1
|
Das S, Zhang Z, Kalvakota S, Soto R, Phillips ML, Terman JR, Reisler E. Parallel actin monomers in the 8S complex of actin-INF2. J Biomol Struct Dyn 2022; 41:3295-3304. [PMID: 35343388 PMCID: PMC10368088 DOI: 10.1080/07391102.2022.2050947] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Polymerization and depolymerization of actin play an essential role in eukaryotic cells. Actin exists in cells in both monomeric (G-actin) and filamentous (polymer, F-actin) forms. Actin binding proteins (ABPs) facilitate the transition between these two states, and their interactions with these two states of actin are critical for actin-based cellular processes. Rapid depolymerization of actin is assisted in the brain and/or other cells by its oxidation by the enzyme Mical (yielding Mox-actin), and/or by the binding of Inverted Formin 2 (INF2) - which can also accelerate filaments formation. At their stoichiometric molar ratio INF2 and actin yield the 8S complex (consisting of 4 actin monomers: 2 INF2 dimer molecules). Using biochemical and biophysical methods, we investigate the structural arrangement of actin in the 8S particles and the interaction of INF2 with actin and Mox-actin. To that end, we show 2 D class averages of 8S particles obtained by negative staining electron microscopy. We also show that: (i) 8S particles can seed rapid actin assembly; (ii) Mox-actin and INF2 form 8S particles at proteins ratios similar to those of unoxidized actin; (iii) chemical crosslinkings suggest that actin monomers are in a parallel orientation in the 8S particles of both actin and Mox-actin; and (iv) INF2 accelerates the disassembly of Mox-F-actin. Our results provide better understanding of actin's arrangement in the 8S particles formed during actin depolymerization and in the early polymerization stages of both actin and Mox-actin.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Sanchaita Das
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, USA
| | - Zixin Zhang
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, USA
| | - Saichandra Kalvakota
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, USA
| | - Raul Soto
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, USA
| | - Martin L Phillips
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, USA
| | - Jonathan R Terman
- Departments of Neuroscience and Pharmacology, The University of Texas of Southwestern Medical Center, Dallas, TX, USA
| | - Emil Reisler
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, USA.,Molecular Biology Institute, University of California, Los Angeles, CA, USA
| |
Collapse
|
2
|
Horan BG, Hall AR, Vavylonis D. Insights into Actin Polymerization and Nucleation Using a Coarse-Grained Model. Biophys J 2020; 119:553-566. [PMID: 32668234 DOI: 10.1016/j.bpj.2020.06.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 06/17/2020] [Accepted: 06/19/2020] [Indexed: 12/20/2022] Open
Abstract
We studied actin filament polymerization and nucleation with molecular dynamics simulations and a previously established coarse-grained model having each residue represented by a single interaction site located at the Cα atom. We approximate each actin protein as a fully or partially rigid unit to identify the equilibrium structural ensemble of interprotein complexes. Monomers in the F-actin configuration bound to both barbed and pointed ends of a short F-actin filament at the anticipated locations for polymerization. Binding at both ends occurred with similar affinity. Contacts between residues of the incoming subunit and the short filament were consistent with expectation from models based on crystallography, x-ray diffraction, and cryo-electron microscopy. Binding at the barbed and pointed end also occurred at an angle with respect to the polymerizable bound structure, and the angle range depended on the flexibility of the D-loop. Additional barbed end bound states were seen when the incoming subunit was in the G-actin form. Consistent with an activation barrier for pointed end polymerization, G-actin did not bind at an F-actin pointed end. In all cases, binding at the barbed end also occurred in a configuration similar to the antiparallel (lower) dimer. Individual monomers bound each other in a short-pitch helix complex in addition to other configurations, with several of them apparently nonproductive for polymerization. Simulations with multiple monomers in the F-actin form show assembly into filaments as well as transient aggregates at the barbed end. We discuss the implications of these observations on the kinetic pathway of actin filament nucleation and polymerization and possibilities for future improvements of the coarse-grained model.
Collapse
Affiliation(s)
- Brandon G Horan
- Department of Physics, Lehigh University, Bethlehem, Pennsylvania
| | - Aaron R Hall
- Department of Physics, Lehigh University, Bethlehem, Pennsylvania
| | | |
Collapse
|
3
|
Silván U, Hyotyla J, Mannherz HG, Ringler P, Müller SA, Aebi U, Maier T, Schoenenberger CA. Contributions of the lower dimer to supramolecular actin patterning revealed by TIRF microscopy. J Struct Biol 2016; 195:159-166. [PMID: 27189866 DOI: 10.1016/j.jsb.2016.05.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 05/13/2016] [Accepted: 05/14/2016] [Indexed: 11/25/2022]
Abstract
Two distinct dimers are formed during the initial steps of actin polymerization. The first one, referred to as the 'lower dimer' (LD) was discovered many years ago by means of chemical crosslinking. Owing to its transient nature, a biological relevance had long been precluded when, using LD-specific antibodies, we detected LD-like contacts in actin assemblies that are associated with the endolysosomal compartment in a number of different cell lines. Moreover, immunofluorescence showed the presence of LD-related structures at the cell periphery of migrating fibroblasts, in the nucleus, and in association with the centrosome of interphase cells. Here, we explore contributions of the LD to the assembly of supramolecular actin structures in real time by total internal reflection fluorescence (TIRF) microscopy. Our data shows that while LD on its own cannot polymerize under filament forming conditions, it is able to incorporate into growing F-actin filaments. This incorporation of LD triggers the formation of X-shaped filament assemblies with barbed ends that are pointing in the same direction in the majority of cases. Similarly, an increased frequency of junction sites was observed when filaments were assembled in the presence of oxidized actin. This data suggests that a disulfide bridge between Cys374 residues might stabilize LD-contacts. Based on our findings, we propose two possible models for the molecular mechanism underlying the supramolecular actin patterning in LD-related structures.
Collapse
Affiliation(s)
- Unai Silván
- Biozentrum, University of Basel, CH-4056 Basel, Switzerland
| | - Janne Hyotyla
- Biozentrum, University of Basel, CH-4056 Basel, Switzerland
| | - Hans-Georg Mannherz
- Department of Anatomy and Molecular Embryology, Ruhr-University Bochum, D-44780 Bochum, Germany
| | - Philippe Ringler
- Center for Cellular Imaging and NanoAnalytics (C-CINA), Biozentrum, University of Basel, Mattenstrasse 26, CH-4058 Basel, Switzerland
| | - Shirley A Müller
- Center for Cellular Imaging and NanoAnalytics (C-CINA), Biozentrum, University of Basel, Mattenstrasse 26, CH-4058 Basel, Switzerland
| | - Ueli Aebi
- Biozentrum, University of Basel, CH-4056 Basel, Switzerland
| | - Timm Maier
- Biozentrum, University of Basel, CH-4056 Basel, Switzerland
| | | |
Collapse
|
4
|
Qu Z, Silvan U, Jockusch BM, Aebi U, Schoenenberger CA, Mannherz HG. Distinct actin oligomers modulate differently the activity of actin nucleators. FEBS J 2015. [DOI: 10.1111/febs.13381] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Zheng Qu
- Department of Anatomy and Molecular Embryology; Ruhr-University; Bochum Germany
| | - Unai Silvan
- Institute for Biomechanics; Balgrist University Hospital; ETH and University of Zürich; Switzerland
| | - Brigitte M. Jockusch
- Department of Cell Biology; Institute of Zoology; Technical University; Braunschweig Germany
| | - Ueli Aebi
- Focal Area Structural Biology and Biophysics; Biozentrum; University of Basel; Switzerland
| | | | - Hans Georg Mannherz
- Department of Anatomy and Molecular Embryology; Ruhr-University; Bochum Germany
| |
Collapse
|
5
|
Galkin VE, Orlova A, Vos MR, Schröder GF, Egelman EH. Near-atomic resolution for one state of F-actin. Structure 2014; 23:173-182. [PMID: 25533486 DOI: 10.1016/j.str.2014.11.006] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Revised: 11/03/2014] [Accepted: 11/14/2014] [Indexed: 01/15/2023]
Abstract
Actin functions as a helical polymer, F-actin, but attempts to build an atomic model for this filament have been hampered by the fact that the filament cannot be crystallized and by structural heterogeneity. We have used a direct electron detector, cryo-electron microscopy, and the forces imposed on actin filaments in thin films to reconstruct one state of the filament at 4.7 Å resolution, which allows for building a reliable pseudo-atomic model of F-actin. We also report a different state of the filament where actin protomers adopt a conformation observed in the crystal structure of the G-actin-profilin complex with an open ATP-binding cleft. Comparison of the two structural states provides insights into ATP-hydrolysis and filament dynamics. The atomic model provides a framework for understanding why every buried residue in actin has been under intense selective pressure.
Collapse
Affiliation(s)
- Vitold E Galkin
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, VA 23507, USA.
| | - Albina Orlova
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22908-0733, USA
| | - Matthijn R Vos
- FEI Company, Nanoport Europe, 5651 GG Eindhoven, the Netherlands
| | - Gunnar F Schröder
- Institute of Complex Systems, Forschungszentrum Jülich, 52425 Jülich, Germany; Physics Department, University of Düsseldorf, 40225 Düsseldorf, Germany
| | - Edward H Egelman
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22908-0733, USA.
| |
Collapse
|
6
|
Al Haj A, Mazur AJ, Buchmeier S, App C, Theiss C, Silvan U, Schoenenberger CA, Jockusch BM, Hannappel E, Weeds AG, Mannherz HG. Thymosin beta4 inhibits ADF/cofilin stimulated F-actin cycling and hela cell migration: Reversal by active Arp2/3 complex. Cytoskeleton (Hoboken) 2013; 71:95-107. [DOI: 10.1002/cm.21128] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Revised: 04/17/2013] [Accepted: 12/10/2013] [Indexed: 12/19/2022]
Affiliation(s)
- Abdulatif Al Haj
- Department of Anatomy and Molecular Embryology; Ruhr-University; Bochum Germany
| | | | - Sabine Buchmeier
- Cell Biology Group; Institute of Zoology; Technical University of Braunschweig; Germany
| | - Christine App
- Institute of Biochemistry; University of Erlangen; Erlangen Germany
| | | | - Unai Silvan
- Maurice E. Müller Institute for Structural Biology, Biocenter; Basel Switzerland
| | | | - Brigitte M. Jockusch
- Cell Biology Group; Institute of Zoology; Technical University of Braunschweig; Germany
| | - Ewald Hannappel
- Institute of Biochemistry; University of Erlangen; Erlangen Germany
| | - Alan G. Weeds
- MRC Laboratory of Molecular Biology and Trinity College; Cambridge United Kingdom
| | - Hans Georg Mannherz
- Department of Anatomy and Molecular Embryology; Ruhr-University; Bochum Germany
- Department of Physical Biochemistry; Max-Planck-Institute of Molecular Physiology; Dortmund Germany
| |
Collapse
|
7
|
Schönichen A, Mannherz HG, Behrmann E, Mazur AJ, Kühn S, Silván U, Schoenenberger CA, Fackler OT, Raunser S, Dehmelt L, Geyer M. FHOD1 is a combined actin filament capping and bundling factor that selectively associates with actin arcs and stress fibers. J Cell Sci 2013; 126:1891-901. [PMID: 23444374 DOI: 10.1242/jcs.126706] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Formins are actin polymerization factors that are known to nucleate and elongate actin filaments at the barbed end. In the present study we show that human FHOD1 lacks actin nucleation and elongation capacity, but acts as an actin bundling factor with capping activity toward the filament barbed end. Constitutively active FHOD1 associates with actin filaments in filopodia and lamellipodia at the leading edge, where it moves with the actin retrograde flow. At the base of lamellipodia, FHOD1 is enriched in nascent, bundled actin arcs as well as in more mature stress fibers. This function requires actin-binding domains located N-terminally to the canonical FH1-FH2 element. The bundling phenotype is maintained in the presence of tropomyosin, confirmed by electron microscopy showing assembly of 5 to 10 actin filaments into parallel, closely spaced filament bundles. Taken together, our data suggest a model in which FHOD1 stabilizes actin filaments by protecting barbed ends from depolymerization with its dimeric FH2 domain, whereas the region N-terminal to the FH1 domain mediates F-actin bundling by simultaneously binding to the sides of adjacent F-actin filaments.
Collapse
Affiliation(s)
- André Schönichen
- Department of Physical Biochemistry, Max Planck Institute of Molecular Physiology, 44227 Dortmund, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Graceffa P, Lee E, Stafford WF. Disulfide cross-linked antiparallel actin dimer. Biochemistry 2013; 52:1082-8. [PMID: 23293916 DOI: 10.1021/bi301208a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Oxidation of actin monomer (G-actin) with copper o-phenanthroline resulted in a rapid, high yield of disulfide cross-linked dimer. The cross-link is due to an intermolecular disulfide bond between actin Cys374 of each molecule, resulting in a tail-to-tail, i.e., antiparallel, actin dimer. Analytical ultracentrifugation profiles of G-actin can be ascribed to the existence of actin monomers with very little, if any, dimer. Thus, actin dimers are not energetically favorable, indicating that cross-linked dimers are formed during random diffusional collisions. On the other hand, a similar oxidation of actin polymer (F-actin) resulted in a much lower yield of the cross-linked actin dimer that showed no sign of leveling off. Therefore, it is proposed that the cross-linked dimer from actin polymer is due to collisional complexes of actin monomers that are in equilibrium with the polymer during actin treadmilling. These results account for the reported observation that during the early stages of actin polymerization (where the actin monomer concentration is high) cross-linked antiparallel actin dimers are formed in relatively high yield whereas none are formed at later stages of polymerization. These findings raise questions concerning the validity of the antiparallel actin dimer model of in vitro actin polymerization that is based on the assumption that the ability to form cross-linked actin dimers implies the existence of stable dimers.
Collapse
Affiliation(s)
- Philip Graceffa
- Boston Biomedical Research Institute, Watertown, MA 02472, USA.
| | | | | |
Collapse
|
9
|
DiMattia MA, Watts NR, Stahl SJ, Grimes JM, Steven AC, Stuart DI, Wingfield PT. Antigenic switching of hepatitis B virus by alternative dimerization of the capsid protein. Structure 2013; 21:133-142. [PMID: 23219881 PMCID: PMC3544974 DOI: 10.1016/j.str.2012.10.017] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Revised: 10/01/2012] [Accepted: 10/04/2012] [Indexed: 01/12/2023]
Abstract
Chronic hepatitis B virus (HBV) infection afflicts millions worldwide with cirrhosis and liver cancer. HBV e-antigen (HBeAg), a clinical marker for disease severity, is a nonparticulate variant of the protein (core antigen, HBcAg) that forms the building-blocks of capsids. HBeAg is not required for virion production, but is implicated in establishing immune tolerance and chronic infection. Here, we report the crystal structure of HBeAg, which clarifies how the short N-terminal propeptide of HBeAg induces a radically altered mode of dimerization relative to HBcAg (∼140° rotation), locked into place through formation of intramolecular disulfide bridges. This structural switch precludes capsid assembly and engenders a distinct antigenic repertoire, explaining why the two antigens are cross-reactive at the T cell level (through sequence identity) but not at the B cell level (through conformation). The structure offers insight into how HBeAg may establish immune tolerance for HBcAg while evading its robust immunogenicity.
Collapse
Affiliation(s)
- Michael A. DiMattia
- Division of Structural Biology, Henry Wellcome Building for Genomic Medicine, University of Oxford, Roosevelt Drive, Headington, OX3 7BN, U.K
- Laboratory of Structural Biology Research, National Institute of Arthritis and Musculoskeletal and Skin Diseases; National Institutes of Health, Bethesda, MD 20892, U.S.A
| | - Norman R. Watts
- Protein Expression Laboratory, National Institute of Arthritis and Musculoskeletal and Skin Diseases; National Institutes of Health, Bethesda, MD 20892, U.S.A
| | - Stephen J. Stahl
- Protein Expression Laboratory, National Institute of Arthritis and Musculoskeletal and Skin Diseases; National Institutes of Health, Bethesda, MD 20892, U.S.A
| | - Jonathan M. Grimes
- Division of Structural Biology, Henry Wellcome Building for Genomic Medicine, University of Oxford, Roosevelt Drive, Headington, OX3 7BN, U.K
- Diamond Light Source, Didcot, OX11 0DE, U.K
| | - Alasdair C. Steven
- Laboratory of Structural Biology Research, National Institute of Arthritis and Musculoskeletal and Skin Diseases; National Institutes of Health, Bethesda, MD 20892, U.S.A
| | - David I. Stuart
- Division of Structural Biology, Henry Wellcome Building for Genomic Medicine, University of Oxford, Roosevelt Drive, Headington, OX3 7BN, U.K
- Diamond Light Source, Didcot, OX11 0DE, U.K
| | - Paul T. Wingfield
- Protein Expression Laboratory, National Institute of Arthritis and Musculoskeletal and Skin Diseases; National Institutes of Health, Bethesda, MD 20892, U.S.A
| |
Collapse
|
10
|
Vartiainen MK. Nucleo-cytoplasmic actin relationships in Stockholm. Nucleus 2012; 3:123-5. [PMID: 22555602 DOI: 10.4161/nucl.19515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The Wenner-Gren Foundations symposium "Actin and Actin-associated Proteins from Genes to Polysomes" took place at the Wenner-Gren Center in Stockholm, Sweden, on September 7-10, 2011. As the name of the symposium implied, the organizing committee, consisting of local organizers Piergiorgio Percipalle, Neus Visa and Ann Kristin Östlund Farrants from Stockholm and Thoru Pederson from Worcester, MA USA, had boldly decided to embrace the unconventional roles of actin, namely its connections to the gene expression apparatus all the way from the nuclear genes to the cytoplasmic protein synthesis machineries. The organizers assembled a respectable crowd of 25 speakers with very diverse backgrounds, but a common interest in understanding how actin and its associated factors may function outside their conventional roles in the cytoskeleton. As many people presented unpublished work, I will not go into detail of these talks but will rather aim to highlight the discussed topics and their possible implications to this exciting research field.
Collapse
Affiliation(s)
- Maria K Vartiainen
- Program in Cell and Molecular Biology, Institute of Biotechnology, University of Helsinki, Helsinki, Finland.
| |
Collapse
|