1
|
Dabravolski S, Orekhov NA, Melnichenko A, Sukhorukov VN, Popov MA, Orekhov A. Cholesteryl Ester Transfer Protein (CETP) Variations in Relation to Lipid Profiles and Cardiovascular Diseases: An Update. Curr Pharm Des 2024; 30:742-756. [PMID: 38425105 DOI: 10.2174/0113816128284695240219093612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/02/2024] [Accepted: 01/11/2024] [Indexed: 03/02/2024]
Abstract
Lipid metabolism plays an essential role in the pathogenesis of cardiovascular and metabolic diseases. Cholesteryl ester transfer protein (CETP) is a crucial glycoprotein involved in lipid metabolism by transferring cholesteryl esters (CE) and triglycerides (TG) between plasma lipoproteins. CETP activity results in reduced HDL-C and increased VLDL- and LDL-C concentrations, thus increasing the risk of cardiovascular and metabolic diseases. In this review, we discuss the structure of CETP and its mechanism of action. Furthermore, we focus on recent experiments on animal CETP-expressing models, deciphering the regulation and functions of CETP in various genetic backgrounds and interaction with different external factors. Finally, we discuss recent publications revealing the association of CETP single nucleotide polymorphisms (SNPs) with the risk of cardiovascular and metabolic diseases, lifestyle factors, diet and therapeutic interventions. While CETP SNPs can be used as effective diagnostic markers, diet, lifestyle, gender and ethnic specificity should also be considered for effective treatment.
Collapse
Affiliation(s)
- Siarhei Dabravolski
- Department of Biotechnology Engineering, ORT Braude College, Braude Academic College of Engineering, Karmiel, Israel
| | - Nikolay A Orekhov
- Laboratory of Angiopatology, Research Institute of General Pathology and Pathophysiology, The Russian Academy of Medical Sciences, Moscow, Russian Federation
| | - Alexandra Melnichenko
- Laboratory of Angiopatology, Research Institute of General Pathology and Pathophysiology, The Russian Academy of Medical Sciences, Moscow, Russian Federation
| | - Vasily N Sukhorukov
- Laboratory of Angiopatology, Research Institute of General Pathology and Pathophysiology, The Russian Academy of Medical Sciences, Moscow, Russian Federation
| | - Mikhail A Popov
- Laboratory of Angiopatology, Research Institute of General Pathology and Pathophysiology, The Russian Academy of Medical Sciences, Moscow, Russian Federation
| | - Alexander Orekhov
- Laboratory of Angiopatology, Research Institute of General Pathology and Pathophysiology, The Russian Academy of Medical Sciences, Moscow, Russian Federation
| |
Collapse
|
2
|
Kangas P, Nyman TA, Metsähonkala L, Burns C, Tempest R, Williams T, Karttunen J, Jokinen TS. Towards optimised extracellular vesicle proteomics from cerebrospinal fluid. Sci Rep 2023; 13:9564. [PMID: 37308520 PMCID: PMC10261101 DOI: 10.1038/s41598-023-36706-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 06/08/2023] [Indexed: 06/14/2023] Open
Abstract
The proteomic profile of extracellular vesicles (EVs) from cerebrospinal fluid (CSF) can reveal novel biomarkers for diseases of the brain. Here, we validate an ultrafiltration combined with size-exclusion chromatography (UF-SEC) method for isolation of EVs from canine CSF and probe the effect of starting volume on the EV proteomics profile. First, we performed a literature review of CSF EV articles to define the current state of art, discovering a need for basic characterisation of CSF EVs. Secondly, we isolated EVs from CSF by UF-SEC and characterised the SEC fractions by protein amount, particle count, transmission electron microscopy, and immunoblotting. Data are presented as mean ± standard deviation. Using proteomics, SEC fractions 3-5 were compared and enrichment of EV markers in fraction 3 was detected, whereas fractions 4-5 contained more apolipoproteins. Lastly, we compared starting volumes of pooled CSF (6 ml, 3 ml, 1 ml, and 0.5 ml) to evaluate the effect on the proteomic profile. Even with a 0.5 ml starting volume, 743 ± 77 or 345 ± 88 proteins were identified depending on whether 'matches between runs' was active in MaxQuant. The results confirm that UF-SEC effectively isolates CSF EVs and that EV proteomic analysis can be performed from 0.5 ml of canine CSF.
Collapse
Affiliation(s)
- Petra Kangas
- Department of Equine and Small Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland.
| | - Tuula A Nyman
- Department of Immunology, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Liisa Metsähonkala
- Epilepsia Helsinki, Member of ERN-EpiCARE, Helsinki University Hospital, Helsinki, Finland
| | | | | | - Tim Williams
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Jenni Karttunen
- Department of Equine and Small Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Tarja S Jokinen
- Department of Equine and Small Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
- Faculty of Medicine, University of Helsinki, Helsinki, Finland
| |
Collapse
|
3
|
Xue H, Zhang M, Liu J, Wang J, Ren G. Structure-based mechanism and inhibition of cholesteryl ester transfer protein. Curr Atheroscler Rep 2023; 25:155-166. [PMID: 36881278 PMCID: PMC10027838 DOI: 10.1007/s11883-023-01087-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/02/2023] [Indexed: 03/08/2023]
Abstract
PURPOSE OF REVIEW Cholesteryl ester transfer proteins (CETP) regulate plasma cholesterol levels by transferring cholesteryl esters (CEs) among lipoproteins. Lipoprotein cholesterol levels correlate with the risk factors for atherosclerotic cardiovascular disease (ASCVD). This article reviews recent research on CETP structure, lipid transfer mechanism, and its inhibition. RECENT FINDINGS Genetic deficiency in CETP is associated with a low plasma level of low-density lipoprotein cholesterol (LDL-C) and a profoundly elevated plasma level of high-density lipoprotein cholesterol (HDL-C), which correlates with a lower risk of atherosclerotic cardiovascular disease (ASCVD). However, a very high concentration of HDL-C also correlates with increased ASCVD mortality. Considering that the elevated CETP activity is a major determinant of the atherogenic dyslipidemia, i.e., pro-atherogenic reductions in HDL and LDL particle size, inhibition of CETP emerged as a promising pharmacological target during the past two decades. CETP inhibitors, including torcetrapib, dalcetrapib, evacetrapib, anacetrapib and obicetrapib, were designed and evaluated in phase III clinical trials for the treatment of ASCVD or dyslipidemia. Although these inhibitors increase in plasma HDL-C levels and/or reduce LDL-C levels, the poor efficacy against ASCVD ended interest in CETP as an anti-ASCVD target. Nevertheless, interest in CETP and the molecular mechanism by which it inhibits CE transfer among lipoproteins persisted. Insights into the structural-based CETP-lipoprotein interactions can unravel CETP inhibition machinery, which can hopefully guide the design of more effective CETP inhibitors that combat ASCVD. Individual-molecule 3D structures of CETP bound to lipoproteins provide a model for understanding the mechanism by which CETP mediates lipid transfer and which in turn, guide the rational design of new anti-ASCVD therapeutics.
Collapse
Affiliation(s)
- Han Xue
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Beijing National Laboratory for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
| | - Meng Zhang
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Jianfang Liu
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Jianjun Wang
- Beijing National Laboratory for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
| | - Gang Ren
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| |
Collapse
|
4
|
Kim H, Yi J, Yu J, Park J, Jang SK. A Simple and Effective Method to Concentrate Hepatitis C Virus: Aqueous Two-Phase System Allows Highly Efficient Enrichment of Enveloped Viruses. Viruses 2022; 14:v14091987. [PMID: 36146792 PMCID: PMC9503063 DOI: 10.3390/v14091987] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/05/2022] [Accepted: 09/05/2022] [Indexed: 11/18/2022] Open
Abstract
To investigate the proliferation cycle of a virus, virus-host interaction, and pathogenesis of a virus, virion particles must be concentrated from the media of virus cell culture or the sera of virus-infected patients. Ultracentrifugation of the culture media is a standard method for concentrating virion particles. However, this method is time-consuming and requires special equipment (ultracentrifuge). Moreover, a large number of infectious viruses are lost during enrichment. We developed a new method of hepatitis C virus (HCV) concentration to overcome the issues associated with traditional methods of virus concentration. We used an aqueous two-phase system (ATPS) to concentrate the virus. HCV, which causes various liver diseases, such as liver fibrosis, cirrhosis, and hepatocellular carcinoma, was used as a model virus to test the efficacy and reliability of the ATPS. The efficiency of HCV concentration by the ATPS was approximately three times higher than that by ultracentrifugation. Moreover, the infectivity of the concentrated HCV, which is a labile virus, remained the same after concentration of the virus by the ATPS. Considering the simplicity and effectiveness of the ATPS, it is the method of choice for concentrating viruses.
Collapse
Affiliation(s)
- Heesun Kim
- Molecular Virology Laboratory, POSTECH Biotech Center, Pohang University of Science and Technology, Pohang 37673, Korea
| | - Johan Yi
- Nanoparticle and Vesicle Laboratory, Department of Mechanical Engineering, Pohang University of Science and Technology, Pohang 37673, Korea
| | - Jinbae Yu
- Molecular Virology Laboratory, Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Korea
| | - Jaesung Park
- Nanoparticle and Vesicle Laboratory, Department of Mechanical Engineering, Pohang University of Science and Technology, Pohang 37673, Korea
- Nanoparticle and Vesicle Laboratory, School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang 37673, Korea
- Correspondence: (J.P.); (S.K.J.)
| | - Sung Key Jang
- Molecular Virology Laboratory, POSTECH Biotech Center, Pohang University of Science and Technology, Pohang 37673, Korea
- Molecular Virology Laboratory, Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Korea
- Correspondence: (J.P.); (S.K.J.)
| |
Collapse
|
5
|
Benfrid S, Park K, Dellarole M, Voss JE, Tamietti C, Pehau‐Arnaudet G, Raynal B, Brûlé S, England P, Zhang X, Mikhailova A, Hasan M, Ungeheuer M, Petres S, Biering SB, Harris E, Sakuntabhai A, Buchy P, Duong V, Dussart P, Coulibaly F, Bontems F, Rey FA, Flamand M. Dengue virus NS1 protein conveys pro-inflammatory signals by docking onto high-density lipoproteins. EMBO Rep 2022; 23:e53600. [PMID: 35607830 PMCID: PMC10549233 DOI: 10.15252/embr.202153600] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 04/24/2022] [Accepted: 04/27/2022] [Indexed: 10/05/2023] Open
Abstract
The dengue virus nonstructural protein 1 (NS1) is a secreted virulence factor that modulates complement, activates immune cells and alters endothelial barriers. The molecular basis of these events remains incompletely understood. Here we describe a functional high affinity complex formed between NS1 and human high-density lipoproteins (HDL). Collapse of the soluble NS1 hexamer upon binding to the lipoprotein particle leads to the anchoring of amphipathic NS1 dimeric subunits into the HDL outer layer. The stable complex can be visualized by electron microscopy as a spherical HDL with rod-shaped NS1 dimers protruding from the surface. We further show that the assembly of NS1-HDL complexes triggers the production of pro-inflammatory cytokines in human primary macrophages while NS1 or HDL alone do not. Finally, we detect NS1 in complex with HDL and low-density lipoprotein (LDL) particles in the plasma of hospitalized dengue patients and observe NS1-apolipoprotein E-positive complexes accumulating overtime. The functional reprogramming of endogenous lipoprotein particles by NS1 as a means to exacerbate systemic inflammation during viral infection provides a new paradigm in dengue pathogenesis.
Collapse
Affiliation(s)
- Souheyla Benfrid
- Unité de Virologie StructuraleInstitut Pasteur and CNRS UMR3569ParisFrance
- Université Paris Descartes SorbonneParis CitéFrance
- Present address:
Laboratoire de Santé AnimaleANSES, INRA, ENVA, UMR 1161Université Paris‐EstMaisons‐AlfortFrance
| | - Kyu‐Ho Park
- Unité de Virologie StructuraleInstitut Pasteur and CNRS UMR3569ParisFrance
- Present address:
Applied Molecular VirologyInstitut Pasteur KoreaSeongnam‐siKorea
| | - Mariano Dellarole
- Unité de Virologie StructuraleInstitut Pasteur and CNRS UMR3569ParisFrance
- Present address:
Virus Biophysics LaboratoryBionanosciences Research Center (CIBION)National Scientific and Technical Research Council (CONICET)Ciudad Autónoma de Buenos AiresArgentina
| | - James E Voss
- Unité de Virologie StructuraleInstitut Pasteur and CNRS UMR3569ParisFrance
- Present address:
Department of Immunology and MicrobiologyThe Scripps Research InstituteLa JollaCAUSA
| | - Carole Tamietti
- Unité de Virologie StructuraleInstitut Pasteur and CNRS UMR3569ParisFrance
| | | | - Bertrand Raynal
- Molecular Biophysics FacilityCNRS UMR 3528Institut PasteurParisFrance
| | - Sébastien Brûlé
- Molecular Biophysics FacilityCNRS UMR 3528Institut PasteurParisFrance
| | - Patrick England
- Molecular Biophysics FacilityCNRS UMR 3528Institut PasteurParisFrance
| | - Xiaokang Zhang
- Unité de Virologie StructuraleInstitut Pasteur and CNRS UMR3569ParisFrance
- Present address:
Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulationthe Brain Cognition and Brain Disease Institute (BCBDI)Shenzhen Institutes of Advanced TechnologyChinese Academy of SciencesShenzhen‐Hong Kong Institute of Brain Science‐Shenzhen Fundamental Research InstitutionsShenzhenChina
| | - Anastassia Mikhailova
- HIV Inflammation et PersistanceInstitut PasteurParisFrance
- Present address:
Division of Molecular NeurobiologyDepartment of Medical Biochemistry and BiophysicsKarolinska InstituteStockholmSweden
| | - Milena Hasan
- Cytometry and Biomarkers Unit of Technology and ServiceCB UTechSParisFrance
| | | | - Stéphane Petres
- Production and Purification of Recombinant Proteins FacilityInstitut PasteurParisFrance
| | - Scott B Biering
- Division of Infectious Diseases and VaccinologySchool of Public HealthUniversity of CaliforniaBerkeleyCAUSA
| | - Eva Harris
- Division of Infectious Diseases and VaccinologySchool of Public HealthUniversity of CaliforniaBerkeleyCAUSA
| | | | - Philippe Buchy
- Virology UnitInstitut Pasteur du CambodgeInstitut Pasteur International NetworkPhnom PenhCambodia
- Present address:
GlaxoSmithKline Vaccines R&DSingaporeSingapore
| | - Veasna Duong
- Virology UnitInstitut Pasteur du CambodgeInstitut Pasteur International NetworkPhnom PenhCambodia
| | - Philippe Dussart
- Virology UnitInstitut Pasteur du CambodgeInstitut Pasteur International NetworkPhnom PenhCambodia
| | - Fasséli Coulibaly
- Department of Biochemistry and Molecular BiologyMonash UniversityClaytonVic.Australia
| | - François Bontems
- Unité de Virologie StructuraleInstitut Pasteur and CNRS UMR3569ParisFrance
- Département de Biologie et Chimie StructuralesInstitut de Chimie des Substances Naturelles, CNRS UPR2301Gif‐sur‐YvetteFrance
| | - Félix A Rey
- Unité de Virologie StructuraleInstitut Pasteur and CNRS UMR3569ParisFrance
| | - Marie Flamand
- Unité de Virologie StructuraleInstitut Pasteur and CNRS UMR3569ParisFrance
| |
Collapse
|
6
|
Khalaf RA, Awad M, Al-Qirim T, Sabbah D. Synthesis and Molecular Modeling of Novel 3,5-Bis(trifluoromethyl)benzylamino Benzamides as Potential CETP Inhibitors. Med Chem 2021; 18:417-426. [PMID: 34463228 DOI: 10.2174/1573406417666210830125431] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 05/12/2021] [Accepted: 05/15/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND There is an alarming spread of cases of lipid-disorders in the world that occur due to harmful lifestyle habits, hereditary risk influences, or as a result of other illnesses or medicines. Cholesteryl ester transfer protein (CETP) is a 476-residue lipophilic glycoprotein that helps in the transport of cholesteryl ester and phospholipids from the atheroprotective HDL to the proatherogenic LDL and VLDL. Inhibition of CETP leads to elevation of HDL cholesterol and reduction of LDL cholesterol and triglycerides, so it's considered a good target for the treatment of hyperlipidemia and its comorbidities. OBJECTIVES In this research synthesis, characterization, molecular modeling and biological evaluation of eight 3,5-bis(trifluoromethyl)benzylamino benzamides 9a-d and 10a-d were carried out. METHODS The synthesized molecules were characterized using 1H-NMR, 13C-NMR, IR and HR-MS. They were in vitro biologically tested to estimate their CETP inhibitory activity. RESULTS These compounds offered inhibitory effectiveness ranging from 42.2% to 100% at a concentration of 10 µM. Compounds bearing unsubstituted three aromatic rings (9a) or ortho-CF3 substituted (9b) were the most effective compounds among their analogs and showed IC50 values of 1.36 and 0.69 μM, respectively. The high docking scores of 9a-d and 10a-d against 4EWS imply that they might be possible CETP inhibitors. Pharmacophore mapping results demonstrate that the series approves the fingerprint of CETP active inhibitors and therefore explains their high binding affinity against CETP binding site. CONCLUSION This work concludes that 3,5-bis(trifluoromethyl)benzylamino benzamides can serve as a promising CETP inhibitors lead compounds.
Collapse
Affiliation(s)
- Reema Abu Khalaf
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman. Jordan
| | - Mohammad Awad
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman. Jordan
| | - Tariq Al-Qirim
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman. Jordan
| | - Dima Sabbah
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman. Jordan
| |
Collapse
|
7
|
Singh SA, Andraski AB, Higashi H, Lee LH, Ramsaroop A, Sacks FM, Aikawa M. Metabolism of PLTP, CETP, and LCAT on multiple HDL sizes using the Orbitrap Fusion Lumos. JCI Insight 2021; 6:143526. [PMID: 33351780 PMCID: PMC7934878 DOI: 10.1172/jci.insight.143526] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 12/16/2020] [Indexed: 11/18/2022] Open
Abstract
Recent in vivo tracer studies demonstrated that targeted mass spectrometry (MS) on the Q Exactive Orbitrap could determine the metabolism of HDL proteins 100s-fold less abundant than apolipoprotein A1 (APOA1). In this study, we demonstrate that the Orbitrap Lumos can measure tracer in proteins whose abundances are 1000s-fold less than APOA1, specifically the lipid transfer proteins phospholipid transfer protein (PLTP), cholesterol ester transfer protein (CETP), and lecithin-cholesterol acyl transferase (LCAT). Relative to the Q Exactive, the Lumos improved tracer detection by reducing tracer enrichment compression, thereby providing consistent enrichment data across multiple HDL sizes from 6 participants. We determined by compartmental modeling that PLTP is secreted in medium and large HDL (alpha2, alpha1, and alpha0) and is transferred from medium to larger sizes during circulation from where it is catabolized. CETP is secreted mainly in alpha1 and alpha2 and remains in these sizes during circulation. LCAT is secreted mainly in medium and small HDL (alpha2, alpha3, prebeta). Unlike PLTP and CETP, LCAT’s appearance on HDL is markedly delayed, indicating that LCAT may reside for a time outside of systemic circulation before attaching to HDL in plasma. The determination of these lipid transfer proteins’ unique metabolic structures was possible due to advances in MS technologies.
Collapse
Affiliation(s)
- Sasha A Singh
- Center for Interdisciplinary Cardiovascular Sciences, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Allison B Andraski
- Department of Nutrition and Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Hideyuki Higashi
- Center for Interdisciplinary Cardiovascular Sciences, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Lang Ho Lee
- Center for Interdisciplinary Cardiovascular Sciences, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Ashisha Ramsaroop
- Center for Interdisciplinary Cardiovascular Sciences, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Frank M Sacks
- Department of Nutrition and Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA.,Channing Division of Network Medicine, Department of Medicine, and
| | - Masanori Aikawa
- Center for Interdisciplinary Cardiovascular Sciences, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA.,Channing Division of Network Medicine, Department of Medicine, and.,Center for Excellence in Vascular Biology, Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
8
|
Dupas S, Neiers F, Granon E, Rougeux E, Dupont S, Beney L, Bousquet F, Shaik HA, Briand L, Wojtasek H, Charles JP. Collisional mechanism of ligand release by Bombyxmori JHBP, a member of the TULIP / Takeout family of lipid transporters. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2020; 117:103293. [PMID: 31809784 DOI: 10.1016/j.ibmb.2019.103293] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 11/29/2019] [Accepted: 12/01/2019] [Indexed: 06/10/2023]
Abstract
Juvenile hormones (JHs) regulate important processes in insects, such as postembryonic development and reproduction. In the hemolymph of Lepidoptera, these lipophilic sesquiterpenic hormones are transported from their site of synthesis to target tissues by high affinity carriers, the juvenile hormone binding proteins (JHBPs). Lepidopteran JHBPs belong to a recently uncovered, yet very ancient family of proteins sharing a common lipid fold (TULIP domain) and involved in shuttling various lipid ligands. One important, but poorly understood aspect of JHs action, is the mechanism of hormone transfer to or through the plasma membranes of target cells. Since many membrane-active peptides and proteins, such as the pore-forming bacterial toxins, are activated by low pH or interaction with phospholipid membranes, we have examined the effect of these factors on JH binding by JHBPs. The affinity of Bombyx mori and Manduca sexta JHBPs for JH III was determined by the DCC assay, equilibrium dialysis, and isothermal titration calorimetry, and found to be greatly reduced at low pH, in agreement with previous observations. Loss of binding was accompanied by changes in fluorescence and near-UV CD spectra, indicating significant changes in protein structure in the environment of aromatic residues. The apparent dissociation rate constant (koff) of the JHBP-JH III complex was greater at acidic pH, suggesting that low pH favors ligand release by opening of the binding pocket. The affinity of recombinant B. mori JHBP (rBmJHBP) was also decreased in the presence of anionic phospholipid vesicles. Measurements of steady-state fluorescence anisotropy with the lipophilic probe TMA-DPH demonstrated that rBmJHBP specifically interacts with anionic membranes. These results suggest the existence of a collisional mechanism for ligand release that may be important for delivery of JHs to the target cells, and could be relevant to the function of related members of this emerging family of lipid-transport proteins.
Collapse
Affiliation(s)
- Stéphane Dupas
- Université de Bourgogne Franche-Comté, Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, UMR 6265 CNRS, UMR 1324 INRA, 6, Bd Gabriel, F-21000, Dijon, France
| | - Fabrice Neiers
- Université de Bourgogne Franche-Comté, Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, UMR 6265 CNRS, UMR 1324 INRA, 6, Bd Gabriel, F-21000, Dijon, France
| | - Emma Granon
- Université de Bourgogne Franche-Comté, Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, UMR 6265 CNRS, UMR 1324 INRA, 6, Bd Gabriel, F-21000, Dijon, France
| | - Erwan Rougeux
- Université de Bourgogne Franche-Comté, Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, UMR 6265 CNRS, UMR 1324 INRA, 6, Bd Gabriel, F-21000, Dijon, France
| | - Sébastien Dupont
- Université de Bourgogne Franche-Comté, AgroSup Dijon, PAM UMR A 02.102, F-21000, Dijon, France
| | - Laurent Beney
- Université de Bourgogne Franche-Comté, AgroSup Dijon, PAM UMR A 02.102, F-21000, Dijon, France
| | - François Bousquet
- Université de Bourgogne Franche-Comté, Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, UMR 6265 CNRS, UMR 1324 INRA, 6, Bd Gabriel, F-21000, Dijon, France
| | - Haq Abdul Shaik
- Université de Bourgogne Franche-Comté, Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, UMR 6265 CNRS, UMR 1324 INRA, 6, Bd Gabriel, F-21000, Dijon, France
| | - Loic Briand
- Université de Bourgogne Franche-Comté, Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, UMR 6265 CNRS, UMR 1324 INRA, 6, Bd Gabriel, F-21000, Dijon, France
| | - Hubert Wojtasek
- Institute of Chemistry, Opole University, Ul. Oleska 48, 45-052, Opole, Poland.
| | - Jean-Philippe Charles
- Université de Bourgogne Franche-Comté, Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, UMR 6265 CNRS, UMR 1324 INRA, 6, Bd Gabriel, F-21000, Dijon, France.
| |
Collapse
|
9
|
Izem L, Liu Y, Morton RE. Exon 9-deleted CETP inhibits full length-CETP synthesis and promotes cellular triglyceride storage. J Lipid Res 2020; 61:422-431. [PMID: 31988147 DOI: 10.1194/jlr.ra120000583] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 01/27/2020] [Indexed: 11/20/2022] Open
Abstract
Cholesteryl ester transfer protein (CETP) exists as full-length (FL) and exon 9 (E9)-deleted isoforms. The function of E9-deleted CETP is poorly understood. Here, we investigated the role of E9-deleted CETP in regulating the secretion of FL-CETP by cells and explored its possible role in intracellular lipid metabolism. CETP overexpression in cells that naturally express CETP confirmed that E9-deleted CETP is not secreted, and showed that cellular FL- and E9-deleted CETP form an isolatable complex. Coexpression of CETP isoforms lowered cellular levels of both proteins and impaired FL-CETP secretion. These effects were due to reduced synthesis of both isoforms; however, the predominate consequence of FL- and E9-deleted CETP coexpression is impaired FL-CETP synthesis. We reported previously that reducing both CETP isoforms or overexpressing FL-CETP impairs cellular triglyceride (TG) storage. To investigate this further, E9-deleted CETP was expressed in SW872 cells that naturally synthesize CETP and in mouse 3T3-L1 cells that do not. E9-deleted CETP overexpression stimulated SW872 triglyceride synthesis and increased stored TG 2-fold. Expression of E9-deleted CETP in mouse 3T3-L1 cells produced a similar lipid phenotype. In vitro, FL-CETP promotes the transfer of TG from ER-enriched membranes to lipid droplets. E9-deleted CETP also promoted this transfer, although less effectively, and it inhibited the transfer driven by FL-CETP. We conclude that FL- and E9-deleted CETP isoforms interact to mutually decrease their intracellular levels and impair FL-CETP secretion by reducing CETP biosynthesis. E9-deleted CETP, like FL-CETP, alters cellular TG metabolism and storage but in a contrary manner.
Collapse
Affiliation(s)
- Lahoucine Izem
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195
| | - Yan Liu
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195
| | - Richard E Morton
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195
| |
Collapse
|
10
|
Frambach SJCM, de Haas R, Smeitink JAM, Rongen GA, Russel FGM, Schirris TJJ. Brothers in Arms: ABCA1- and ABCG1-Mediated Cholesterol Efflux as Promising Targets in Cardiovascular Disease Treatment. Pharmacol Rev 2020; 72:152-190. [PMID: 31831519 DOI: 10.1124/pr.119.017897] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Atherosclerosis is a leading cause of cardiovascular disease worldwide, and hypercholesterolemia is a major risk factor. Preventive treatments mainly focus on the effective reduction of low-density lipoprotein cholesterol, but their therapeutic value is limited by the inability to completely normalize atherosclerotic risk, probably due to the disease complexity and multifactorial pathogenesis. Consequently, high-density lipoprotein cholesterol gained much interest, as it appeared to be cardioprotective due to its major role in reverse cholesterol transport (RCT). RCT facilitates removal of cholesterol from peripheral tissues, including atherosclerotic plaques, and its subsequent hepatic clearance into bile. Therefore, RCT is expected to limit plaque formation and progression. Cellular cholesterol efflux is initiated and propagated by the ATP-binding cassette (ABC) transporters ABCA1 and ABCG1. Their expression and function are expected to be rate-limiting for cholesterol efflux, which makes them interesting targets to stimulate RCT and lower atherosclerotic risk. This systematic review discusses the molecular mechanisms relevant for RCT and ABCA1 and ABCG1 function, followed by a critical overview of potential pharmacological strategies with small molecules to enhance cellular cholesterol efflux and RCT. These strategies include regulation of ABCA1 and ABCG1 expression, degradation, and mRNA stability. Various small molecules have been demonstrated to increase RCT, but the underlying mechanisms are often not completely understood and are rather unspecific, potentially causing adverse effects. Better understanding of these mechanisms could enable the development of safer drugs to increase RCT and provide more insight into its relation with atherosclerotic risk. SIGNIFICANCE STATEMENT: Hypercholesterolemia is an important risk factor of atherosclerosis, which is a leading pathological mechanism underlying cardiovascular disease. Cholesterol is removed from atherosclerotic plaques and subsequently cleared by the liver into bile. This transport is mediated by high-density lipoprotein particles, to which cholesterol is transferred via ATP-binding cassette transporters ABCA1 and ABCG1. Small-molecule pharmacological strategies stimulating these transporters may provide promising options for cardiovascular disease treatment.
Collapse
Affiliation(s)
- Sanne J C M Frambach
- Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Sciences (S.J.C.M.F., G.A.R., F.G.M.R., T.J.J.S.), Radboud Center for Mitochondrial Medicine (S.J.C.M.F., R.d.H., J.A.M.S., F.G.M.R., T.J.J.S.), Department of Pediatrics (R.d.H., J.A.M.S.), and Department of Internal Medicine, Radboud Institute for Health Sciences (G.A.R.), Radboud University Medical Center, Nijmegen, The Netherlands
| | - Ria de Haas
- Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Sciences (S.J.C.M.F., G.A.R., F.G.M.R., T.J.J.S.), Radboud Center for Mitochondrial Medicine (S.J.C.M.F., R.d.H., J.A.M.S., F.G.M.R., T.J.J.S.), Department of Pediatrics (R.d.H., J.A.M.S.), and Department of Internal Medicine, Radboud Institute for Health Sciences (G.A.R.), Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jan A M Smeitink
- Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Sciences (S.J.C.M.F., G.A.R., F.G.M.R., T.J.J.S.), Radboud Center for Mitochondrial Medicine (S.J.C.M.F., R.d.H., J.A.M.S., F.G.M.R., T.J.J.S.), Department of Pediatrics (R.d.H., J.A.M.S.), and Department of Internal Medicine, Radboud Institute for Health Sciences (G.A.R.), Radboud University Medical Center, Nijmegen, The Netherlands
| | - Gerard A Rongen
- Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Sciences (S.J.C.M.F., G.A.R., F.G.M.R., T.J.J.S.), Radboud Center for Mitochondrial Medicine (S.J.C.M.F., R.d.H., J.A.M.S., F.G.M.R., T.J.J.S.), Department of Pediatrics (R.d.H., J.A.M.S.), and Department of Internal Medicine, Radboud Institute for Health Sciences (G.A.R.), Radboud University Medical Center, Nijmegen, The Netherlands
| | - Frans G M Russel
- Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Sciences (S.J.C.M.F., G.A.R., F.G.M.R., T.J.J.S.), Radboud Center for Mitochondrial Medicine (S.J.C.M.F., R.d.H., J.A.M.S., F.G.M.R., T.J.J.S.), Department of Pediatrics (R.d.H., J.A.M.S.), and Department of Internal Medicine, Radboud Institute for Health Sciences (G.A.R.), Radboud University Medical Center, Nijmegen, The Netherlands
| | - Tom J J Schirris
- Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Sciences (S.J.C.M.F., G.A.R., F.G.M.R., T.J.J.S.), Radboud Center for Mitochondrial Medicine (S.J.C.M.F., R.d.H., J.A.M.S., F.G.M.R., T.J.J.S.), Department of Pediatrics (R.d.H., J.A.M.S.), and Department of Internal Medicine, Radboud Institute for Health Sciences (G.A.R.), Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
11
|
Abstract
Lipids are distributed in a highly heterogeneous fashion in different cellular membranes. Only a minority of lipids achieve their final intracellular distribution through transport by vesicles. Instead, the bulk of lipid traffic is mediated by a large group of lipid transfer proteins (LTPs), which move small numbers of lipids at a time using hydrophobic cavities that stabilize lipid molecules outside membranes. Although the first LTPs were discovered almost 50 years ago, most progress in understanding these proteins has been made in the past few years, leading to considerable temporal and spatial refinement of our understanding of the function of these lipid transporters. The number of known LTPs has increased, with exciting discoveries of their multimeric assembly. Structural studies of LTPs have progressed from static crystal structures to dynamic structural approaches that show how conformational changes contribute to lipid handling at a sub-millisecond timescale. A major development has been the finding that many intracellular LTPs localize to two organelles at the same time, forming a shuttle, bridge or tube that links donor and acceptor compartments. The understanding of how different lipids achieve their final destination at the molecular level allows a better explanation of the range of defects that occur in diseases associated with lipid transport and distribution, opening up the possibility of developing therapies that specifically target lipid transfer.
Collapse
|
12
|
Matsumoto A, Takahashi Y, Chang HY, Wu YW, Yamamoto A, Ishihama Y, Takakura Y. Blood concentrations of small extracellular vesicles are determined by a balance between abundant secretion and rapid clearance. J Extracell Vesicles 2019; 9:1696517. [PMID: 31807238 PMCID: PMC6882433 DOI: 10.1080/20013078.2019.1696517] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/13/2019] [Accepted: 11/15/2019] [Indexed: 12/19/2022] Open
Abstract
Small extracellular vesicles (sEVs) are important mediators of cell–cell communication with respect to diverse physiological processes. To further understand their physiological roles, understanding blood sEV homoeostasis in a quantitative manner is desired. In this study, we propose novel kinetic approaches to estimate the secretion and clearance of mouse plasma–derived sEVs (MP-sEVs) based on the hypothesis that blood sEV concentrations are determined by a balance between the secretion and clearance of sEVs. Using our specific and sensitive sEV labelling technology, we succeeded in analysing MP-sEV clearance from the blood after intravenous administration into mice. This revealed the rapid disappearance of MP-sEVs with a half-life of approximately 7 min. Moreover, the plasma sEV secretion rate, which is presently impossible to directly evaluate, was calculated as 18 μg/min in mice based on pharmacokinetic (PK) analysis. Next, macrophage-depleted mice were prepared as a model of disrupted sEV homoeostasis with retarded sEV clearance. MP-sEV concentrations were increased in macrophage-depleted mice, which probably reflected a shift in the balance of secretion and clearance. Moreover, the increased MP-sEV concentration in macrophage-depleted mice was successfully simulated using calculated clearance rate constant, secretion rate constant and volume of distribution, suggesting the validity of our PK approaches. These results demonstrate that blood sEV concentration homoeostasis can be explained by the dynamics of rapid secretion/clearance.
Collapse
Affiliation(s)
- Akihiro Matsumoto
- Department of Biopharmaceutics and Drug Metabolism, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Yuki Takahashi
- Department of Biopharmaceutics and Drug Metabolism, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Hsin-Yi Chang
- Department of Molecular and Cellular BioAnalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Yi-Wen Wu
- Department of Molecular and Cellular BioAnalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan.,Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei, Taiwan
| | - Aki Yamamoto
- Department of Biopharmaceutics and Drug Metabolism, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Yasushi Ishihama
- Department of Molecular and Cellular BioAnalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Yoshinobu Takakura
- Department of Biopharmaceutics and Drug Metabolism, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| |
Collapse
|
13
|
Cholesteryl Ester Transfer Protein Inhibition for Preventing Cardiovascular Events: JACC Review Topic of the Week. J Am Coll Cardiol 2019; 73:477-487. [PMID: 30704580 PMCID: PMC6354546 DOI: 10.1016/j.jacc.2018.10.072] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 10/19/2018] [Accepted: 10/29/2018] [Indexed: 01/01/2023]
Abstract
Cholesteryl ester transfer protein (CETP) facilitates exchange of triglycerides and cholesteryl ester between high-density lipoprotein (HDL) and apolipoprotein B100–containing lipoproteins. Evidence from genetic studies that variants in the CETP gene were associated with higher blood HDL cholesterol, lower low-density lipoprotein cholesterol, and lower risk of coronary heart disease suggested that pharmacological inhibition of CETP may be beneficial. To date, 4 CETP inhibitors have entered phase 3 cardiovascular outcome trials. Torcetrapib was withdrawn due to unanticipated off-target effects that increased risk of death, and major trials of dalcetrapib and evacetrapib were terminated early for futility. In the 30,000-patient REVEAL (Randomized Evaluation of the Effects of Anacetrapib through Lipid Modification) trial, anacetrapib doubled HDL cholesterol, reduced non-HDL cholesterol by 17 mg/dl (0.44 mmol/l), and reduced major vascular events by 9% over 4 years, but anaceptrapib was found to accumulate in adipose tissue, and regulatory approval is not being sought. Therefore, despite considerable initial promise, CETP inhibition provides insufficient cardiovascular benefit for routine use.
Collapse
|
14
|
Lei D, Liu J, Liu H, Cleveland TE, Marino JP, Lei M, Ren G. Single-Molecule 3D Images of "Hole-Hole" IgG1 Homodimers by Individual-Particle Electron Tomography. Sci Rep 2019; 9:8864. [PMID: 31221961 PMCID: PMC6586654 DOI: 10.1038/s41598-019-44978-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 05/30/2019] [Indexed: 12/20/2022] Open
Abstract
The engineering of immunoglobulin-G molecules (IgGs) is of wide interest for improving therapeutics, for example by modulating the activity or multiplexing the specificity of IgGs to recognize more than one antigen. Optimization of engineered IgG requires knowledge of three-dimensional (3D) structure of synthetic IgG. However, due to flexible nature of the molecules, their structural characterization is challenging. Here, we use our reported individual-particle electron tomography (IPET) method with optimized negative-staining (OpNS) for direct 3D reconstruction of individual IgG hole-hole homodimer molecules. The hole-hole homodimer is an undesired variant generated during the production of a bispecific antibody using the knob-into-hole heterodimer technology. A total of 64 IPET 3D density maps at ~15 Å resolutions were reconstructed from 64 individual molecules, revealing 64 unique conformations. In addition to the known Y-shaped conformation, we also observed an unusual X-shaped conformation. The 3D structure of the X-shaped conformation contributes to our understanding of the structural details of the interaction between two heavy chains in the Fc domain. The IPET approach, as an orthogonal technique to characterize the 3D structure of therapeutic antibodies, provides insight into the 3D structural variety and dynamics of heterogeneous IgG molecules.
Collapse
Affiliation(s)
- Dongsheng Lei
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Jianfang Liu
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Hongbin Liu
- Protein Analytical Chemistry, Genentech Inc., South San Francisco, CA, 94080, USA
| | - Thomas E Cleveland
- Institute for Bioscience and Biotechnology Research, National Institute of Standards and Technology and the University of Maryland, Rockville, MD, 20850, USA
| | - John P Marino
- Institute for Bioscience and Biotechnology Research, National Institute of Standards and Technology and the University of Maryland, Rockville, MD, 20850, USA
| | - Ming Lei
- Protein Analytical Chemistry, Genentech Inc., South San Francisco, CA, 94080, USA.
| | - Gang Ren
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
| |
Collapse
|
15
|
Jansen M, Puetz G, Hoffmann MM, Winkler K. A mathematical model to estimate cholesterylester transfer protein (CETP) triglycerides flux in human plasma. BMC SYSTEMS BIOLOGY 2019; 13:12. [PMID: 30670016 PMCID: PMC6341636 DOI: 10.1186/s12918-019-0679-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 01/04/2019] [Indexed: 12/31/2022]
Abstract
Background Cholesterylester transfer protein (CETP) modulates the composition of various lipoproteins associated with cardiovascular disease. Despite its central role in lipoprotein metabolism, its mode of action is still not fully understood. Here we present a simple way to estimate CETP-mediated lipid fluxes between different lipoprotein fractions. Results The model derived adequately describes the observed findings, especially regarding low- and high dense lipoproteins (LDL and HDL), delivering correlation coefficients of R2 = 0.567 (p < 0.001) and R2 = 0.466 (p < 0.001), respectively. These estimated fluxes correlate best among all other measured concentrations and ‘lipid per lipoprotein’ ratios to the observed fluxes. Conclusion Our model approach is independent of CETP-action’s exact mechanistic mode. It is simple and easy to apply, and may be a useful tool in revealing CETP’s ambiguous role in lipid metabolism. The model mirrors a diffusion-like exchange of triglycerides between lipoproteins. Cholesteryl ester and triglyceride concentrations measured in HDL, LDL and VLDL are sufficient to apply the model on a plasma sample. Electronic supplementary material The online version of this article (10.1186/s12918-019-0679-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Martin Jansen
- Institute of Clinical Chemistry and Laboratory Medicine, Medical Centre - University of Freiburg, Freiburg im Breisgau, Germany. .,Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany.
| | - Gerhard Puetz
- Institute of Clinical Chemistry and Laboratory Medicine, Medical Centre - University of Freiburg, Freiburg im Breisgau, Germany.,Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Michael M Hoffmann
- Institute of Clinical Chemistry and Laboratory Medicine, Medical Centre - University of Freiburg, Freiburg im Breisgau, Germany.,Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Karl Winkler
- Institute of Clinical Chemistry and Laboratory Medicine, Medical Centre - University of Freiburg, Freiburg im Breisgau, Germany.,Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| |
Collapse
|
16
|
Zhang M, Zhai X, Li J, Albers JJ, Vuletic S, Ren G. Structural basis of the lipid transfer mechanism of phospholipid transfer protein (PLTP). Biochim Biophys Acta Mol Cell Biol Lipids 2018; 1863:1082-1094. [PMID: 29883800 PMCID: PMC6114099 DOI: 10.1016/j.bbalip.2018.06.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 05/10/2018] [Accepted: 06/01/2018] [Indexed: 12/14/2022]
Abstract
Human phospholipid transfer protein (PLTP) mediates the transfer of phospholipids among atheroprotective high-density lipoproteins (HDL) and atherogenic low-density lipoproteins (LDL) by an unknown mechanism. Delineating this mechanism would represent the first step towards understanding PLTP-mediated lipid transfers, which may be important for treating lipoprotein abnormalities and cardiovascular disease. Here, using various electron microscopy techniques, PLTP is revealed to have a banana-shaped structure similar to cholesteryl ester transfer protein (CETP). We provide evidence that PLTP penetrates into the HDL and LDL surfaces, respectively, and then forms a ternary complex with HDL and LDL. Insights into the interaction of PLTP with lipoproteins at the molecular level provide a basis to understand the PLTP-dependent lipid transfer mechanisms for dyslipidemia treatment.
Collapse
Affiliation(s)
- Meng Zhang
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States
| | - Xiaobo Zhai
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States
| | - Jinping Li
- Department of Biomedical Science, Mercer University School of Medicine, Savannah, GA 31404, United States
| | - John J Albers
- Northwest Lipid Metabolism and Diabetes Research Laboratories, Seattle, WA 98109, United States
| | - Simona Vuletic
- Northwest Lipid Metabolism and Diabetes Research Laboratories, Seattle, WA 98109, United States.
| | - Gang Ren
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States.
| |
Collapse
|
17
|
Hao D, Yang Z, Gao T, Tian Z, Zhang L, Zhang S. Role of glycans in cholesteryl ester transfer protein revealed by molecular dynamics simulation. Proteins 2018; 86:882-891. [DOI: 10.1002/prot.25520] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 04/23/2018] [Accepted: 04/25/2018] [Indexed: 01/09/2023]
Affiliation(s)
- Dongxiao Hao
- Department of Applied Physics, School of Science; Xi'an Jiaotong University; Xi'an 710049 China
| | - Zhiwei Yang
- Department of Applied Physics, School of Science; Xi'an Jiaotong University; Xi'an 710049 China
- Department of Applied Chemistry, School of Science; Xi'an Jiaotong University; Xi'an 710049 China
| | - Teng Gao
- Department of Applied Physics, School of Science; Xi'an Jiaotong University; Xi'an 710049 China
| | - Zhiqi Tian
- Department of Applied Physics, School of Science; Xi'an Jiaotong University; Xi'an 710049 China
| | - Lei Zhang
- Department of Applied Physics, School of Science; Xi'an Jiaotong University; Xi'an 710049 China
| | - Shengli Zhang
- Department of Applied Physics, School of Science; Xi'an Jiaotong University; Xi'an 710049 China
| |
Collapse
|
18
|
Shrestha S, Wu BJ, Guiney L, Barter PJ, Rye KA. Cholesteryl ester transfer protein and its inhibitors. J Lipid Res 2018; 59:772-783. [PMID: 29487091 PMCID: PMC5928430 DOI: 10.1194/jlr.r082735] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 02/10/2018] [Indexed: 12/22/2022] Open
Abstract
Most of the cholesterol in plasma is in an esterified form that is generated in potentially cardioprotective HDLs. Cholesteryl ester transfer protein (CETP) mediates bidirectional transfers of cholesteryl esters (CEs) and triglycerides (TGs) between plasma lipoproteins. Because CE originates in HDLs and TG enters the plasma as a component of VLDLs, activity of CETP results in a net mass transfer of CE from HDLs to VLDLs and LDLs, and of TG from VLDLs to LDLs and HDLs. As inhibition of CETP activity increases the concentration of HDL-cholesterol and decreases the concentration of VLDL- and LDL-cholesterol, it has the potential to reduce atherosclerotic CVD. This has led to the development of anti-CETP neutralizing monoclonal antibodies, vaccines, and antisense oligonucleotides. Small molecule inhibitors of CETP have also been developed and four of them have been studied in large scale cardiovascular clinical outcome trials. This review describes the structure of CETP and its mechanism of action. Details of its regulation and nonlipid transporting functions are discussed, and the results of the large scale clinical outcome trials of small molecule CETP inhibitors are summarized.
Collapse
Affiliation(s)
- Sudichhya Shrestha
- School of Medical Sciences, University of New South Wales Sydney, Sydney, New South Wales, Australia
| | - Ben J Wu
- School of Medical Sciences, University of New South Wales Sydney, Sydney, New South Wales, Australia
| | - Liam Guiney
- Prince of Wales Hospital, Sydney, New South Wales, Australia
| | - Philip J Barter
- School of Medical Sciences, University of New South Wales Sydney, Sydney, New South Wales, Australia
| | - Kerry-Anne Rye
- School of Medical Sciences, University of New South Wales Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
19
|
Xue Z, Hou X, Yu W, Wen H, Zhang Q, Li D, Kou X. Lipid metabolism potential and mechanism of CPe-III from chickpea (Cicer arietinum L.). Food Res Int 2018; 104:126-133. [DOI: 10.1016/j.foodres.2017.03.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 03/08/2017] [Accepted: 03/10/2017] [Indexed: 11/17/2022]
|
20
|
Present therapeutic role of cholesteryl ester transfer protein inhibitors. Pharmacol Res 2017; 128:29-41. [PMID: 29287689 DOI: 10.1016/j.phrs.2017.12.028] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Revised: 12/24/2017] [Accepted: 12/24/2017] [Indexed: 12/16/2022]
Abstract
Therapeutic interventions aimed at increasing high-density lipoprotein (HDL) levels in order to reduce the residual cardiovascular (CV) risk of optimally drug treated patients have not provided convincing results, so far. Transfer of cholesterol from extrahepatic tissues to the liver appears to be the major atheroprotective function of HDL, and an elevation of HDL levels could represent an effective strategy. Inhibition of the cholesteryl ester transfer protein (CETP), raising HDL-cholesterol (HDL-C) and apolipoprotein A-I (apoA-I) levels, reduces low-density lipoprotein-cholesterol (LDL-C) and apoB levels, thus offering a promising approach. Despite the beneficial influence on cholesterol metabolism, off-target effects and lack of reduction in CV events and mortality (with torcetrapib, dalcetrapib and evacetrapib) highlighted the complex mechanism of CETP inhibition. After the failure of the above mentioned inhibitors in phase III clinical development, possibly due to the short duration of the trials masking benefit, the secondary prevention REVEAL trial has recently shown that the inhibitor anacetrapib significantly raised HDL-C (+104%), reduced LDL-C (-18%), with a protective effect on major coronary events (RR, 0.91; 95%CI, 0.85-0.97; p = 0.004). Whether LDL-C lowering fully accounts for the CV benefit or if HDL-C-rise is a crucial factor still needs to be determined, although the reduction of non-HDL (-18%) and Lp(a) (-25%), should be also taken into account. In spite of the positive results of the REVEAL Study, Merck decided not to proceed in asking regulatory approval for anacetrapib. Dalcetrapib (Dal-GenE study) and CKD-519 remain the two molecules within this area still in clinical development.
Collapse
|
21
|
Zhang M, Lei D, Peng B, Yang M, Zhang L, Charles MA, Rye KA, Krauss RM, Johns DG, Ren G. Assessing the mechanisms of cholesteryl ester transfer protein inhibitors. Biochim Biophys Acta Mol Cell Biol Lipids 2017; 1862:1606-1617. [PMID: 28911944 PMCID: PMC6239860 DOI: 10.1016/j.bbalip.2017.09.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 07/11/2017] [Accepted: 09/08/2017] [Indexed: 12/30/2022]
Abstract
Cholesteryl ester transfer protein (CETP) inhibitors are a new class of therapeutics for dyslipidemia that simultaneously improve two major cardiovascular disease (CVD) risk factors: elevated low-density lipoprotein (LDL) cholesterol and decreased high-density lipoprotein (HDL) cholesterol. However, the detailed molecular mechanisms underlying their efficacy are poorly understood, as are any potential mechanistic differences among the drugs in this class. Herein, we used electron microscopy (EM) to investigate the effects of three of these agents (Torcetrapib, Dalcetrapib and Anacetrapib) on CETP structure, CETP-lipoprotein complex formation and CETP-mediated cholesteryl ester (CE) transfer. We found that although none of these inhibitors altered the structure of CETP or the conformation of CETP-lipoprotein binary complexes, all inhibitors, especially Torcetrapib and Anacetrapib, increased the binding ratios of the binary complexes (e.g., HDL-CETP and LDLCETP) and decreased the binding ratios of the HDL-CETP-LDL ternary complexes. The findings of more binary complexes and fewer ternary complexes reflect a new mechanism of inhibition: one distal end of CETP bound to the first lipoprotein would trigger a conformational change at the other distal end, thus resulting in a decreased binding ratio to the second lipoprotein and a degraded CE transfer rate among lipoproteins. Thus, we suggest a new inhibitor design that should decrease the formation of both binary and ternary complexes. Decreased concentrations of the binary complex may prevent the inhibitor was induced into cell by the tight binding of binary complexes during lipoprotein metabolism in the treatment of CVD.
Collapse
Affiliation(s)
- Meng Zhang
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Department of Applied Science & Technology, University of California, Berkeley, CA 94720, USA
| | - Dongsheng Lei
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Bo Peng
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Mickey Yang
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Lei Zhang
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - M Art Charles
- School of Medicine, University of California-San Francisco, San Francisco, CA 94110, USA
| | - Kerry-Anne Rye
- School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, NSW 2052, Australia
| | - Ronald M Krauss
- Children's Hospital Oakland Research Institute, Oakland, CA 94609, USA
| | | | - Gang Ren
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
| |
Collapse
|
22
|
Wong LH, Levine TP. Tubular lipid binding proteins (TULIPs) growing everywhere. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1864:1439-1449. [PMID: 28554774 PMCID: PMC5507252 DOI: 10.1016/j.bbamcr.2017.05.019] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 05/11/2017] [Accepted: 05/17/2017] [Indexed: 12/27/2022]
Abstract
Tubular lipid binding proteins (TULIPs) have become a focus of interest in the cell biology of lipid signalling, lipid traffic and membrane contact sites. Each tubular domain has an internal pocket with a hydrophobic lining that can bind a hydrophobic molecule such as a lipid. This allows TULIP proteins to carry lipids through the aqueous phase. TULIP domains were first found in a large family of extracellular proteins related to the bacterial permeability-inducing protein (BPI) and cholesterol ester transfer protein (CETP). Since then, the same fold and lipid transfer capacity have been found in SMP domains (so-called for their occurrence in synaptotagmin, mitochondrial and lipid binding proteins), which localise to intracellular membrane contact sites. Here the methods for identifying known TULIPs are described, and used to find previously unreported TULIPs, one in the silk polymer and another in prokaryotes illustrated by the E. coli protein YceB. The bacterial TULIP alters views on the likely evolution of the domain, suggesting its presence in the last universal common ancestor. The major function of TULIPs is to handle lipids, but we still do not know how they work in detail, or how many more remain to be discovered. This article is part of a Special Issue entitled: Membrane Contact Sites edited by Christian Ungermann and Benoit Kornmann. Proteins with the tubular lipid binding fold exist in a wider variety than is usually appreciated. TULIPs are found in prokaryotes, altering views on their evolution. It is not yet known whether TULIPs transfer lipids as tunnels or as shuttles. Tests have not yet been done to say if TULIPs with SMP domains (for example E-syts and ERMES components) tether contact sites. It is likely that more TULIPs remain to be discovered.
Collapse
Affiliation(s)
- Louise H Wong
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK
| | - Tim P Levine
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK.
| |
Collapse
|
23
|
Chirasani VR, Revanasiddappa PD, Senapati S. Structural Plasticity of Cholesteryl Ester Transfer Protein Assists the Lipid Transfer Activity. J Biol Chem 2016; 291:19462-73. [PMID: 27445332 DOI: 10.1074/jbc.m116.744623] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Indexed: 12/26/2022] Open
Abstract
Cholesteryl ester transfer protein (CETP) mediates the transfer of cholesteryl esters (CEs) and triglycerides between different lipoproteins. Recent studies have shown that blocking the function of CETP can increase the level of HDL cholesterol in blood plasma and suppress the risk of cardiovascular disease. Hence, understanding the structure, dynamics, and mechanism by which CETP transfers the neutral lipids has received tremendous attention in last decade. Although the recent crystal structure has provided direct evidence of the existence of strongly bound CEs in the CETP core, very little is known about the mechanism of CE/triglyceride transfer by CETP. In this study, we explore the large scale dynamics of CETP by means of multimicrosecond molecular dynamics simulations and normal mode analysis, which provided a wealth of detailed information about the lipid transfer mechanism of CETP. Results show that the bound CEs intraconvert between bent and linear conformations in the CETP core tunnel as a consequence of the high degree of conformational flexibility of the protein. During the conformational switching, there occurred a significant reduction in hydrophobic contacts between the CEs and CETP, and a continuous tunnel traversing across the CETP long axis appeared spontaneously. Thus, our results support the recently proposed "tunnel mechanism" of CETP from cryo-EM studies for the transfer of neutral lipids between different lipoproteins. The detailed understanding obtained here could help in devising methods to prevent CETP function as a cardiovascular disease therapeutic.
Collapse
Affiliation(s)
- Venkat R Chirasani
- From the Bhupat and Jyoti Mehta School of Biosciences and Department of Biotechnology, Indian Institute of Technology Madras, Chennai 600036, India
| | - Prasanna D Revanasiddappa
- From the Bhupat and Jyoti Mehta School of Biosciences and Department of Biotechnology, Indian Institute of Technology Madras, Chennai 600036, India
| | - Sanjib Senapati
- From the Bhupat and Jyoti Mehta School of Biosciences and Department of Biotechnology, Indian Institute of Technology Madras, Chennai 600036, India
| |
Collapse
|
24
|
Lei D, Rames M, Zhang X, Zhang L, Zhang S, Ren G. Insights into the Tunnel Mechanism of Cholesteryl Ester Transfer Protein through All-atom Molecular Dynamics Simulations. J Biol Chem 2016; 291:14034-14044. [PMID: 27143480 PMCID: PMC4933163 DOI: 10.1074/jbc.m116.715565] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Indexed: 12/31/2022] Open
Abstract
Cholesteryl ester transfer protein (CETP) mediates cholesteryl ester (CE) transfer from the atheroprotective high density lipoprotein (HDL) cholesterol to the atherogenic low density lipoprotein cholesterol. In the past decade, this property has driven the development of CETP inhibitors, which have been evaluated in large scale clinical trials for treating cardiovascular diseases. Despite the pharmacological interest, little is known about the fundamental mechanism of CETP in CE transfer. Recent electron microscopy (EM) experiments have suggested a tunnel mechanism, and molecular dynamics simulations have shown that the flexible N-terminal distal end of CETP penetrates into the HDL surface and takes up a CE molecule through an open pore. However, it is not known whether a CE molecule can completely transfer through an entire CETP molecule. Here, we used all-atom molecular dynamics simulations to evaluate this possibility. The results showed that a hydrophobic tunnel inside CETP is sufficient to allow a CE molecule to completely transfer through the entire CETP within a predicted transfer time and at a rate comparable with those obtained through physiological measurements. Analyses of the detailed interactions revealed several residues that might be critical for CETP function, which may provide important clues for the effective development of CETP inhibitors and treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Dongsheng Lei
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720; Department of Applied Physics, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Matthew Rames
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - Xing Zhang
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720; Department of Applied Physics, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Lei Zhang
- Department of Applied Physics, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Shengli Zhang
- Department of Applied Physics, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China.
| | - Gang Ren
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720.
| |
Collapse
|