1
|
Torrado C, Ashton NW, D'Andrea AD, Yap TA. USP1 inhibition: A journey from target discovery to clinical translation. Pharmacol Ther 2025; 271:108865. [PMID: 40274197 DOI: 10.1016/j.pharmthera.2025.108865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 04/04/2025] [Accepted: 04/20/2025] [Indexed: 04/26/2025]
Abstract
Ubiquitin-specific protease 1 (USP1) is a deubiquitinating enzyme involved in the DNA damage response. Upon DNA damage, USP1 stabilizes replication forks by removing monoubiquitin from PCNA and FANCD2-FANCI, thereby catalyzing critical final steps in translesion synthesis and interstrand crosslink (ICL) repair. This function is particularly crucial in BRCA1 mutant cancers, where the homologous recombination pathway is compromised, leading tumors to rely on USP1 for effective repair. USP1 is also overexpressed in BRCA1 mutant cancers, as well as other tumor types. Preclinical studies have demonstrated that knockout of USP1 is synthetically lethal in tumors with biallelic BRCA1 mutations, and this relationship is enhanced by combination with PARP inhibitors. Newly developed USP1 inhibitors have confirmed this synthetic lethality in BRCA1-deficient tumor cells. Moreover, these drugs have the potential for resensitizing platinum-resistant tumors. Currently, potent and specific USP1 inhibitors are undergoing evaluation in phase I clinical trials. RO7623066 (KSQ-4279) reported an acceptable safety profile during a phase I dose escalation study, with anemia being the most common side effect, and demonstrated robust pharmacokinetic, pharmacodynamic, and clinical activity. Other USP1 inhibitors, including SIM0501, XL309-101, and HSK39775, are currently in early clinical development. In this review, we provide an overview of the molecular function of USP1 and its importance as a therapeutic target in oncology, before focusing on the current state of preclinical and clinical development of USP1 inhibitors.
Collapse
Affiliation(s)
- Carlos Torrado
- University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Nicholas W Ashton
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Alan D D'Andrea
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA, USA; Center for DNA Damage and Repair, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Timothy A Yap
- University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
2
|
Mazloumi Aboukheili AM, Walden H. USP1 in regulation of DNA repair pathways. DNA Repair (Amst) 2025; 146:103807. [PMID: 39848025 DOI: 10.1016/j.dnarep.2025.103807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 12/20/2024] [Accepted: 01/07/2025] [Indexed: 01/25/2025]
Abstract
Ubiquitin-specific protease 1 (USP1) is the founding member of the family of cysteine proteases that catalyse hydrolysis of the isopeptide bond between ubiquitin and targets. USP1 is often overexpressed in various cancers, and expression levels correlate with poor prognosis. USP1 and its partner USP1-associated Factor 1 (UAF1) are required for deubiquitinating monoubiquitin signals in DNA interstrand crosslink repair, and in Translesion synthesis, among others, and both proteins are subject to multiple regulations themselves. This review covers recent findings on the mechanisms and functions of USP1 in DNA repair, its regulation, and its potential as a target for therapeutic intervention.
Collapse
Affiliation(s)
| | - Helen Walden
- School of Molecular Biosciences, University of Glasgow, Glasgow G12 8QQ, Scotland.
| |
Collapse
|
3
|
Yu K, Wang GM, Guo SS, Bassermann F, Fässler R. The USP12/46 deubiquitinases protect integrins from ESCRT-mediated lysosomal degradation. EMBO Rep 2024; 25:5687-5718. [PMID: 39506038 PMCID: PMC11624278 DOI: 10.1038/s44319-024-00300-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 10/02/2024] [Accepted: 10/16/2024] [Indexed: 11/08/2024] Open
Abstract
The functions of integrins are tightly regulated via multiple mechanisms including trafficking and degradation. Integrins are repeatedly internalized, routed into the endosomal system and either degraded by the lysosome or recycled back to the plasma membrane. The ubiquitin system dictates whether internalized proteins are degraded or recycled. Here, we use a genetic screen and proximity-dependent biotin identification to identify deubiquitinase(s) that control integrin surface levels. We find that a ternary deubiquitinating complex, comprised of USP12 (or the homologous USP46), WDR48 and WDR20, stabilizes β1 integrin (Itgb1) by preventing ESCRT-mediated lysosomal degradation. Mechanistically, the USP12/46-WDR48-WDR20 complex removes ubiquitin from the cytoplasmic tail of internalized Itgb1 in early endosomes, which in turn prevents ESCRT-mediated sorting and Itgb1 degradation.
Collapse
Affiliation(s)
- Kaikai Yu
- Department of Molecular Medicine, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Guan M Wang
- Department of Molecular Medicine, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Shiny Shengzhen Guo
- Department of Molecular Medicine, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Florian Bassermann
- Department of Medicine III, TUM School of Medicine and Health, Technical University of Munich, Munich, Germany
- TranslaTUM, Center for Translational Cancer Research, Technical University of Munich, Munich, Germany
- Deutsches Konsortium für Translationale Krebsforschung (DKTK), Heidelberg, Germany
- Bavarian Cancer Research Center (BZKF), Munich, Germany
| | - Reinhard Fässler
- Department of Molecular Medicine, Max Planck Institute of Biochemistry, Martinsried, Germany.
| |
Collapse
|
4
|
Rennie ML, Gundogdu M, Arkinson C, Liness S, Frame S, Walden H. Structural and Biochemical Insights into the Mechanism of Action of the Clinical USP1 Inhibitor, KSQ-4279. J Med Chem 2024; 67:15557-15568. [PMID: 39190802 PMCID: PMC11403619 DOI: 10.1021/acs.jmedchem.4c01184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
DNA damage triggers cell signaling cascades that mediate repair. This signaling is frequently dysregulated in cancers. The proteins that mediate this signaling are potential targets for therapeutic intervention. Ubiquitin-specific protease 1 (USP1) is one such target, with small-molecule inhibitors already in clinical trials. Here, we use biochemical assays and cryo-electron microscopy (cryo-EM) to study the clinical USP1 inhibitor, KSQ-4279 (RO7623066), and compare this to the well-established tool compound, ML323. We find that KSQ-4279 binds to the same cryptic site of USP1 as ML323 but disrupts the protein structure in subtly different ways. Inhibitor binding drives a substantial increase in thermal stability of USP1, which may be mediated through the inhibitors filling a hydrophobic tunnel-like pocket in USP1. Our results contribute to the understanding of the mechanism of action of USP1 inhibitors at the molecular level.
Collapse
Affiliation(s)
- Martin Luke Rennie
- School of Molecular Biosciences, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, U.K
| | - Mehmet Gundogdu
- Ubiquigent Ltd, Dundee University Incubator, James Lindsay Place, Dundee DD1 5JJ, U.K
| | - Connor Arkinson
- School of Molecular Biosciences, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, U.K
| | - Steven Liness
- Ubiquigent Ltd, Dundee University Incubator, James Lindsay Place, Dundee DD1 5JJ, U.K
| | - Sheelagh Frame
- Ubiquigent Ltd, Dundee University Incubator, James Lindsay Place, Dundee DD1 5JJ, U.K
| | - Helen Walden
- School of Molecular Biosciences, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, U.K
| |
Collapse
|
5
|
Maurer SK, Mayer MP, Ward SJ, Boudjema S, Halawa M, Zhang J, Caulton SG, Emsley J, Dreveny I. Ubiquitin-specific protease 11 structure in complex with an engineered substrate mimetic reveals a molecular feature for deubiquitination selectivity. J Biol Chem 2023; 299:105300. [PMID: 37777157 PMCID: PMC10637973 DOI: 10.1016/j.jbc.2023.105300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 09/10/2023] [Accepted: 09/19/2023] [Indexed: 10/02/2023] Open
Abstract
Ubiquitin-specific proteases (USPs) are crucial for controlling cellular proteostasis and signaling pathways but how deubiquitination is selective remains poorly understood, in particular between paralogues. Here, we developed a fusion tag method by mining the Protein Data Bank and trapped USP11, a key regulator of DNA double-strand break repair, in complex with a novel engineered substrate mimetic. Together, this enabled structure determination of USP11 as a Michaelis-like complex that revealed key S1 and S1' binding site interactions with a substrate. Combined mutational, enzymatic, and binding experiments identified Met77 in linear diubiquitin as a significant residue that leads to substrate discrimination. We identified an aspartate "gatekeeper" residue in the S1' site of USP11 as a contributing feature for discriminating against linear diubiquitin. When mutated to a glycine, the corresponding residue in paralog USP15, USP11 acquired elevated activity toward linear diubiquitin in-gel shift assays, but not controls. The reverse mutation in USP15 confirmed that this position confers paralog-specific differences impacting diubiquitin cleavage rates. The results advance our understanding of the molecular basis for the higher selectivity of USP11 compared to USP15 and may aid targeted inhibitor development. Moreover, the reported carrier-based crystallization strategy may be applicable to other challenging targets.
Collapse
Affiliation(s)
- Sigrun K Maurer
- Biodiscovery Institute, School of Pharmacy, University of Nottingham, Nottingham, United Kingdom
| | - Matthias P Mayer
- Biodiscovery Institute, School of Pharmacy, University of Nottingham, Nottingham, United Kingdom
| | - Stephanie J Ward
- Biodiscovery Institute, School of Pharmacy, University of Nottingham, Nottingham, United Kingdom
| | - Sana Boudjema
- Biodiscovery Institute, School of Pharmacy, University of Nottingham, Nottingham, United Kingdom
| | - Mohamed Halawa
- Biodiscovery Institute, School of Pharmacy, University of Nottingham, Nottingham, United Kingdom
| | - Jiatong Zhang
- Biodiscovery Institute, School of Pharmacy, University of Nottingham, Nottingham, United Kingdom
| | - Simon G Caulton
- Biodiscovery Institute, School of Pharmacy, University of Nottingham, Nottingham, United Kingdom
| | - Jonas Emsley
- Biodiscovery Institute, School of Pharmacy, University of Nottingham, Nottingham, United Kingdom
| | - Ingrid Dreveny
- Biodiscovery Institute, School of Pharmacy, University of Nottingham, Nottingham, United Kingdom.
| |
Collapse
|
6
|
Spencer ZT, Ng VH, Benchabane H, Siddiqui GS, Duwadi D, Maines B, Bryant JM, Schwarzkopf A, Yuan K, Kassel SN, Mishra A, Pimentel A, Lebensohn AM, Rohatgi R, Gerber SA, Robbins DJ, Lee E, Ahmed Y. The USP46 deubiquitylase complex increases Wingless/Wnt signaling strength by stabilizing Arrow/LRP6. Nat Commun 2023; 14:6174. [PMID: 37798281 PMCID: PMC10556106 DOI: 10.1038/s41467-023-41843-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 09/20/2023] [Indexed: 10/07/2023] Open
Abstract
The control of Wnt receptor abundance is critical for animal development and to prevent tumorigenesis, but the mechanisms that mediate receptor stabilization remain uncertain. We demonstrate that stabilization of the essential Wingless/Wnt receptor Arrow/LRP6 by the evolutionarily conserved Usp46-Uaf1-Wdr20 deubiquitylase complex controls signaling strength in Drosophila. By reducing Arrow ubiquitylation and turnover, the Usp46 complex increases cell surface levels of Arrow and enhances the sensitivity of target cells to stimulation by the Wingless morphogen, thereby increasing the amplitude and spatial range of signaling responses. Usp46 inactivation in Wingless-responding cells destabilizes Arrow, reduces cytoplasmic accumulation of the transcriptional coactivator Armadillo/β-catenin, and attenuates or abolishes Wingless target gene activation, which prevents the concentration-dependent regulation of signaling strength. Consequently, Wingless-dependent developmental patterning and tissue homeostasis are disrupted. These results reveal an evolutionarily conserved mechanism that mediates Wnt/Wingless receptor stabilization and underlies the precise activation of signaling throughout the spatial range of the morphogen gradient.
Collapse
Affiliation(s)
- Zachary T Spencer
- Department of Molecular and Systems Biology and the Dartmouth Cancer Center, Geisel School of Medicine, Dartmouth College, Hanover, NH, 03755, USA
| | - Victoria H Ng
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, 37232, USA
| | - Hassina Benchabane
- Department of Molecular and Systems Biology and the Dartmouth Cancer Center, Geisel School of Medicine, Dartmouth College, Hanover, NH, 03755, USA
| | - Ghalia Saad Siddiqui
- Department of Molecular and Systems Biology and the Dartmouth Cancer Center, Geisel School of Medicine, Dartmouth College, Hanover, NH, 03755, USA
| | - Deepesh Duwadi
- Department of Molecular and Systems Biology and the Dartmouth Cancer Center, Geisel School of Medicine, Dartmouth College, Hanover, NH, 03755, USA
| | - Ben Maines
- Department of Molecular and Systems Biology and the Dartmouth Cancer Center, Geisel School of Medicine, Dartmouth College, Hanover, NH, 03755, USA
| | - Jamal M Bryant
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, 37232, USA
| | - Anna Schwarzkopf
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, 37232, USA
| | - Kai Yuan
- Department of Molecular and Systems Biology and the Dartmouth Cancer Center, Geisel School of Medicine, Dartmouth College, Hanover, NH, 03755, USA
| | - Sara N Kassel
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, 37232, USA
| | - Anant Mishra
- Department of Molecular and Systems Biology and the Dartmouth Cancer Center, Geisel School of Medicine, Dartmouth College, Hanover, NH, 03755, USA
| | - Ashley Pimentel
- Department of Molecular and Systems Biology and the Dartmouth Cancer Center, Geisel School of Medicine, Dartmouth College, Hanover, NH, 03755, USA
| | - Andres M Lebensohn
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Rajat Rohatgi
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Scott A Gerber
- Department of Molecular and Systems Biology and the Dartmouth Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH, 03766, USA
| | - David J Robbins
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, 20057, USA
| | - Ethan Lee
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, 37232, USA.
| | - Yashi Ahmed
- Department of Molecular and Systems Biology and the Dartmouth Cancer Center, Geisel School of Medicine, Dartmouth College, Hanover, NH, 03755, USA.
| |
Collapse
|
7
|
Rennie ML, Arkinson C, Chaugule VK, Walden H. Cryo-EM reveals a mechanism of USP1 inhibition through a cryptic binding site. SCIENCE ADVANCES 2022; 8:eabq6353. [PMID: 36170365 PMCID: PMC9519042 DOI: 10.1126/sciadv.abq6353] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 08/10/2022] [Indexed: 06/16/2023]
Abstract
Repair of DNA damage is critical to genomic integrity and frequently disrupted in cancers. Ubiquitin-specific protease 1 (USP1), a nucleus-localized deubiquitinase, lies at the interface of multiple DNA repair pathways and is a promising drug target for certain cancers. Although multiple inhibitors of this enzyme, including one in phase 1 clinical trials, have been established, their binding mode is unknown. Here, we use cryo-electron microscopy to study an assembled enzyme-substrate-inhibitor complex of USP1 and the well-established inhibitor, ML323. Achieving 2.5-Å resolution, with and without ML323, we find an unusual binding mode in which the inhibitor disrupts part of the hydrophobic core of USP1. The consequent conformational changes in the secondary structure lead to subtle rearrangements in the active site that underlie the mechanism of inhibition. These structures provide a platform for structure-based drug design targeting USP1.
Collapse
Affiliation(s)
- Martin L. Rennie
- Institute of Molecular Cell and Systems Biology, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Connor Arkinson
- Institute of Molecular Cell and Systems Biology, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Viduth K. Chaugule
- Institute of Molecular Cell and Systems Biology, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | | |
Collapse
|
8
|
Estavoyer B, Messmer C, Echbicheb M, Rudd CE, Milot E, Affar EB. Mechanisms orchestrating the enzymatic activity and cellular functions of deubiquitinases. J Biol Chem 2022; 298:102198. [PMID: 35764170 PMCID: PMC9356280 DOI: 10.1016/j.jbc.2022.102198] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 06/13/2022] [Accepted: 06/22/2022] [Indexed: 11/30/2022] Open
Abstract
Deubiquitinases (DUBs) are required for the reverse reaction of ubiquitination and act as major regulators of ubiquitin signaling processes. Emerging evidence suggests that these enzymes are regulated at multiple levels in order to ensure proper and timely substrate targeting and to prevent the adverse consequences of promiscuous deubiquitination. The importance of DUB regulation is highlighted by disease-associated mutations that inhibit or activate DUBs, deregulating their ability to coordinate cellular processes. Here, we describe the diverse mechanisms governing protein stability, enzymatic activity, and function of DUBs. In particular, we outline how DUBs are regulated by their protein domains and interacting partners. Intramolecular interactions can promote protein stability of DUBs, influence their subcellular localization, and/or modulate their enzymatic activity. Remarkably, these intramolecular interactions can induce self-deubiquitination to counteract DUB ubiquitination by cognate E3 ubiquitin ligases. In addition to intramolecular interactions, DUBs can also oligomerize and interact with a wide variety of cellular proteins, thereby forming obligate or facultative complexes that regulate their enzymatic activity and function. The importance of signaling and post-translational modifications in the integrated control of DUB function will also be discussed. While several DUBs are described with respect to the multiple layers of their regulation, the tumor suppressor BAP1 will be outlined as a model enzyme whose localization, stability, enzymatic activity, and substrate recognition are highly orchestrated by interacting partners and post-translational modifications.
Collapse
Affiliation(s)
- Benjamin Estavoyer
- Laboratory for Cell Signaling and Cancer, Maisonneuve-Rosemont Hospital Research Center, H1T 2M4, Montréal, Québec, Canada
| | - Clémence Messmer
- Laboratory for Cell Signaling and Cancer, Maisonneuve-Rosemont Hospital Research Center, H1T 2M4, Montréal, Québec, Canada
| | - Mohamed Echbicheb
- Laboratory for Cell Signaling and Cancer, Maisonneuve-Rosemont Hospital Research Center, H1T 2M4, Montréal, Québec, Canada
| | - Christopher E Rudd
- Laboratory for Cell Signaling in Immunotherapy, Maisonneuve-Rosemont Hospital Research Center, H1T 2M4, Montréal, Québec, Canada; Department of Medicine, University of Montréal, Montréal H3C 3J7, Québec, Canada
| | - Eric Milot
- Laboratory for Malignant Hematopoiesis and Epigenetic Regulation of Gene Expression, Maisonneuve-Rosemont Hospital Research Center, H1T 2M4, Montréal, Québec, Canada; Department of Medicine, University of Montréal, Montréal H3C 3J7, Québec, Canada
| | - El Bachir Affar
- Laboratory for Cell Signaling and Cancer, Maisonneuve-Rosemont Hospital Research Center, H1T 2M4, Montréal, Québec, Canada; Department of Medicine, University of Montréal, Montréal H3C 3J7, Québec, Canada.
| |
Collapse
|
9
|
Deubiquitinases in cell death and inflammation. Biochem J 2022; 479:1103-1119. [PMID: 35608338 PMCID: PMC9162465 DOI: 10.1042/bcj20210735] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/07/2022] [Accepted: 05/10/2022] [Indexed: 11/20/2022]
Abstract
Apoptosis, pyroptosis, and necroptosis are distinct forms of programmed cell death that eliminate infected, damaged, or obsolete cells. Many proteins that regulate or are a part of the cell death machinery undergo ubiquitination, a post-translational modification made by ubiquitin ligases that modulates protein abundance, localization, and/or activity. For example, some ubiquitin chains target proteins for degradation, while others function as scaffolds for the assembly of signaling complexes. Deubiquitinases (DUBs) are the proteases that counteract ubiquitin ligases by cleaving ubiquitin from their protein substrates. Here, we review the DUBs that have been found to suppress or promote apoptosis, pyroptosis, or necroptosis.
Collapse
|
10
|
Lemonidis K, Arkinson C, Rennie ML, Walden H. Mechanism, specificity, and function of FANCD2-FANCI ubiquitination and deubiquitination. FEBS J 2021; 289:4811-4829. [PMID: 34137174 DOI: 10.1111/febs.16077] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 06/01/2021] [Accepted: 06/11/2021] [Indexed: 12/20/2022]
Abstract
Fanconi anemia (FA) is a rare genetic disorder caused by mutations in any of the currently 22 known FA genes. The products of these genes, along with other FA-associated proteins, participate in a biochemical pathway, known as the FA pathway. This pathway is responsible for the repair of DNA interstrand cross-links (ICL) and the maintenance of genomic stability in response to replication stress. At the center of the pathway is the monoubiquitination of two FA proteins, FANCD2 and FANCI, on two specific lysine residues. This is achieved by the combined action of the UBE2T ubiquitin-conjugating enzyme and a large multicomponent E3 ligase, known as the FA-core complex. This E2-E3 pair specifically targets the FANCI-FANCD2 heterodimer (ID2 complex) for ubiquitination on DNA. Deubiquitination of both FANCD2 and FANCI, which is also critical for ICL repair, is achieved by the USP1-UAF1 complex. Recent work suggests that FANCD2 ubiquitination transforms the ID2 complex into a sliding DNA clamp. Further, ID2 ubiquitination on FANCI does not alter the closed ID2 conformation observed upon FANCD2 ubiquitination and the associated ID2Ub complex with high DNA affinity. However, the resulting dimonoubiquitinated complex is highly resistant to USP1-UAF1 deubiquitination. This review will provide an update on recent work focusing on how specificity in FANCD2 ubiquitination and deubiquitination is achieved. Recent findings shedding light to the mechanisms, molecular functions, and biological roles of FANCI/FANCD2 ubiquitination and deubiquitination will be also discussed. ENZYMES: UBA1 (6.2.1.45), UBE2T (2.3.2.23), FANCL (2.3.2.27), USP1 (3.4.19.12).
Collapse
Affiliation(s)
- Kimon Lemonidis
- Institute of Molecular Cell and Systems Biology, College of Medical Veterinary and Life Sciences, University of Glasgow, UK
| | - Connor Arkinson
- Institute of Molecular Cell and Systems Biology, College of Medical Veterinary and Life Sciences, University of Glasgow, UK
| | - Martin L Rennie
- Institute of Molecular Cell and Systems Biology, College of Medical Veterinary and Life Sciences, University of Glasgow, UK
| | - Helen Walden
- Institute of Molecular Cell and Systems Biology, College of Medical Veterinary and Life Sciences, University of Glasgow, UK
| |
Collapse
|
11
|
Olazabal-Herrero A, Bilbao-Arribas M, Carlevaris O, Sendino M, Varela-Martinez E, Jugo BM, Berra E, Rodriguez JA. The dystrophia myotonica WD repeat-containing protein DMWD and WDR20 differentially regulate USP12 deubiquitinase. FEBS J 2021; 288:5943-5963. [PMID: 33844468 DOI: 10.1111/febs.15875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 03/05/2021] [Accepted: 04/09/2021] [Indexed: 11/26/2022]
Abstract
Despite its potential clinical relevance, the product of the DMWD (dystrophia myotonica, WD repeat containing) gene is a largely uncharacterized protein. The DMWD amino acid sequence is similar to that of WDR20, a known regulator of the USP12 and USP46 deubiquitinases (DUBs). Here, we apply a combination of in silico and experimental methods to investigate several aspects of DMWD biology. Molecular evolution and phylogenetic analyses reveal that WDR20 and DMWD, similar to USP12 and USP46, arose by duplication of a common ancestor during the whole genome duplication event in the vertebrate ancestor lineage. The analysis of public human gene expression datasets suggests that DMWD expression is positively correlated with USP12 expression in normal tissues and negatively correlated with WDR20 expression in tumors. Strikingly, a survey of the annotated interactome for DMWD and WDR20 reveals a largely nonoverlapping set of interactors for these proteins. Experimentally, we first confirmed that DMWD binds both USP12 and USP46 through direct coimmunoprecipitation of epitope-tagged proteins. We found that DMWD and WDR20 share the same binding interface in USP12, suggesting that their interaction with the DUB may be mutually exclusive. Finally, we show that both DMWD and WDR20 promote USP12 enzymatic activity, but they differentially modulate the subcellular localization of the DUB. Altogether, our findings suggest a model whereby mutually exclusive binding of DMWD and WDR20 to USP12 may lead to formation of deubiquitinase complexes with distinct subcellular localization, potentially targeting different substrate repertoires.
Collapse
Affiliation(s)
- Anne Olazabal-Herrero
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), Leioa, Spain.,Department of Pediatrics, Yale School of Medicine, New Haven, CT, USA
| | - Martin Bilbao-Arribas
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Onintza Carlevaris
- Cell Signaling and Metabolism Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia, Spain
| | - Maria Sendino
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Endika Varela-Martinez
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Begoña M Jugo
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Edurne Berra
- Cell Signaling and Metabolism Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia, Spain.,CIBERONC, Madrid, Spain
| | - Jose Antonio Rodriguez
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), Leioa, Spain
| |
Collapse
|
12
|
Dharadhar S, van Dijk WJ, Scheffers S, Fish A, Sixma TK. Insert L1 is a central hub for allosteric regulation of USP1 activity. EMBO Rep 2021; 22:e51749. [PMID: 33619839 PMCID: PMC8024992 DOI: 10.15252/embr.202051749] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 12/22/2020] [Accepted: 01/12/2021] [Indexed: 12/14/2022] Open
Abstract
During DNA replication, the deubiquitinating enzyme USP1 limits the recruitment of translesion polymerases by removing ubiquitin marks from PCNA to allow specific regulation of the translesion synthesis (TLS) pathway. USP1 activity depends on an allosteric activator, UAF1, and this is tightly controlled. In comparison to paralogs USP12 and USP46, USP1 contains three defined inserts and lacks the second WDR20-mediated activation step. Here we show how inserts L1 and L3 together limit intrinsic USP1 activity and how this is relieved by UAF1. Intriguingly, insert L1 also conveys substrate-dependent increase in USP1 activity through DNA and PCNA interactions, in a process that is independent of UAF1-mediated activation. This study establishes insert L1 as an important regulatory hub within USP1 necessary for both substrate-mediated activity enhancement and allosteric activation upon UAF1 binding.
Collapse
Affiliation(s)
- Shreya Dharadhar
- Division of Biochemistry and Oncode InstituteNetherlands Cancer InstituteAmsterdamThe Netherlands
| | - Willem J van Dijk
- Division of Biochemistry and Oncode InstituteNetherlands Cancer InstituteAmsterdamThe Netherlands
| | - Serge Scheffers
- Division of Biochemistry and Oncode InstituteNetherlands Cancer InstituteAmsterdamThe Netherlands
| | - Alexander Fish
- Division of Biochemistry and Oncode InstituteNetherlands Cancer InstituteAmsterdamThe Netherlands
| | - Titia K Sixma
- Division of Biochemistry and Oncode InstituteNetherlands Cancer InstituteAmsterdamThe Netherlands
| |
Collapse
|
13
|
Structural basis of FANCD2 deubiquitination by USP1-UAF1. Nat Struct Mol Biol 2021; 28:356-364. [PMID: 33795880 DOI: 10.1038/s41594-021-00576-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 02/22/2021] [Indexed: 12/19/2022]
Abstract
Ubiquitin-specific protease 1 (USP1) acts together with the cofactor UAF1 during DNA repair processes to specifically remove monoubiquitin signals. One substrate of the USP1-UAF1 complex is the monoubiquitinated FANCI-FANCD2 heterodimer, which is involved in the repair of DNA interstrand crosslinks via the Fanconi anemia pathway. Here we determine structures of human USP1-UAF1 with and without ubiquitin and bound to monoubiquitinated FANCI-FANCD2. The crystal structures of USP1-UAF1 reveal plasticity in USP1 and key differences to USP12-UAF1 and USP46-UAF1, two related proteases. A cryo-EM reconstruction of USP1-UAF1 in complex with monoubiquitinated FANCI-FANCD2 highlights a highly orchestrated deubiquitination process, with USP1-UAF1 driving conformational changes in the substrate. An extensive interface between UAF1 and FANCI, confirmed by mutagenesis and biochemical assays, provides a molecular explanation for the requirement of both proteins, despite neither being directly involved in catalysis. Overall, our data provide molecular details of USP1-UAF1 regulation and substrate recognition.
Collapse
|
14
|
Deubiquitylating enzymes in neuronal health and disease. Cell Death Dis 2021; 12:120. [PMID: 33483467 PMCID: PMC7822931 DOI: 10.1038/s41419-020-03361-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 12/11/2022]
Abstract
Ubiquitylation and deubiquitylation play a pivotal role in protein homeostasis (proteostasis). Proteostasis shapes the proteome landscape in the human brain and its impairment is linked to neurodevelopmental and neurodegenerative disorders. Here we discuss the emerging roles of deubiquitylating enzymes in neuronal function and survival. We provide an updated perspective on the genetics, physiology, structure, and function of deubiquitylases in neuronal health and disease. ![]()
Collapse
|
15
|
Molecular Mechanisms of DUBs Regulation in Signaling and Disease. Int J Mol Sci 2021; 22:ijms22030986. [PMID: 33498168 PMCID: PMC7863924 DOI: 10.3390/ijms22030986] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/15/2021] [Accepted: 01/18/2021] [Indexed: 02/07/2023] Open
Abstract
The large family of deubiquitinating enzymes (DUBs) are involved in the regulation of a plethora of processes carried out inside the cell by protein ubiquitination. Ubiquitination is a basic pathway responsible for the correct protein homeostasis in the cell, which could regulate the fate of proteins through the ubiquitin–proteasome system (UPS). In this review we will focus on recent advances on the molecular mechanisms and specificities found for some types of DUBs enzymes, highlighting illustrative examples in which the regulatory mechanism for DUBs has been understood in depth at the molecular level by structural biology. DUB proteases are responsible for cleavage and regulation of the multiple types of ubiquitin linkages that can be synthesized inside the cell, known as the ubiquitin-code, which are tightly connected to specific substrate functions. We will display some strategies carried out by members of different DUB families to provide specificity on the cleavage of particular ubiquitin linkages. Finally, we will also discuss recent progress made for the development of drug compounds targeting DUB proteases, which are usually correlated to the progress of many pathologies such as cancer and neurodegenerative diseases.
Collapse
|
16
|
Hodul M, Ganji R, Dahlberg CL, Raman M, Juo P. The WD40-repeat protein WDR-48 promotes the stability of the deubiquitinating enzyme USP-46 by inhibiting its ubiquitination and degradation. J Biol Chem 2020; 295:11776-11788. [PMID: 32587090 DOI: 10.1074/jbc.ra120.014590] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/22/2020] [Indexed: 01/11/2023] Open
Abstract
Ubiquitination is a reversible post-translational modification that has emerged as a critical regulator of synapse development and function. However, the mechanisms that regulate the deubiquitinating enzymes (DUBs) responsible for the removal of ubiquitin from target proteins are poorly understood. We have previously shown that the DUB ubiquitin-specific protease 46 (USP-46) removes ubiquitin from the glutamate receptor GLR-1 and regulates its trafficking and degradation in Caenorhabditis elegans We found that the WD40-repeat proteins WDR-20 and WDR-48 bind and stimulate the catalytic activity of USP-46. Here, we identified another mechanism by which WDR-48 regulates USP-46. We found that increased expression of WDR-48, but not WDR-20, promotes USP-46 abundance in mammalian cells in culture and in C. elegans neurons in vivo Inhibition of the proteasome increased USP-46 abundance, and this effect was nonadditive with increased WDR-48 expression. We found that USP-46 is ubiquitinated and that expression of WDR-48 reduces the levels of ubiquitin-USP-46 conjugates and increases the t 1/2 of USP-46. A point-mutated WDR-48 variant that disrupts binding to USP-46 was unable to promote USP-46 abundance in vivo Finally, siRNA-mediated knockdown of wdr48 destabilizes USP46 in mammalian cells. Together, these results support a model in which WDR-48 binds and stabilizes USP-46 protein levels by preventing the ubiquitination and degradation of USP-46 in the proteasome. Given that a large number of USPs interact with WDR proteins, we propose that stabilization of DUBs by their interacting WDR proteins may be a conserved and widely used mechanism that controls DUB availability and function.
Collapse
Affiliation(s)
- Molly Hodul
- Graduate Program in Neuroscience, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, USA.,Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Rakesh Ganji
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Caroline L Dahlberg
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts, USA.,Department of Biology, Western Washington University, Bellingham, Washington, USA
| | - Malavika Raman
- Graduate Program in Neuroscience, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, USA.,Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Peter Juo
- Graduate Program in Neuroscience, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, USA .,Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts, USA
| |
Collapse
|
17
|
Role of Rad51 and DNA repair in cancer: A molecular perspective. Pharmacol Ther 2020; 208:107492. [PMID: 32001312 DOI: 10.1016/j.pharmthera.2020.107492] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 01/13/2020] [Accepted: 01/22/2020] [Indexed: 12/24/2022]
Abstract
The maintenance of genome integrity is essential for any organism survival and for the inheritance of traits to offspring. To the purpose, cells have developed a complex DNA repair system to defend the genetic information against both endogenous and exogenous sources of damage. Accordingly, multiple repair pathways can be aroused from the diverse forms of DNA lesions, which can be effective per se or via crosstalk with others to complete the whole DNA repair process. Deficiencies in DNA healing resulting in faulty repair and/or prolonged DNA damage can lead to genes mutations, chromosome rearrangements, genomic instability, and finally carcinogenesis and/or cancer progression. Although it might seem paradoxical, at the same time such defects in DNA repair pathways may have therapeutic implications for potential clinical practice. Here we provide an overview of the main DNA repair pathways, with special focus on the role played by homologous repair and the RAD51 recombinase protein in the cellular DNA damage response. We next discuss the recombinase structure and function per se and in combination with all its principal mediators and regulators. Finally, we conclude with an analysis of the manifold roles that RAD51 plays in carcinogenesis, cancer progression and anticancer drug resistance, and conclude this work with a survey of the most promising therapeutic strategies aimed at targeting RAD51 in experimental oncology.
Collapse
|
18
|
Nardi IK, Stark JM, Larsen A, Salgia R, Raz DJ. USP22 Interacts with PALB2 and Promotes Chemotherapy Resistance via Homologous Recombination of DNA Double-Strand Breaks. Mol Cancer Res 2019; 18:424-435. [PMID: 31685642 PMCID: PMC9285637 DOI: 10.1158/1541-7786.mcr-19-0053] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 05/15/2019] [Accepted: 10/29/2019] [Indexed: 11/16/2022]
Abstract
Homologous recombination (HR) is a highly conserved pathway that can facilitate the repair of DNA double-strand breaks (DSB). Several Deubiquitinases (DUB) have been implicated as key players in DNA damage repair (DDR) through HR. Here, we report USP22, a DUB that is highly overexpressed in multiple cancer types, is necessary for HR through a direct interaction with PALB2 through its C-terminal WD40 domain. This interaction stimulates USP22 catalytic activity in vitro. Furthermore, we show USP22 is necessary for BRCA2, PALB2, and Rad51 recruitment to DSBs and this is, in part, through USP22 stabilizing BRCA2 and PALB2 levels. Taken together, our results describe a role for USP22 in DNA repair. IMPLICATIONS: This research provides new and exciting mechanistic insights into how USP22 overexpression promotes chemoresistance in lung cancer. We believe this study, and others, will help aid in developing targeted drugs toward USP22 and known binding partners for lung cancer treatment.
Collapse
Affiliation(s)
- Isaac K Nardi
- Division of Thoracic Surgery, Baum Family Thoracic Oncology Laboratory, City of Hope National Medical Center, Duarte, California.
- Beckman Research Institute, City of Hope National Medical Center, Duarte, California
| | - Jeremy M Stark
- Department of Cancer Genetics and Epigenetics, City of Hope National Medical Center, Duarte, California
| | - Adrien Larsen
- Department of Computational Therapeutics, City of Hope National Medical Center, Duarte, California
| | - Ravi Salgia
- Department of Medical Oncology, City of Hope National Medical Center, Duarte, California
| | - Dan J Raz
- Division of Thoracic Surgery, Baum Family Thoracic Oncology Laboratory, City of Hope National Medical Center, Duarte, California
- Beckman Research Institute, City of Hope National Medical Center, Duarte, California
| |
Collapse
|
19
|
Zhu H, Zhang T, Wang F, Yang J, Ding J. Structural insights into the activation of USP46 by WDR48 and WDR20. Cell Discov 2019; 5:34. [PMID: 31632687 PMCID: PMC6796834 DOI: 10.1038/s41421-019-0102-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 04/30/2019] [Accepted: 05/06/2019] [Indexed: 11/09/2022] Open
Affiliation(s)
- Hanwen Zhu
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai, 200031 China
| | - Tianlong Zhang
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai, 200031 China
| | - Fang Wang
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai, 200031 China
| | - Jun Yang
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai, 200031 China
| | - Jianping Ding
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai, 200031 China
| |
Collapse
|
20
|
Olazabal-Herrero A, Sendino M, Arganda-Carreras I, Rodríguez JA. WDR20 regulates shuttling of the USP12 deubiquitinase complex between the plasma membrane, cytoplasm and nucleus. Eur J Cell Biol 2019; 98:12-26. [PMID: 30466959 DOI: 10.1016/j.ejcb.2018.10.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 10/01/2018] [Accepted: 10/25/2018] [Indexed: 12/31/2022] Open
Abstract
The human deubiquitinases USP12 and USP46 are very closely related paralogs with critical functions as tumor suppressors. The catalytic activity of these enzymes is regulated by two cofactors: UAF1 and WDR20. USP12 and USP46 show nearly 90% amino acid sequence identity and share some cellular activities, but have also evolved non-overlapping functions. We hypothesized that, correlating with their functional divergence, the subcellular localization of USP12 and USP46 might be differentially regulated by their cofactors. We used confocal and live microscopy analyses of epitope-tagged proteins to determine the effect of UAF1 and WDR20 on the localization of USP12 and USP46. We found that WDR20 differently modulated the localization of the DUBs, promoting recruitment of USP12, but not USP46, to the plasma membrane. Using site-directed mutagenesis, we generated a large set of USP12 and WDR20 mutants to characterize in detail the mechanisms and sequence determinants that modulate the subcellular localization of the USP12/UAF1/WDR20 complex. Our data suggest that the USP12/UAF1/WDR20 complex dynamically shuttles between the plasma membrane, cytoplasm and nucleus. This shuttling involved active nuclear export mediated by the CRM1 pathway, and required a short N-terminal motif (1MEIL4) in USP12, as well as a novel nuclear export sequence (450MDGAIASGVSKFATLSLHD468) in WDR20. In conclusion, USP12 and USP46 have evolved divergently in terms of cofactor binding-regulated subcellular localization. WDR20 plays a crucial role in as a "targeting subunit" that modulates CRM1-dependent shuttling of the USP12/UAF1/WDR20 complex between the plasma membrane, cytoplasm and nucleus.
Collapse
Affiliation(s)
- Anne Olazabal-Herrero
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), Leioa 48940, Spain
| | - Maria Sendino
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), Leioa 48940, Spain
| | - Ignacio Arganda-Carreras
- Computer Science and Artificial Intelligence Department, University of the Basque Country (UPV/EHU), San Sebastian 20018, Spain; Ikerbasque, Basque Foundation for Science, Maria Diaz de Haro 3, 48013 Bilbao, Spain; Donostia International Physics Center (DIPC), P. Manuel Lardizabal 4, 20018 San Sebastian, Spain
| | - Jose Antonio Rodríguez
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), Leioa 48940, Spain.
| |
Collapse
|
21
|
Ward SJ, Gratton HE, Indrayudha P, Michavila C, Mukhopadhyay R, Maurer SK, Caulton SG, Emsley J, Dreveny I. The structure of the deubiquitinase USP15 reveals a misaligned catalytic triad and an open ubiquitin-binding channel. J Biol Chem 2018; 293:17362-17374. [PMID: 30228188 PMCID: PMC6231127 DOI: 10.1074/jbc.ra118.003857] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 09/13/2018] [Indexed: 12/24/2022] Open
Abstract
Ubiquitin-specific protease 15 (USP15) regulates important cellular processes, including transforming growth factor β (TGF-β) signaling, mitophagy, mRNA processing, and innate immune responses; however, structural information on USP15's catalytic domain is currently unavailable. Here, we determined crystal structures of the USP15 catalytic core domain, revealing a canonical USP fold, including a finger, palm, and thumb region. Unlike for the structure of paralog USP4, the catalytic triad is in an inactive configuration with the catalytic cysteine ∼10 Å apart from the catalytic histidine. This conformation is atypical, and a similar misaligned catalytic triad has so far been observed only for USP7, although USP15 and USP7 are differently regulated. Moreover, we found that the active-site loops are flexible, resulting in a largely open ubiquitin tail–binding channel. Comparison of the USP15 and USP4 structures points to a possible activation mechanism. Sequence differences between these two USPs mainly map to the S1′ region likely to confer specificity, whereas the S1 ubiquitin–binding pocket is highly conserved. Isothermal titration calorimetry monoubiquitin- and linear diubiquitin-binding experiments showed significant differences in their thermodynamic profiles, with USP15 displaying a lower affinity for monoubiquitin than USP4. Moreover, we report that USP15 is weakly inhibited by the antineoplastic agent mitoxantrone in vitro. A USP15–mitoxantrone complex structure disclosed that the anthracenedione interacts with the S1′ binding site. Our results reveal first insights into USP15's catalytic domain structure, conformational changes, differences between paralogs, and small-molecule interactions and establish a framework for cellular probe and inhibitor development.
Collapse
Affiliation(s)
- Stephanie J Ward
- From the Centre for Biomolecular Sciences, School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| | - Hayley E Gratton
- From the Centre for Biomolecular Sciences, School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| | - Peni Indrayudha
- From the Centre for Biomolecular Sciences, School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| | - Camille Michavila
- From the Centre for Biomolecular Sciences, School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| | - Rishov Mukhopadhyay
- From the Centre for Biomolecular Sciences, School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| | - Sigrun K Maurer
- From the Centre for Biomolecular Sciences, School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| | - Simon G Caulton
- From the Centre for Biomolecular Sciences, School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| | - Jonas Emsley
- From the Centre for Biomolecular Sciences, School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| | - Ingrid Dreveny
- From the Centre for Biomolecular Sciences, School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| |
Collapse
|
22
|
McClurg UL, Azizyan M, Dransfield DT, Namdev N, Chit NCTH, Nakjang S, Robson CN. The novel anti-androgen candidate galeterone targets deubiquitinating enzymes, USP12 and USP46, to control prostate cancer growth and survival. Oncotarget 2018; 9:24992-25007. [PMID: 29861848 PMCID: PMC5982776 DOI: 10.18632/oncotarget.25167] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 02/10/2018] [Indexed: 12/26/2022] Open
Abstract
Metastatic castration resistant prostate cancer is one of the main causes of male cancer associated deaths worldwide. Development of resistance is inevitable in patients treated with anti-androgen therapies. This highlights a need for novel therapeutic strategies that would be aimed upstream of the androgen receptor (AR). Here we report that the novel small molecule anti-androgen, galeterone targets USP12 and USP46, two highly homologous deubiquitinating enzymes that control the AR-AKT-MDM2-P53 signalling pathway. Consequently, galeterone is effective in multiple models of prostate cancer including both castrate resistant and AR-negative prostate cancer. However, we have observed that USP12 and USP46 selectively regulate full length AR protein but not the AR variants. This is the first report of deubiquitinating enzyme targeting as a strategy in prostate cancer treatment which we show to be effective in multiple, currently incurable models of this disease.
Collapse
Affiliation(s)
- Urszula L McClurg
- Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK.,Institute for Cell and Molecular Biosciences, Medical School, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Mahsa Azizyan
- Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Daniel T Dransfield
- Tokai Pharmaceuticals, 255 State Street, Boston, MA 02109, USA.,Current address: Siamab Therapeutics, Suite 100, Newton, MA 02458, USA
| | - Nivedita Namdev
- Tokai Pharmaceuticals, 255 State Street, Boston, MA 02109, USA
| | - Nay C T H Chit
- Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Sirintra Nakjang
- Bioinformatics Support Unit, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Craig N Robson
- Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| |
Collapse
|
23
|
Molecular mechanism of the TP53-MDM2-AR-AKT signalling network regulation by USP12. Oncogene 2018; 37:4679-4691. [DOI: 10.1038/s41388-018-0283-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 12/20/2017] [Accepted: 03/23/2018] [Indexed: 11/08/2022]
|
24
|
Uckelmann M, Densham RM, Baas R, Winterwerp HHK, Fish A, Sixma TK, Morris JR. USP48 restrains resection by site-specific cleavage of the BRCA1 ubiquitin mark from H2A. Nat Commun 2018; 9:229. [PMID: 29335415 PMCID: PMC5768779 DOI: 10.1038/s41467-017-02653-3] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 12/18/2017] [Indexed: 12/22/2022] Open
Abstract
BRCA1-BARD1-catalyzed ubiquitination of histone H2A is an important regulator of the DNA damage response, priming chromatin for repair by homologous recombination. However, no specific deubiquitinating enzymes (DUBs) are known to antagonize this function. Here we identify ubiquitin specific protease-48 (USP48) as a H2A DUB, specific for the C-terminal BRCA1 ubiquitination site. Detailed biochemical analysis shows that an auxiliary ubiquitin, an additional ubiquitin that itself does not get cleaved, modulates USP48 activity, which has possible implications for its regulation in vivo. In cells we reveal that USP48 antagonizes BRCA1 E3 ligase function and in BRCA1-proficient cells loss of USP48 results in positioning 53BP1 further from the break site and in extended resection lengths. USP48 repression confers a survival benefit to cells treated with camptothecin and its activity acts to restrain gene conversion and mutagenic single-strand annealing. We propose that USP48 promotes genome stability by antagonizing BRCA1 E3 ligase function.
Collapse
Affiliation(s)
- Michael Uckelmann
- Division of Biochemistry and Cancer Genomics Centre, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Ruth M Densham
- Birmingham Centre for Genome Biology and Institute of Cancer and Genomic Sciences, Medical and Dental Schools, University of Birmingham, Birmingham, B15 2TT, UK
| | - Roy Baas
- Division of Biochemistry and Cancer Genomics Centre, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Herrie H K Winterwerp
- Division of Biochemistry and Cancer Genomics Centre, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Alexander Fish
- Division of Biochemistry and Cancer Genomics Centre, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Titia K Sixma
- Division of Biochemistry and Cancer Genomics Centre, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands.
| | - Joanna R Morris
- Birmingham Centre for Genome Biology and Institute of Cancer and Genomic Sciences, Medical and Dental Schools, University of Birmingham, Birmingham, B15 2TT, UK.
| |
Collapse
|
25
|
Hodul M, Dahlberg CL, Juo P. Function of the Deubiquitinating Enzyme USP46 in the Nervous System and Its Regulation by WD40-Repeat Proteins. Front Synaptic Neurosci 2017; 9:16. [PMID: 29302259 PMCID: PMC5735123 DOI: 10.3389/fnsyn.2017.00016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 11/29/2017] [Indexed: 11/13/2022] Open
Abstract
Posttranslational modification of proteins by ubiquitin regulates synapse development and synaptic transmission. Much progress has been made investigating the role of ubiquitin ligases at the synapse, however very little is known about the deubiquitinating enzymes (DUBs) which remove ubiquitin from target proteins. Although there are far fewer DUBs than ubiquitin ligases encoded by the human genome, it is becoming clear that DUBs have very specific physiological functions, suggesting that DUB activity is tightly regulated in vivo. Many DUBs function as part of larger protein complexes, and multiple regulatory mechanisms exist to control the expression, localization and catalytic activity of DUBs. In this review article, we focus on the role of the DUB USP46 in the nervous system, and illustrate potential mechanisms of regulating DUBs by describing how USP46 is regulated by two WD40-repeat (WDR) proteins, WDR48/UAF1 and WDR20, based on recent structural studies and genetic analyses in vivo.
Collapse
Affiliation(s)
- Molly Hodul
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Tufts University, Boston, MA, United States.,Graduate Program in Neuroscience, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Tufts University, Boston, MA, United States
| | - Caroline L Dahlberg
- Biology Department, Western Washington University, Bellingham, WA, United States
| | - Peter Juo
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Tufts University, Boston, MA, United States
| |
Collapse
|
26
|
Zheng H, Wang M, Zhao C, Wu S, Yu P, Lü Y, Wang T, Ai Y. Characterization of the deubiquitination activity and substrate specificity of the chicken ubiquitin-specific protease 1/USP associated factor 1 complex. PLoS One 2017; 12:e0186535. [PMID: 29091922 PMCID: PMC5665528 DOI: 10.1371/journal.pone.0186535] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 10/03/2017] [Indexed: 12/02/2022] Open
Abstract
Deubiquitinases (DUBs) are essential regulators of intracellular processes involving ubiquitin (Ub) modification. The human DUB ubiquitin-specific protease 1 (hUSP1) interacts with human USP-associated factor 1 (hUAF1), and helps to regulate processes such as DNA damage repair. Previously, we identified a chicken USP1 homologue (chUSP1) during an investigation into the properties of Marek's disease virus (MDV). However, chUSP1's deubiquitination activity, interaction with chUAF1, and substrate specificity remained unknown. In the present study, we expressed and purified both chUAF1 and chUSP1 with or without putative catalytic core mutations using the Bac-to-Bac system, before investigating their deubiquitination activity and kinetics using various substrates. chUSP1 was shown to interact with chUAF1 both in cellular assays in which the two proteins were co-expressed, and in in vitro assays using purified proteins. Heterodimerization with chUAF1 increased the deubiquitination activity of chUSP1 up to 54-fold compared with chUSP1 alone. The chUSP1 mutants C91S, H603A, and D758A reduced the deubiquitination activity of the chUSP1/chUAF1 complex by 10-, 7-, and 33-fold, respectively, while the C91A and H594A chUSP1 mutants eliminated deubiquitination activity of the chUSP1/chUAF1 complex completely. This suggests that C91 and H594, but not D758, are essential for chUSP1 deubiquitination activity, and that a nucleophilic group at position 91 is needed for the deubiquitination reaction. The chUSP1/chUAF1 complex was found to have distinct substrate preferences; efficient hydrolysis of Ub dimers with K11-, K48-, and K63-linkages was seen, with weaker hydrolysis observed with K6-, K27-, and K33-linkages and no hydrolysis seen with a K29-linkage. Furthermore, other Ub-like substrates were disfavored by the complex. No activity was seen with SUMO1-GST, SUMO2- and SUMO3-dimers, ISG15-Rho, FAT10-Rho, or Ufm1-Rho, and only weak activity was observed with NEDD8-Rho. Overall, the data presented here characterize the activity and substrate preferences of chUSP1, and thus may facilitate future studies on its in vivo role.
Collapse
Affiliation(s)
- Hainan Zheng
- College of Animal Science, Jilin University, Changchun, China
| | - Mengyun Wang
- College of Animal Science, Jilin University, Changchun, China
| | - Chengcheng Zhao
- Institute of Translational Medicine, Jilin University, Changchun, China
| | - Shanli Wu
- College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Peifeng Yu
- College of Animal Science, Jilin University, Changchun, China
| | - Yan Lü
- College of Animal Science, Jilin University, Changchun, China
| | - Tiedong Wang
- College of Animal Science, Jilin University, Changchun, China
- * E-mail: (YXA); (TDW)
| | - Yongxing Ai
- College of Animal Science, Jilin University, Changchun, China
- * E-mail: (YXA); (TDW)
| |
Collapse
|
27
|
Affiliation(s)
- Tycho E.T. Mevissen
- Medical Research Council, Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
| | - David Komander
- Medical Research Council, Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
| |
Collapse
|