1
|
Kanagavel Y, Manokaran RK. Distinct Facial Dysmorphisms in a Child with Renpenning Syndrome. Ann Indian Acad Neurol 2025; 28:110-111. [PMID: 39779256 DOI: 10.4103/aian.aian_789_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 12/05/2024] [Indexed: 01/11/2025] Open
Affiliation(s)
- Yathwin Kanagavel
- Department of Neurology, Sri Ramachandra Institute of Higher Education and Research, Chennai, Tamil Nadu, India
| | | |
Collapse
|
2
|
Haghshenas S, Foroutan A, Bhai P, Levy MA, Relator R, Kerkhof J, McConkey H, Skinner CD, Caylor RC, Tedder ML, Stevenson RE, Sadikovic B, Schwartz CE. Identification of a DNA methylation signature for Renpenning syndrome (RENS1), a spliceopathy. Eur J Hum Genet 2023; 31:879-886. [PMID: 36797465 PMCID: PMC10400603 DOI: 10.1038/s41431-023-01313-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 01/24/2023] [Accepted: 02/01/2023] [Indexed: 02/18/2023] Open
Abstract
The challenges and ambiguities in providing an accurate diagnosis for patients with neurodevelopmental disorders have led researchers to apply epigenetics as a technique to validate the diagnosis provided based on the clinical examination and genetic testing results. Genome-wide DNA methylation analysis has recently been adapted for clinical testing of patients with genetic neurodevelopmental disorders. In this paper, preliminary data demonstrating a DNA methylation signature for Renpenning syndrome (RENS1 - OMIM 309500), which is an X-linked recessive neurodevelopmental disorder caused by variants in polyglutamine-binding protein 1 (PQBP1) is reported. The identified episignature was then utilized to construct a highly sensitive and specific binary classification model. Besides providing evidence for the existence of a DNA methylation episignature for Renpenning syndrome, this study increases the knowledge of the molecular mechanisms related to the disease. Moreover, the availability of more subjects in future may facilitate the establishment of an episignature that can be utilized for diagnosis in a clinical setting and for reclassification of variants of unknown clinical significance.
Collapse
Affiliation(s)
- Sadegheh Haghshenas
- Department of Pathology and Laboratory Medicine, Western University, London, ON, N6A 3K7, Canada
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON, N6A 5W9, Canada
| | - Aidin Foroutan
- Department of Pathology and Laboratory Medicine, Western University, London, ON, N6A 3K7, Canada
| | - Pratibha Bhai
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON, N6A 5W9, Canada
| | - Michael A Levy
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON, N6A 5W9, Canada
| | - Raissa Relator
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON, N6A 5W9, Canada
| | - Jennifer Kerkhof
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON, N6A 5W9, Canada
| | - Haley McConkey
- Department of Pathology and Laboratory Medicine, Western University, London, ON, N6A 3K7, Canada
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON, N6A 5W9, Canada
| | | | | | | | | | - Bekim Sadikovic
- Department of Pathology and Laboratory Medicine, Western University, London, ON, N6A 3K7, Canada.
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON, N6A 5W9, Canada.
| | - Charles E Schwartz
- Greenwood Genetic Center, Greenwood, SC, 29646, USA.
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI, 49503, USA.
| |
Collapse
|
3
|
Ben-Mahmoud A, Jun KR, Gupta V, Shastri P, de la Fuente A, Park Y, Shin KC, Kim CA, da Cruz AD, Pinto IP, Minasi LB, Silva da Cruz A, Faivre L, Callier P, Racine C, Layman LC, Kong IK, Kim CH, Kim WY, Kim HG. A rigorous in silico genomic interrogation at 1p13.3 reveals 16 autosomal dominant candidate genes in syndromic neurodevelopmental disorders. Front Mol Neurosci 2022; 15:979061. [PMID: 36277487 PMCID: PMC9582330 DOI: 10.3389/fnmol.2022.979061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 08/30/2022] [Indexed: 11/13/2022] Open
Abstract
Genome-wide chromosomal microarray is extensively used to detect copy number variations (CNVs), which can diagnose microdeletion and microduplication syndromes. These small unbalanced chromosomal structural rearrangements ranging from 1 kb to 10 Mb comprise up to 15% of human mutations leading to monogenic or contiguous genomic disorders. Albeit rare, CNVs at 1p13.3 cause a variety of neurodevelopmental disorders (NDDs) including development delay (DD), intellectual disability (ID), autism, epilepsy, and craniofacial anomalies (CFA). Most of the 1p13.3 CNV cases reported in the pre-microarray era encompassed a large number of genes and lacked the demarcating genomic coordinates, hampering the discovery of positional candidate genes within the boundaries. In this study, we present four subjects with 1p13.3 microdeletions displaying DD, ID, autism, epilepsy, and CFA. In silico comparative genomic mapping with three previously reported subjects with CNVs and 22 unreported DECIPHER CNV cases has resulted in the identification of four different sub-genomic loci harboring five positional candidate genes for DD, ID, and CFA at 1p13.3. Most of these genes have pathogenic variants reported, and their interacting genes are involved in NDDs. RT-qPCR in various human tissues revealed a high expression pattern in the brain and fetal brain, supporting their functional roles in NDDs. Interrogation of variant databases and interacting protein partners led to the identification of another set of 11 potential candidate genes, which might have been dysregulated by the position effect of these CNVs at 1p13.3. Our studies define 1p13.3 as a genomic region harboring 16 NDD candidate genes and underscore the critical roles of small CNVs in in silico comparative genomic mapping for disease gene discovery. Our candidate genes will help accelerate the isolation of pathogenic heterozygous variants from exome/genome sequencing (ES/GS) databases.
Collapse
Affiliation(s)
- Afif Ben-Mahmoud
- Neurological Disorders Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Doha, Qatar
| | - Kyung Ran Jun
- Department of Laboratory Medicine, Inje University Haeundae Paik Hospital, Busan, South Korea
| | - Vijay Gupta
- Neurological Disorders Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Doha, Qatar
| | - Pinang Shastri
- Department of Cardiovascular Medicine, Cape Fear Valley Medical Center, Fayetteville, NC, United States
| | - Alberto de la Fuente
- Diabetes Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Doha, Qatar
| | - Yongsoo Park
- Neurological Disorders Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Doha, Qatar
| | - Kyung Chul Shin
- Neurological Disorders Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Doha, Qatar
| | - Chong Ae Kim
- Faculdade de Medicina, Unidade de Genética do Instituto da Criança – Hospital das Clínicas HCFMUSP, Universidade de São Paulo, São Paulo, Brazil
| | - Aparecido Divino da Cruz
- School of Medical and Life Sciences, Genetics Master Program, Replicon Research Group, Pontifical Catholic University of Goiás, Goiânia, Brazil
- Genetics Master Program, Replicon Research Nucleus, School of Agrarian and Biological Sciences, Pontifical Catholic University of Goias, Goiás, Brazil
| | - Irene Plaza Pinto
- School of Medical and Life Sciences, Genetics Master Program, Replicon Research Group, Pontifical Catholic University of Goiás, Goiânia, Brazil
- Genetics Master Program, Replicon Research Nucleus, School of Agrarian and Biological Sciences, Pontifical Catholic University of Goias, Goiás, Brazil
| | - Lysa Bernardes Minasi
- School of Medical and Life Sciences, Genetics Master Program, Replicon Research Group, Pontifical Catholic University of Goiás, Goiânia, Brazil
- Genetics Master Program, Replicon Research Nucleus, School of Agrarian and Biological Sciences, Pontifical Catholic University of Goias, Goiás, Brazil
| | - Alex Silva da Cruz
- School of Medical and Life Sciences, Genetics Master Program, Replicon Research Group, Pontifical Catholic University of Goiás, Goiânia, Brazil
- Genetics Master Program, Replicon Research Nucleus, School of Agrarian and Biological Sciences, Pontifical Catholic University of Goias, Goiás, Brazil
| | - Laurence Faivre
- Inserm UMR 1231 GAD, Genetics of Developmental Disorders, Université de Bourgogne-Franche Comté, Dijon, France
- Centre de Référence Anomalies du Développement et Syndromes Malformatifs, Hôpital d’Enfants, Dijon, France
| | - Patrick Callier
- UMR 1231 GAD, Inserm – Université Bourgogne-Franche Comté, Dijon, France
| | - Caroline Racine
- UMR 1231 GAD, Inserm – Université Bourgogne-Franche Comté, Dijon, France
| | - Lawrence C. Layman
- Section of Reproductive Endocrinology, Infertility and Genetics, Department of Obstetrics and Gynecology, Augusta University, Augusta, GA, United States
- Department of Neuroscience and Regenerative Medicine, Augusta University, Augusta, GA, United States
| | - Il-Keun Kong
- Department of Animal Science, Division of Applied Life Science (BK21 Four), Gyeongsang National University, Jinju, South Korea
| | - Cheol-Hee Kim
- Department of Biology, Chungnam National University, Daejeon, South Korea
| | - Woo-Yang Kim
- Department of Biological Sciences, Kent State University, Kent, OH, United States
| | - Hyung-Goo Kim
- Neurological Disorders Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Doha, Qatar
- *Correspondence: Hyung-Goo Kim,
| |
Collapse
|
4
|
Momin AA, Mendes T, Barthe P, Faure C, Hong S, Yu P, Kadaré G, Jaremko M, Girault JA, Jaremko Ł, Arold ST. PYK2 senses calcium through a disordered dimerization and calmodulin-binding element. Commun Biol 2022; 5:800. [PMID: 35945264 PMCID: PMC9363500 DOI: 10.1038/s42003-022-03760-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 07/22/2022] [Indexed: 11/25/2022] Open
Abstract
Multidomain kinases use many ways to integrate and process diverse stimuli. Here, we investigated the mechanism by which the protein tyrosine kinase 2-beta (PYK2) functions as a sensor and effector of cellular calcium influx. We show that the linker between the PYK2 kinase and FAT domains (KFL) encompasses an unusual calmodulin (CaM) binding element. PYK2 KFL is disordered and engages CaM through an ensemble of transient binding events. Calcium increases the association by promoting structural changes in CaM that expose auxiliary interaction opportunities. KFL also forms fuzzy dimers, and dimerization is enhanced by CaM binding. As a monomer, however, KFL associates with the PYK2 FERM-kinase fragment. Thus, we identify a mechanism whereby calcium influx can promote PYK2 self-association, and hence kinase-activating trans-autophosphorylation. Collectively, our findings describe a flexible protein module that expands the paradigms for CaM binding and self-association, and their use for controlling kinase activity. Protein tyrosine kinase 2-beta is shown to function as a sensor and effector of cellular calcium influx through self-association.
Collapse
Affiliation(s)
- Afaque A Momin
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia.,Bioscience Program, Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Tiago Mendes
- Inserm UMR-S 1270, Sorbonne Université, Faculty of Sciences and Engineering, Institut du Fer à Moulin, 75005, Paris, France
| | - Philippe Barthe
- Centre de Biologie Structurale (CBS), University Montpellier, INSERM U1054, CNRS UMR 5048, 34090, Montpellier, France
| | - Camille Faure
- Inserm UMR-S 1270, Sorbonne Université, Faculty of Sciences and Engineering, Institut du Fer à Moulin, 75005, Paris, France
| | - SeungBeom Hong
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia.,Bioscience Program, Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Piao Yu
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia.,Bioscience Program, Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Gress Kadaré
- Inserm UMR-S 1270, Sorbonne Université, Faculty of Sciences and Engineering, Institut du Fer à Moulin, 75005, Paris, France
| | - Mariusz Jaremko
- Bioscience Program, Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Jean-Antoine Girault
- Inserm UMR-S 1270, Sorbonne Université, Faculty of Sciences and Engineering, Institut du Fer à Moulin, 75005, Paris, France
| | - Łukasz Jaremko
- Bioscience Program, Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Stefan T Arold
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia. .,Bioscience Program, Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia. .,Centre de Biologie Structurale (CBS), University Montpellier, INSERM U1054, CNRS UMR 5048, 34090, Montpellier, France.
| |
Collapse
|
5
|
Identification and Functional Analyses of Host Proteins Interacting with the p17 Protein of Avian Reovirus. Viruses 2022; 14:v14050892. [PMID: 35632635 PMCID: PMC9145365 DOI: 10.3390/v14050892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 04/22/2022] [Accepted: 04/22/2022] [Indexed: 01/27/2023] Open
Abstract
Avian reovirus (ARV) causes viral arthritis, chronic respiratory diseases, retarded growth and malabsorption syndrome. However, the precise molecular mechanism remains unclear. Here, we report the host cellular proteins that interact with ARV p17 by yeast two-hybrid screening. In this study, the p17 gene was cloned into pGBKT7 to obtain the bait plasmid pGBKT7-p17. After several rounds of screening of a chicken cDNA library, 43 positive clones were identified as possible host factors that interacted with p17. A BLAST search of the sequences was performed on the NCBI website, which ultimately revealed 19 interacting proteins. Gene ontology enrichment and Kyoto Encyclopedia of Genes and Genome analyses indicated that the acquired proteins were involved in multicellular organismal processes, metabolic processes, and biological regulation. When the subcellular localization of the host protein and ARV p17 protein was investigated, we observed colocalization of p17-GFP with IGF2BP1-RED and PQBP1-RED in the transfected cells but not with FGF1-RED. The direct interaction of ARV p17 protein with IGF2BP1 and PQBP1 was confirmed by coimmunoprecipitation and GST pulldown assays. We used RT-qPCR to assess the expression variation during ARV infection. The results showed that IGF2BP1, PAPSS2, RPL5, NEDD4L, PRPS2 and IFI16 were significantly upregulated, whereas the expression of FGF1, CDH2 and PQBP1 was markedly decreased in DF-1 cells infected with ARV. Finally, we demonstrated that IGF2BP1 had a positive effect on ARV replication, while PQBP1 had the opposite effect. Our findings provide valuable information for better insights into ARV's pathogenesis and the role of the p17 protein in this process.
Collapse
|
6
|
Tau activates microglia via the PQBP1-cGAS-STING pathway to promote brain inflammation. Nat Commun 2021; 12:6565. [PMID: 34782623 PMCID: PMC8592984 DOI: 10.1038/s41467-021-26851-2] [Citation(s) in RCA: 115] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 10/23/2021] [Indexed: 12/15/2022] Open
Abstract
Brain inflammation generally accompanies and accelerates neurodegeneration. Here we report a microglial mechanism in which polyglutamine binding protein 1 (PQBP1) senses extrinsic tau 3R/4R proteins by direct interaction and triggers an innate immune response by activating a cyclic GMP-AMP synthase (cGAS)-Stimulator of interferon genes (STING) pathway. Tamoxifen-inducible and microglia-specific depletion of PQBP1 in primary culture in vitro and mouse brain in vivo shows that PQBP1 is essential for sensing-tau to induce nuclear translocation of nuclear factor κB (NFκB), NFκB-dependent transcription of inflammation genes, brain inflammation in vivo, and eventually mouse cognitive impairment. Collectively, PQBP1 is an intracellular receptor in the cGAS-STING pathway not only for cDNA of human immunodeficiency virus (HIV) but also for the transmissible neurodegenerative disease protein tau. This study characterises a mechanism of brain inflammation that is common to virus infection and neurodegenerative disorders.
Collapse
|
7
|
Chen YW, Rahman SK. Fatal Attraction: The Case of Toxic Soluble Dimers of Truncated PQBP-1 Mutants in X-Linked Intellectual Disability. Int J Mol Sci 2021; 22:ijms22052240. [PMID: 33668121 PMCID: PMC7956452 DOI: 10.3390/ijms22052240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/20/2021] [Accepted: 02/20/2021] [Indexed: 11/16/2022] Open
Abstract
The frameshift mutants K192Sfs*7 and R153Sfs*41, of the polyglutamine tract-binding protein 1 (PQBP-1), are stable intrinsically disordered proteins (IDPs). They are each associated with the severe cognitive disorder known as the Renpenning syndrome, a form of X-linked intellectual disability (XLID). Relative to the monomeric wild-type protein, these mutants are dimeric, contain more folded contents, and have higher thermal stabilities. Comparisons can be drawn to the toxic oligomerisation in the “conformational diseases”, which collectively describe medical conditions involving a substantial protein structural transition in the pathogenic mechanism. At the molecular level, the end state of these diseases is often cytotoxic protein aggregation. The conformational disease proteins contain varying extents of intrinsic disorder, and the consensus pathogenesis includes an early oligomer formation. We reviewed the experimental characterisation of the toxic oligomers in representative cases. PQBP-1 mutant dimerisation was then compared to the oligomerisation of the conformational disease proteins. The PQBP-1 mutants are unique in behaving as stable soluble dimers, which do not further develop into higher oligomers or aggregates. The toxicity of the PQBP-1 mutant dimers lies in the native functions (in transcription regulation and possibly, RNA splicing) being compromised, rather than proceeding to aggregation. Other examples of stable IDP dimers were discussed and we speculated on the roles of IDP dimerisation in protein evolution.
Collapse
Affiliation(s)
- Yu Wai Chen
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hunghom 999077, Hong Kong
- State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Hunghom 999077, Hong Kong
- Correspondence:
| | - Shah Kamranur Rahman
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, London WC1E 7HT, UK;
| |
Collapse
|