-8. [PMID: 24277612 DOI: 10.1002/jmr.2312] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2013] [Revised: 07/21/2013] [Accepted: 08/21/2013] [Indexed: 11/06/2022]
Abstract
Aptamers are single-stranded nucleic acid molecules that can be used for protein recognition, detection, and inhibition. Over the past decades, two thrombin-binding aptamers (15apt and 27apt) were reported by systemic evolution of ligands by exponential enrichment technique. Though many studies have been reported about the interactions between the aptamers and thrombin by atomic force microscopy, the thrombins in those studies were all immobilized by chemical agents. Recently, we developed a new method using atomic force microscopy to directly investigate the specific interactions between thrombin and its two aptamers without immobilizing the thrombin. Furthermore, the unbinding dynamics and dissociation energy landscapes of aptamer/thrombin were discussed. The results indicate that the underlying interaction mechanisms of thrombin with its two aptamers will be similar despite that the structures of 15apt and 27apt are different in buffer solution.
Collapse
Affiliation(s)
- Fang Jiao
- Department of Chemistry, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China
| | | | | | | | | |
Collapse
|
9
|
Ganoth A, Tsfadia Y, Wiener R. Ubiquitin: Molecular modeling and simulations. J Mol Graph Model 2013; 46:29-40. [DOI: 10.1016/j.jmgm.2013.09.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Revised: 09/09/2013] [Accepted: 09/10/2013] [Indexed: 01/18/2023]
|
10
|
Bujalowski PJ, Oberhauser AF. Tracking unfolding and refolding reactions of single proteins using atomic force microscopy methods. Methods 2013; 60:151-60. [PMID: 23523554 DOI: 10.1016/j.ymeth.2013.03.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Revised: 03/07/2013] [Accepted: 03/11/2013] [Indexed: 11/26/2022] Open
Abstract
During the last two decades single-molecule manipulation techniques such as atomic force microscopy (AFM) has risen to prominence through their unique capacity to provide fundamental information on the structure and function of biomolecules. Here we describe the use of single-molecule AFM to track protein unfolding and refolding pathways, enzymatic catalysis and the effects of osmolytes and chaperones on protein stability and folding. We will outline the principles of operation for two different AFM pulling techniques: length clamp and force-clamp and discuss prominent applications. We provide protocols for the construction of polyproteins which are amenable for AFM experiments, the preparation of different coverslips, choice and calibration of AFM cantilevers. We also discuss the selection criteria for AFM recordings, the calibration of AFM cantilevers, protein sample preparations and analysis of the obtained data.
Collapse
Affiliation(s)
- Paul J Bujalowski
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch at Galveston, TX 77555, USA
| | | |
Collapse
|
11
|
Schlesier T, Diezemann G. Performance of Different Force Fields in Force Probe Simulations. J Phys Chem B 2013; 117:1862-71. [DOI: 10.1021/jp3115644] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Thomas Schlesier
- Institut für Physikalische
Chemie, Universität Mainz, Duesbergweg
10-14, 55128
Mainz, Germany
| | - Gregor Diezemann
- Institut für Physikalische
Chemie, Universität Mainz, Duesbergweg
10-14, 55128
Mainz, Germany
| |
Collapse
|
12
|
Cholesterol increases kinetic, energetic, and mechanical stability of the human β2-adrenergic receptor. Proc Natl Acad Sci U S A 2012; 109:E3463-72. [PMID: 23151510 DOI: 10.1073/pnas.1210373109] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The steroid cholesterol is an essential component of eukaryotic membranes, and it functionally modulates membrane proteins, including G protein-coupled receptors. To reveal insight into how cholesterol modulates G protein-coupled receptors, we have used dynamic single-molecule force spectroscopy to quantify the mechanical strength and flexibility, conformational variability, and kinetic and energetic stability of structural segments stabilizing the human β(2)-adrenergic receptor (β(2)AR) in the absence and presence of the cholesterol analog cholesteryl hemisuccinate (CHS). CHS considerably increased the kinetic, energetic, and mechanical stability of almost every structural segment at sufficient magnitude to alter the structure and functional relationship of β(2)AR. One exception was the structural core segment of β(2)AR, which establishes multiple ligand binding sites, and its properties were not significantly influenced by CHS.
Collapse
|
13
|
Affiliation(s)
- Charles E. Sing
- Department
of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139,
United States
| | - Alfredo Alexander-Katz
- Department
of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139,
United States
| |
Collapse
|
14
|
Kawamura S, Colozo AT, Ge L, Müller DJ, Park PSH. Structural, energetic, and mechanical perturbations in rhodopsin mutant that causes congenital stationary night blindness. J Biol Chem 2012; 287:21826-35. [PMID: 22549882 DOI: 10.1074/jbc.m112.340182] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Several point mutations in rhodopsin cause retinal diseases including congenital stationary night blindness and retinitis pigmentosa. The mechanism by which a single amino acid residue substitution leads to dysfunction is poorly understood at the molecular level. A G90D point mutation in rhodopsin causes constitutive activity and leads to congenital stationary night blindness. It is unclear which perturbations the mutation introduces and how they can cause the receptor to be constitutively active. To reveal insight into these mechanisms, we characterized the perturbations introduced into dark state G90D rhodopsin from a transgenic mouse model expressing exclusively the mutant rhodopsin in rod photoreceptor cells. UV-visible absorbance spectroscopy revealed hydroxylamine accessibility to the chromophore-binding pocket of dark state G90D rhodopsin, which is not detected in dark state wild-type rhodopsin but is detected in light-activated wild-type rhodopsin. Single-molecule force spectroscopy suggested that the structural changes introduced by the mutation are small. Dynamic single-molecule force spectroscopy revealed that, compared with dark state wild-type rhodopsin, the G90D mutation decreased energetic stability and increased mechanical rigidity of most structural regions in the dark state mutant receptor. The observed structural, energetic, and mechanical changes in dark state G90D rhodopsin provide insights into the nature of perturbations caused by a pathological point mutation. Moreover, these changed properties observed for dark state G90D rhodopsin are consistent with properties expected for an active state.
Collapse
Affiliation(s)
- Shiho Kawamura
- Department of Biosystems Science and Engineering, ETH Zürich, 4058 Basel, Switzerland
| | | | | | | | | |
Collapse
|
15
|
Ge L, Jin G, Fang X. Investigation of the interaction between a bivalent aptamer and thrombin by AFM. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:707-713. [PMID: 22103891 DOI: 10.1021/la203954x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Aptamers are a new class of molecular probes for protein recognition, detection, and inhibition. Multivalent aptamer-protein binding through aptamer assembly has been currently developed as an effective way to achieve higher protein affinity and selectivity. In this study, the specific interaction between bivalent aptamer Bi-8S and thrombin has been measured directly and quantitatively by atomic force microscopy to investigate the unbinding dynamics and dissociation energy landscape of the multivalent interaction. Bivalent aptamer Bi-8S contains thrombin's two aptamers, 15apt and 27apt, which are linked by eight spacer phosphoramidites. The results revealed the sequential dissociation of the two aptamers. Moreover, the dynamic force spectroscopy data revealed that the 27apt's binding to the thrombin remains largely unaffected by the eight-spacer phosphoramidites within Bi-8S. In contrast, the eight-spacer phosphoramidites stabilized the 15apt-thrombin binding.
Collapse
Affiliation(s)
- Lin Ge
- Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, 100101 Beijing, China
| | | | | |
Collapse
|
16
|
Lin YW, Nie CM, Liao LF. Insights into Uranyl Ion Binding to Ubiquitin from Molecular Modeling and Dynamics Simulations. CHEM LETT 2011. [DOI: 10.1246/cl.2011.1330] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
17
|
Bornet A, Ahuja P, Sarkar R, Fernandes L, Hadji S, Lee SY, Haririnia A, Fushman D, Bodenhausen G, Vasos PR. Long-lived states to monitor protein unfolding by proton NMR. Chemphyschem 2011; 12:2729-34. [PMID: 21882334 PMCID: PMC3368952 DOI: 10.1002/cphc.201100365] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Indexed: 11/12/2022]
Abstract
The relaxation of long-lived states (LLS) corresponds to the slow return to statistical thermal equilibrium between symmetric and antisymmetric proton spin states. This process is remarkably sensitive to the presence of external spins and can be used to obtain information about partial unfolding of proteins. We detected the appearance of a destabilized conformer of ubiquitin when urea is added to the protein in its native state. This conformer shows increased mobility in the C-terminus, which significantly extends the lifetimes of proton LLS magnetisation in Ser-65. These changes could not be detected by conventional measurements of T(1) and T(2) relaxation times of protons, and would hardly be sensed by carbon-13 or nitrogen-15 relaxation measurements. Conformers with similar dynamic and structural features, as revealed by LLS relaxation times, could be observed, in the absence of urea, in two ubiquitin mutants, L67S and L69S.
Collapse
Affiliation(s)
- Aurélien Bornet
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne, EPFL, Batochime, 1015 Lausanne, Switzerland
| | - Puneet Ahuja
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne, EPFL, Batochime, 1015 Lausanne, Switzerland
| | - Riddhiman Sarkar
- School of Chemistry, University of Southampton, Southampton SO17 1BJ, England
| | - Laetitia Fernandes
- Equipe de RMN des Substances d'Intérêt Biologique, UMR 8601 CNRS, Université Paris Descartes, Sorbonne Paris Cité, 45, rue des Saints Pères 75006, Paris, France
| | - Sonia Hadji
- Equipe de RMN des Substances d'Intérêt Biologique, UMR 8601 CNRS, Université Paris Descartes, Sorbonne Paris Cité, 45, rue des Saints Pères 75006, Paris, France
| | - Shirley Y. Lee
- Department of Chemistry & Biochemistry, Center for Biomolecular Structure and Organization, University of Maryland, College Park, MD 20742, U.S.A
| | - Aydin Haririnia
- Department of Chemistry & Biochemistry, Center for Biomolecular Structure and Organization, University of Maryland, College Park, MD 20742, U.S.A
| | - David Fushman
- Department of Chemistry & Biochemistry, Center for Biomolecular Structure and Organization, University of Maryland, College Park, MD 20742, U.S.A
| | - Geoffrey Bodenhausen
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne, EPFL, Batochime, 1015 Lausanne, Switzerland
- Département de Chimie, Ecole Normale Supérieure, 24 Rue Lhomond, 75231, Paris Cedex 05
- Université Pierre-et-Marie Curie, Paris
- CNRS, UMR 7203, France
| | - Paul R. Vasos
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne, EPFL, Batochime, 1015 Lausanne, Switzerland
- Equipe de RMN des Substances d'Intérêt Biologique, UMR 8601 CNRS, Université Paris Descartes, Sorbonne Paris Cité, 45, rue des Saints Pères 75006, Paris, France
| |
Collapse
|
18
|
Locating an extracellular K+-dependent interaction site that modulates betaine-binding of the Na+-coupled betaine symporter BetP. Proc Natl Acad Sci U S A 2011; 108:E890-8. [PMID: 21987793 DOI: 10.1073/pnas.1109597108] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
BetP, a trimeric Na(+)-coupled betaine symporter, senses hyperosmotic stress via its cytoplasmic C-terminal domain and regulates transport activity in dependence of the cytoplasmic K(+)-concentration. This transport regulation of BetP depends on a sophisticated interaction network. Using single-molecule force spectroscopy we structurally localize and quantify these interactions changing on K(+)-dependent transport activation and substrate-binding. K(+) significantly strengthened all interactions, modulated lifetimes of functionally important structural regions, and increased the mechanical rigidity of the symporter. Substrate-binding could modulate, but not establish most of these K(+)-dependent interactions. A pronounced effect triggered by K(+) was observed at the periplasmic helical loop EH2. Tryptophan quenching experiments revealed that elevated K(+)-concentrations akin to those BetP encounters during hyperosmotic stress trigger the formation of a periplasmic second betaine-binding (S2) site, which was found to be at a similar position reported previously for the BetP homologue CaiT. In BetP, the presence of the S2 site strengthened the interaction between EH2, transmembrane α-helix 12 and the K(+)-sensing C-terminal domain resulting in a K(+)-dependent cooperative betaine-binding.
Collapse
|
19
|
Lee ES, Jung YJ. Calculations of Free Energy Surfaces for Small Proteins and a Protein-RNA Complex Using a Lattice Model Approach. B KOREAN CHEM SOC 2011. [DOI: 10.5012/bkcs.2011.32.8.3051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
20
|
Velocity-dependent mechanical unfolding of bacteriorhodopsin is governed by a dynamic interaction network. Biophys J 2011; 100:1109-19. [PMID: 21320457 DOI: 10.1016/j.bpj.2011.01.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2010] [Revised: 01/03/2011] [Accepted: 01/05/2011] [Indexed: 12/17/2022] Open
Abstract
Bacteriorhodopsin is a model system for membrane proteins. This seven transmembrane helical protein is embedded within a membrane structure called purple membrane. Its structural stability against mechanical stress was recently investigated by atomic force microscopy experiments, in which single proteins were extracted from the purple membrane. Here, we study this process by all-atom molecular dynamics simulations, in which single bacteriorhodopsin molecules were extracted and unfolded from an atomistic purple membrane model. In our simulations, key features from the experiments like force profiles and location of key residues that resist mechanical unfolding were reproduced. These key residues were seen to be stabilized by a dynamic network of intramolecular interactions. Further, the unfolding pathway was found to be velocity-dependent. Simulations in which the mechanical stress was released during unfolding revealed relaxation motions that allowed characterization of the nonequilibrium processes during fast extraction.
Collapse
|
21
|
Minimum energy compact structures in force-quench polyubiquitin folding are domain swapped. Proc Natl Acad Sci U S A 2011; 108:6963-8. [PMID: 21482804 DOI: 10.1073/pnas.1018177108] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Single molecule experiments that initiate folding using mechanical force are uniquely suited to reveal the nature of populated states in the folding process. Using a strategy proposed on theoretical grounds, which calls for repeated cycling of force from high to low values using force pulses, it was demonstrated in atomic force spectroscopy (AFM) experiments that an ensemble of minimum energy compact structures (MECS) are sampled during the folding of polyubiquitin. The structures in the ensemble are mechanically resistant to a lesser extent than the native state. Remarkably, forced unfolding of the populated intermediates reveals a broad distribution of extensions including steps up to 30 nm and beyond. We show using molecular simulations that favorable interdomain interactions leading to domain swapping between adjacent ubiquitin modules results in the formation of the ensemble of MECS, whose unfolding leads to an unusually broad distribution of steps. We obtained the domain-swapped structures using coarse-grained ubiquitin dimer models by exchanging native interactions between two monomeric ubiquitin molecules. Brownian dynamics force unfolding of the proposed domain-swapped structures, with mechanical stability that is approximately 100-fold lower than the native state, gives rise to a distribution of extensions from 2 to 30 nm. Our results, which are in quantitative agreement with AFM experiments, suggest that domain swapping may be a general mechanism in the assembly of multi-sub-unit proteins.
Collapse
|
22
|
Damaghi M, Sapra KT, Köster S, Yildiz Ö, Kühlbrandt W, Muller DJ. Dual energy landscape: the functional state of the β-barrel outer membrane protein G molds its unfolding energy landscape. Proteomics 2011; 10:4151-62. [PMID: 21058339 DOI: 10.1002/pmic.201000241] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
We applied dynamic single-molecule force spectroscopy to quantify the parameters (free energy of activation and distance of the transition state from the folded state) characterizing the energy barriers in the unfolding energy landscape of the outer membrane protein G (OmpG) from Escherichia coli. The pH-dependent functional switching of OmpG directs the protein along different regions on the unfolding energy landscape. The two functional states of OmpG take the same unfolding pathway during the sequential unfolding of β-hairpins I-IV. After the initial unfolding events, the unfolding pathways diverge. In the open state, the unfolding of β-hairpin V in one step precedes the unfolding of β-hairpin VI. In the closed state, β-hairpin V and β-strand S11 with a part of extracellular loop L6 unfold cooperatively, and subsequently β-strand S12 unfolds with the remaining loop L6. These two unfolding pathways in the open and closed states join again in the last unfolding step of β-hairpin VII. Also, the conformational change from the open to the closed state witnesses a rigidified extracellular gating loop L6. Thus, a change in the conformational state of OmpG not only bifurcates its unfolding pathways but also tunes its mechanical properties for optimum function.
Collapse
Affiliation(s)
- Mehdi Damaghi
- ETH Zürich, Department of Biosystems Science and Engineering, Basel, Switzerland
| | | | | | | | | | | |
Collapse
|
23
|
Neumann J, Gottschalk KE. The effect of different force applications on the protein-protein complex Barnase-Barstar. Biophys J 2009; 97:1687-99. [PMID: 19751674 DOI: 10.1016/j.bpj.2009.01.052] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2008] [Revised: 01/09/2009] [Accepted: 01/13/2009] [Indexed: 12/16/2022] Open
Abstract
Steered molecular dynamics simulations are a tool to examine the energy landscape of protein-protein complexes by applying external forces. Here, we analyze the influence of the velocity and geometry of the probing forces on a protein complex using this tool. With steered molecular dynamics, we probe the stability of the protein-protein complex Barnase-Barstar. The individual proteins are mechanically labile. The Barnase-Barstar binding site is more stable than the folds of the individual proteins. By using different force protocols, we observe a variety of responses of the system to the applied tension.
Collapse
Affiliation(s)
- Jan Neumann
- Angewandte Physik und Biophysik, Ludwig-Maximilians Universität, Munich, Germany
| | | |
Collapse
|
24
|
Szymczak P, Janovjak H. Periodic forces trigger a complex mechanical response in ubiquitin. J Mol Biol 2009; 390:443-56. [PMID: 19426737 DOI: 10.1016/j.jmb.2009.04.071] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2009] [Revised: 04/27/2009] [Accepted: 04/28/2009] [Indexed: 01/12/2023]
Abstract
Mechanical forces govern physiological processes in all living organisms. Many cellular forces, for example, those generated in cyclic conformational changes of biological machines, have repetitive components. In apparent contrast, little is known about how dynamic protein structures respond to periodic mechanical information. Ubiquitin is a small protein found in all eukaryotes. We developed molecular dynamics simulations to unfold single and multimeric ubiquitins with periodic forces. By using a coarse-grained representation, we were able to model forces with periods about 2 orders of magnitude longer than the protein's relaxation time. We found that even a moderate periodic force weakened the protein and shifted its unfolding pathways in a frequency- and amplitude-dependent manner. A complex dynamic response with secondary structure refolding and an increasing importance of local interactions was revealed. Importantly, repetitive forces with broadly distributed frequencies elicited very similar molecular responses compared to fixed-frequency forces. When testing the influence of pulling geometry on ubiquitin's mechanical stability, it was found that the linkage involved in the mechanical degradation of cellular proteins renders the protein remarkably insensitive to periodic forces. We also devised a complementary kinetic energy landscape model that traces these observations and explains periodic-force, single-molecule measurements. In turn, this analytical model is capable of predicting dynamic protein responses. These results provide new insights into ubiquitin mechanics and a potential mechanical role during protein degradation, as well as first frameworks for dynamic protein stability and the modeling of repetitive mechanical processes.
Collapse
Affiliation(s)
- Piotr Szymczak
- Institute of Theoretical Physics, Warsaw University, Poland
| | | |
Collapse
|
25
|
Bippes CA, Zeltina A, Casagrande F, Ratera M, Palacin M, Muller DJ, Fotiadis D. Substrate binding tunes conformational flexibility and kinetic stability of an amino acid antiporter. J Biol Chem 2009; 284:18651-63. [PMID: 19419962 DOI: 10.1074/jbc.m109.004267] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
We used single molecule dynamic force spectroscopy to unfold individual serine/threonine antiporters SteT from Bacillus subtilis. The unfolding force patterns revealed interactions and energy barriers that stabilized structural segments of SteT. Substrate binding did not establish strong localized interactions but appeared to be facilitated by the formation of weak interactions with several structural segments. Upon substrate binding, all energy barriers of the antiporter changed thereby describing the transition from brittle mechanical properties of SteT in the unbound state to structurally flexible conformations in the substrate-bound state. The lifetime of the unbound state was much shorter than that of the substrate-bound state. This leads to the conclusion that the unbound state of SteT shows a reduced conformational flexibility to facilitate specific substrate binding and a reduced kinetic stability to enable rapid switching to the bound state. In contrast, the bound state of SteT showed an increased conformational flexibility and kinetic stability such as required to enable transport of substrate across the cell membrane. This result supports the working model of antiporters in which alternate substrate access from one to the other membrane surface occurs in the substrate-bound state.
Collapse
Affiliation(s)
- Christian A Bippes
- Biotechnology Center, Technische Universität Dresden, D-01307 Dresden, Germany
| | | | | | | | | | | | | |
Collapse
|
26
|
Calderon CP, Chelli R. Approximating nonequilibrium processes using a collection of surrogate diffusion models. J Chem Phys 2008; 128:145103. [DOI: 10.1063/1.2903439] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
27
|
Abstract
The "protein folding problem" consists of three closely related puzzles: (a) What is the folding code? (b) What is the folding mechanism? (c) Can we predict the native structure of a protein from its amino acid sequence? Once regarded as a grand challenge, protein folding has seen great progress in recent years. Now, foldable proteins and nonbiological polymers are being designed routinely and moving toward successful applications. The structures of small proteins are now often well predicted by computer methods. And, there is now a testable explanation for how a protein can fold so quickly: A protein solves its large global optimization problem as a series of smaller local optimization problems, growing and assembling the native structure from peptide fragments, local structures first.
Collapse
Affiliation(s)
- Ken A. Dill
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94143
- Graduate Group in Biophysics, University of California, San Francisco, California 94143;
| | - S. Banu Ozkan
- Department of Physics, Arizona State University, Tempe, Arizona 85287;
| | - M. Scott Shell
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106;
| | - Thomas R. Weikl
- Max Planck Institute of Colloids and Interfaces, Department of Theory and Bio-Systems, 14424 Potsdam, Germany;
| |
Collapse
|
28
|
Garcia-Manyes S, Brujić J, Badilla CL, Fernández JM. Force-clamp spectroscopy of single-protein monomers reveals the individual unfolding and folding pathways of I27 and ubiquitin. Biophys J 2007; 93:2436-46. [PMID: 17545242 PMCID: PMC1965426 DOI: 10.1529/biophysj.107.104422] [Citation(s) in RCA: 120] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Single-protein force experiments have relied on a molecular fingerprint based on tethering multiple single-protein domains in a polyprotein chain. However, correlations between these domains remain an issue in interpreting force spectroscopy data, particularly during protein folding. Here we first show that force-clamp spectroscopy is a sensitive technique that provides a molecular fingerprint based on the unfolding step size of four single-monomer proteins. We then measure the force-dependent unfolding rate kinetics of ubiquitin and I27 monomers and find a good agreement with the data obtained for the respective polyproteins over a wide range of forces, in support of the Markovian hypothesis. Moreover, with a large statistical ensemble at a single force, we show that ubiquitin monomers also exhibit a broad distribution of unfolding times as a signature of disorder in the folded protein landscape. Furthermore, we readily capture the folding trajectories of monomers that exhibit the same stages in folding observed for polyproteins, thus eliminating the possibility of entropic masking by other unfolded modules in the chain or domain-domain interactions. On average, the time to reach the I27 folded length increases with increasing quenching force at a rate similar to that of the polyproteins. Force-clamp spectroscopy at the single-monomer level reproduces the kinetics of unfolding and refolding measured using polyproteins, which proves that there is no mechanical effect of tethering proteins to one another in the case of ubiquitin and I27.
Collapse
Affiliation(s)
- Sergi Garcia-Manyes
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | | | | | | |
Collapse
|