1
|
Zhao Q, Hong X, Wang Y, Zhang S, Ding Z, Meng X, Song Q, Hong Q, Jiang W, Shi X, Cai T, Cong Y. An immobilized antibody-based affinity grid strategy for on-grid purification of target proteins enables high-resolution cryo-EM. Commun Biol 2024; 7:715. [PMID: 38858498 PMCID: PMC11164986 DOI: 10.1038/s42003-024-06406-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 05/31/2024] [Indexed: 06/12/2024] Open
Abstract
In cryo-electron microscopy (cryo-EM), sample preparation poses a critical bottleneck, particularly for rare or fragile macromolecular assemblies and those suffering from denaturation and particle orientation distribution issues related to air-water interface. In this study, we develop and characterize an immobilized antibody-based affinity grid (IAAG) strategy based on the high-affinity PA tag/NZ-1 antibody epitope tag system. We employ Pyr-NHS as a linker to immobilize NZ-1 Fab on the graphene oxide or carbon-covered grid surface. Our results demonstrate that the IAAG grid effectively enriches PA-tagged target proteins and overcomes preferred orientation issues. Furthermore, we demonstrate the utility of our IAAG strategy for on-grid purification of low-abundance target complexes from cell lysates, enabling atomic resolution cryo-EM. This approach greatly streamlines the purification process, reduces the need for large quantities of biological samples, and addresses common challenges encountered in cryo-EM sample preparation. Collectively, our IAAG strategy provides an efficient and robust means for combined sample purification and vitrification, feasible for high-resolution cryo-EM. This approach holds potential for broader applicability in both cryo-EM and cryo-electron tomography (cryo-ET).
Collapse
Affiliation(s)
- Qiaoyu Zhao
- Key Laboratory of RNA Innovation, Science and Engineering, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 200031, Shanghai, China
| | - Xiaoyu Hong
- Key Laboratory of RNA Innovation, Science and Engineering, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 200031, Shanghai, China
| | - Yanxing Wang
- Key Laboratory of RNA Innovation, Science and Engineering, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 200031, Shanghai, China
| | - Shaoning Zhang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 200050, Shanghai, China
| | - Zhanyu Ding
- Key Laboratory of RNA Innovation, Science and Engineering, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 200031, Shanghai, China
| | - Xueming Meng
- Key Laboratory of RNA Innovation, Science and Engineering, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 200031, Shanghai, China
| | - Qianqian Song
- Key Laboratory of RNA Innovation, Science and Engineering, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 200031, Shanghai, China
| | - Qin Hong
- Key Laboratory of RNA Innovation, Science and Engineering, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 200031, Shanghai, China
| | - Wanying Jiang
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| | - Xiangyi Shi
- Shanghai Nanoport, Thermo Fisher Scientific, Shanghai, China
| | - Tianxun Cai
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 200050, Shanghai, China
| | - Yao Cong
- Key Laboratory of RNA Innovation, Science and Engineering, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 200031, Shanghai, China.
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China.
| |
Collapse
|
2
|
Wakasa A, Kaneko MK, Kato Y, Takagi J, Arimori T. Site-specific epitope insertion into recombinant proteins using the MAP tag system. J Biochem 2021; 168:375-384. [PMID: 32386302 PMCID: PMC7585734 DOI: 10.1093/jb/mvaa054] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 04/24/2020] [Indexed: 01/17/2023] Open
Abstract
The MAP tag system comprises a 14-residue peptide derived from mouse podoplanin and its high-affinity monoclonal antibody PMab-1. We determined the crystal structure of PMab-1 complexed with the MAP tag peptide and found that the recognition required only the N-terminal 8 residues of MAP tag sequence, enabling the shortening of the tag length without losing the affinity for PMab-1. Furthermore, the structure illustrated that the MAP tag adopts a U-shaped conformation when bound by PMab-1, suggesting that loop-inserted MAP tag would assume conformation compatible with the PMab-1 binding. We inserted the 8-residue MAP tag into multiple loop regions in various proteins including fibronectin type III domain and G-protein-coupled receptors and tested if they maintain PMab-1 reactivity. Despite the conformational restraints forced by the insertion position, all MAP-inserted mutants were expressed well in mammalian cells at levels comparable to the non-tagged proteins. Furthermore, the binding by PMab-1 was fully maintained even for the mutant where MAP tag was inserted at a structurally restricted β-hairpin, indicating that the MAP tag system has unique feature that allows placement in the middle of protein domain at desired locations. Our results indicate the versatile utility of the MAP tag system in 'site-specific epitope insertion' application.
Collapse
Affiliation(s)
- Ayami Wakasa
- Laboratory of Protein Synthesis and Expression, Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Mika K Kaneko
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine
| | - Yukinari Kato
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine.,New Industry Creation Hatchery Center, Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan
| | - Junichi Takagi
- Laboratory of Protein Synthesis and Expression, Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Takao Arimori
- Laboratory of Protein Synthesis and Expression, Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
3
|
Brown ZP, Takagi J. Advances in domain and subunit localization technology for electron microscopy. Biophys Rev 2019; 11:149-155. [PMID: 30834502 DOI: 10.1007/s12551-019-00513-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 02/20/2019] [Indexed: 12/26/2022] Open
Abstract
The award of the 2017 Nobel Prize in chemistry, 'for developing cryo-electron microscopy for the high-resolution structure determination of biomolecules in solution', was recognition that this method, and electron microscopy more generally, represent powerful techniques in the scientific armamentarium for atomic level structural assessment. Technical advances in equipment, software, and sample preparation, have allowed for high-resolution structural determination of a range of complex biological machinery such that the position of individual atoms within these mega-structures can be determined. However, not all targets are amenable to attaining such high-resolution structures and some may only be resolved at so-called intermediate resolutions. In these cases, other tools are needed to correctly characterize the domain or subunit orientation and architecture. In this review, we will outline various methods that can provide additional information to help understand the macro-level organization of proteins/biomolecular complexes when high-resolution structural description is not available. In particular, we will discuss the recent development and use of a novel protein purification approach, known as the the PA tag/NZ-1 antibody system, which provides numberous beneficial properties, when used in electron microscopy experimentation.
Collapse
Affiliation(s)
- Zuben P Brown
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA.
| | - Junichi Takagi
- Laboratory of Protein Synthesis and Expression, Institute for Protein Research, Osaka University, Osaka, Japan
| |
Collapse
|
4
|
Tamura R, Oi R, Akashi S, Kaneko MK, Kato Y, Nogi T. Application of the NZ-1 Fab as a crystallization chaperone for PA tag-inserted target proteins. Protein Sci 2019; 28:823-836. [PMID: 30666745 DOI: 10.1002/pro.3580] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 01/14/2019] [Accepted: 01/15/2019] [Indexed: 01/03/2023]
Abstract
An antibody fragment that recognizes the tertiary structure of a target protein with high affinity can be utilized as a crystallization chaperone. Difficulties in establishing conformation-specific antibodies, however, limit the applicability of antibody fragment-assisted crystallization. Here, we attempted to establish an alternative method to promote the crystallization of target proteins using an already established anti-tag antibody. The monoclonal antibody NZ-1 recognizes the PA tag with an extremely high affinity. It was also established that the PA tag is accommodated in the antigen-binding pocket in a bent conformation, compatible with an insertion into loop regions on the target. We, therefore, explored the application of NZ-1 Fab as a crystallization chaperone that complexes with a target protein displaying a PA tag. Specifically, we inserted the PA tag into the β-hairpins of the PDZ tandem fragment of a bacterial Site-2 protease. We crystallized the PA-inserted PDZ tandem mutants with the NZ-1 Fab and solved the co-crystal structure to analyze their interaction modes. Although the initial insertion designs produced only moderate-resolution structures, eliminating the solvent-accessible space between the NZ-1 Fab and target PDZ tandem improved the diffraction qualities remarkably. Our results demonstrate that the NZ-1-PA system efficiently promotes crystallization of the target protein. The present work also suggests that β-hairpins are suitable sites for the PA insertion because the PA tag contains a Pro-Gly sequence with a propensity for a β-turn conformation.
Collapse
Affiliation(s)
- Risako Tamura
- Graduate School of Medical Life Science, Yokohama City University, Yokohama, Japan
| | - Rika Oi
- Graduate School of Medical Life Science, Yokohama City University, Yokohama, Japan
| | - Satoko Akashi
- Graduate School of Medical Life Science, Yokohama City University, Yokohama, Japan
| | - Mika K Kaneko
- Tohoku University Graduate School of Medicine, Tohoku, Japan
| | - Yukinari Kato
- Tohoku University Graduate School of Medicine, Tohoku, Japan
| | - Terukazu Nogi
- Graduate School of Medical Life Science, Yokohama City University, Yokohama, Japan
| |
Collapse
|
5
|
Brown ZP, Takagi J. The PA Tag: A Versatile Peptide Tagging System in the Era of Integrative Structural Biology. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1105:59-76. [PMID: 30617824 DOI: 10.1007/978-981-13-2200-6_6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
Abstract
We have recently developed a novel protein tagging system based on the high affinity interaction between an antibody NZ-1 and its antigen PA peptide, a dodecapeptide that forms a β-turn in the binding pocket of NZ-1. This unique conformation allows for the PA peptide to be inserted into turn-forming loops within a folded protein domain and the system has been variously used in general applications including protein purification, Western blotting and flow cytometry, or in more specialized applications such as reporting protein conformational change, and identifying subunits of macromolecular complexes with electron microscopy. Thus the small and "portable" nature of the PA tag system offers a versatile and powerful tool that can be implemented in various aspects of integrative structural biology.
Collapse
Affiliation(s)
- Zuben P Brown
- Laboratory of Protein Synthesis and Expression, Institute for Protein Research, Osaka University, Suita, Osaka, Japan
| | - Junichi Takagi
- Laboratory of Protein Synthesis and Expression, Institute for Protein Research, Osaka University, Suita, Osaka, Japan.
| |
Collapse
|
6
|
Architecture and subunit arrangement of the complete Saccharomyces cerevisiae COMPASS complex. Sci Rep 2018; 8:17405. [PMID: 30479350 PMCID: PMC6258710 DOI: 10.1038/s41598-018-35609-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 10/17/2018] [Indexed: 01/08/2023] Open
Abstract
Methylation of histone H3 lysine 4 (H3K4) is catalyzed by the multi-component COMPASS or COMPASS-like complex, which is highly conserved from yeast to human, and plays essential roles in gene expression and transcription, cell cycle progression, and DNA repair. Here we present a cryo-EM map of the complete S. cerevisiae COMPASS complex. Through tag or Fab labeling strategy combined with cryo-EM 3D reconstruction and cross-linking and mass spectrometry (XL-MS) analysis, we uncovered new information on the subunit arrangement: Cps50, Cps35, and Cps30 were determined to group together to form the face region in the head of the complex, and Cps40 and the N-terminal portion of Set1 reside on the top of the head. Our map reveals the location of the active center and a canyon in the back of the head. Together, our study provides the first snapshot of the complete architecture of yeast COMPASS and a picture of its subunit interaction network, which could facilitate our understanding of the COMPASS machinery and its functionality.
Collapse
|
7
|
Tsunoda J, Song C, Imai FL, Takagi J, Ueno H, Murata T, Iino R, Murata K. Off-axis rotor in Enterococcus hirae V-ATPase visualized by Zernike phase plate single-particle cryo-electron microscopy. Sci Rep 2018; 8:15632. [PMID: 30353110 PMCID: PMC6199243 DOI: 10.1038/s41598-018-33977-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 10/09/2018] [Indexed: 12/25/2022] Open
Abstract
EhV-ATPase is an ATP-driven Na+ pump in the eubacteria Enterococcus hirae (Eh). Here, we present the first entire structure of detergent-solubilized EhV-ATPase by single-particle cryo-electron microscopy (cryo-EM) using Zernike phase plate. The cryo-EM map dominantly showed one of three catalytic conformations in this rotary enzyme. To further stabilize the originally heterogeneous structure caused by the ATP hydrolysis states of the V1-ATPases, a peptide epitope tag system was adopted, in which the inserted peptide epitope sequence interfered with rotation of the central rotor by binding the Fab. As a result, the map unexpectedly showed another catalytic conformation of EhV-ATPase. Interestingly, these two conformations identified with and without Fab conversely coincided with those of the minor state 2 and the major state 1 of Thermus thermophilus V/A-ATPase, respectively. The most prominent feature in EhV-ATPase was the off-axis rotor, where the cytoplasmic V1 domain was connected to the transmembrane Vo domain through the off-axis central rotor. Furthermore, compared to the structure of ATP synthases, the larger size of the interface between the transmembrane a-subunit and c-ring of EhV-ATPase would be more advantageous for active ion pumping.
Collapse
Affiliation(s)
- Jun Tsunoda
- The Graduate University for Advanced Studies (SOKENDAI), Kanagawa, 240-0193, Japan.,National Institute for Physiological Sciences, Okazaki, Aichi, 444-8585, Japan
| | - Chihong Song
- National Institute for Physiological Sciences, Okazaki, Aichi, 444-8585, Japan
| | - Fabiana Lica Imai
- Department of Chemistry, Graduate School of Science, Chiba University, Inage, Chiba, 263-8522, Japan
| | - Junichi Takagi
- Institute for Protein Research, Osaka University, 3-2 Suita, Osaka, 565-0871, Japan
| | - Hiroshi Ueno
- Department of Applied Chemistry, University of Tokyo, Tokyo, 113-8656, Japan
| | - Takeshi Murata
- Department of Chemistry, Graduate School of Science, Chiba University, Inage, Chiba, 263-8522, Japan.,JST, PRESTO, Inage, Chiba, 263-8522, Japan
| | - Ryota Iino
- The Graduate University for Advanced Studies (SOKENDAI), Kanagawa, 240-0193, Japan.,Institute for Molecular Science, Okazaki, Aichi, 444-8787, Japan
| | - Kazuyoshi Murata
- The Graduate University for Advanced Studies (SOKENDAI), Kanagawa, 240-0193, Japan. .,National Institute for Physiological Sciences, Okazaki, Aichi, 444-8585, Japan.
| |
Collapse
|