1
|
Li X, Busch LM, Piersma S, Wang M, Liu L, Gesell Salazar M, Surmann K, Mäder U, Völker U, Buist G, van Dijl JM. Functional and Proteomic Dissection of the Contributions of CodY, SigB and the Hibernation Promoting Factor HPF to Interactions of Staphylococcus aureus USA300 with Human Lung Epithelial Cells. J Proteome Res 2024; 23:4742-4760. [PMID: 39302699 PMCID: PMC11459534 DOI: 10.1021/acs.jproteome.4c00724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Accepted: 09/11/2024] [Indexed: 09/22/2024]
Abstract
Staphylococcus aureus is a leading cause of severe pneumonia. Our recent proteomic investigations into S. aureus invasion of human lung epithelial cells revealed three key adaptive responses: activation of the SigB and CodY regulons and upregulation of the hibernation-promoting factor SaHPF. Therefore, our present study aimed at a functional and proteomic dissection of the contributions of CodY, SigB and SaHPF to host invasion using transposon mutants of the methicillin-resistant S. aureus USA300. Interestingly, disruption of codY resulted in a "small colony variant" phenotype and redirected the bacteria from (phago)lysosomes into the host cell cytoplasm. Furthermore, we show that CodY, SigB and SaHPF contribute differentially to host cell adhesion, invasion, intracellular survival and cytotoxicity. CodY- or SigB-deficient bacteria experienced faster intracellular clearance than the parental strain, underscoring the importance of these regulators for intracellular persistence. We also show an unprecedented role of SaHPF in host cell adhesion and invasion. Proteomic analysis of the different mutants focuses attention on the CodY-perceived metabolic state of the bacteria and the SigB-perceived environmental cues in bacterial decision-making prior and during infection. Additionally, it underscores the impact of the nutritional status and bacterial stress on the initiation and progression of staphylococcal lung infections.
Collapse
Affiliation(s)
- Xiaofang Li
- Department
of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9700 RB Groningen, The Netherlands
| | - Larissa M. Busch
- Interfaculty
Institute for Genetics and Functional Genomics, Department Functional
Genomics, University Medicine Greifswald, D-17475 Greifswald, Germany
| | - Sjouke Piersma
- Department
of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9700 RB Groningen, The Netherlands
| | - Min Wang
- Department
of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9700 RB Groningen, The Netherlands
| | - Lei Liu
- Department
of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9700 RB Groningen, The Netherlands
| | - Manuela Gesell Salazar
- Interfaculty
Institute for Genetics and Functional Genomics, Department Functional
Genomics, University Medicine Greifswald, D-17475 Greifswald, Germany
| | - Kristin Surmann
- Interfaculty
Institute for Genetics and Functional Genomics, Department Functional
Genomics, University Medicine Greifswald, D-17475 Greifswald, Germany
| | - Ulrike Mäder
- Interfaculty
Institute for Genetics and Functional Genomics, Department Functional
Genomics, University Medicine Greifswald, D-17475 Greifswald, Germany
| | - Uwe Völker
- Interfaculty
Institute for Genetics and Functional Genomics, Department Functional
Genomics, University Medicine Greifswald, D-17475 Greifswald, Germany
| | - Girbe Buist
- Department
of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9700 RB Groningen, The Netherlands
| | - Jan Maarten van Dijl
- Department
of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9700 RB Groningen, The Netherlands
| |
Collapse
|
2
|
Ueta M, Wada A, Wada C. The hibernation promoting factor of Betaproteobacteria Comamonas testosteroni cannot induce 100S ribosome formation but stabilizes 70S ribosomal particles. Genes Cells 2024; 29:613-634. [PMID: 38937957 DOI: 10.1111/gtc.13137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/30/2024] [Accepted: 05/03/2024] [Indexed: 06/29/2024]
Abstract
Bacteria use several means to survive under stress conditions such as nutrient depletion. One such response is the formation of hibernating 100S ribosomes, which are translationally inactive 70S dimers. In Gammaproteobacteria (Enterobacterales), 100S ribosome formation requires ribosome modulation factor (RMF) and short hibernation promoting factor (HPF), whereas it is mediated by only long HPF in the majority of bacteria. Here, we investigated the role of HPFs of Comamonas testosteroni, which belongs to the Betaproteobacteria with common ancestor to the Gammaproteobacteria. C. testosteroni has two genes of HPF homologs of differing length (CtHPF-125 and CtHPF-119). CtHPF-125 was induced in the stationary phase, whereas CtHPF-119 conserved in many other Betaproteobacteria was not expressed in the culture conditions used here. Unlike short HPF and RMF, and long HPF, CtHPF-125 could not form 100S ribosome. We first constructed the deletion mutant of Cthpf-125 gene. When the deletion mutant grows in the stationary phase, 70S particles were degraded faster than in the wild strain. CtHPF-125 contributes to stabilizing the 70S ribosome. CtHPF-125 and CtHPF-119 both inhibited protein synthesis by transcription-translation in vitro. Our findings suggest that CtHPF-125 binds to ribosome, and stabilizes 70S ribosomes, inhibits translation without forming 100S ribosomes and supports prolonging life.
Collapse
Affiliation(s)
- Masami Ueta
- Biological Information Research, Yoshida Biological Laboratory Inc., Yoshida Biological Laboratory, Kyoto, Japan
| | - Akira Wada
- Biological Information Research, Yoshida Biological Laboratory Inc., Yoshida Biological Laboratory, Kyoto, Japan
| | - Chieko Wada
- Biological Information Research, Yoshida Biological Laboratory Inc., Yoshida Biological Laboratory, Kyoto, Japan
| |
Collapse
|
3
|
Kumar N, Sharma S, Kaushal PS. Cryo- EM structure of the mycobacterial 70S ribosome in complex with ribosome hibernation promotion factor RafH. Nat Commun 2024; 15:638. [PMID: 38245551 PMCID: PMC10799931 DOI: 10.1038/s41467-024-44879-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 01/04/2024] [Indexed: 01/22/2024] Open
Abstract
Ribosome hibernation is a key survival strategy bacteria adopt under environmental stress, where a protein, hibernation promotion factor (HPF), transitorily inactivates the ribosome. Mycobacterium tuberculosis encounters hypoxia (low oxygen) as a major stress in the host macrophages, and upregulates the expression of RafH protein, which is crucial for its survival. The RafH, a dual domain HPF, an orthologue of bacterial long HPF (HPFlong), hibernates ribosome in 70S monosome form, whereas in other bacteria, the HPFlong induces 70S ribosome dimerization and hibernates its ribosome in 100S disome form. Here, we report the cryo- EM structure of M. smegmatis, a close homolog of M. tuberculosis, 70S ribosome in complex with the RafH factor at an overall 2.8 Å resolution. The N- terminus domain (NTD) of RafH binds to the decoding center, similarly to HPFlong NTD. In contrast, the C- terminus domain (CTD) of RafH, which is larger than the HPFlong CTD, binds to a distinct site at the platform binding center of the ribosomal small subunit. The two domain-connecting linker regions, which remain mostly disordered in earlier reported HPFlong structures, interact mainly with the anti-Shine Dalgarno sequence of the 16S rRNA.
Collapse
Affiliation(s)
- Niraj Kumar
- Structural Biology & Translation Regulation Laboratory, UNESCO-DBT, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, 121 001, India
| | - Shivani Sharma
- Structural Biology & Translation Regulation Laboratory, UNESCO-DBT, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, 121 001, India
| | - Prem S Kaushal
- Structural Biology & Translation Regulation Laboratory, UNESCO-DBT, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, 121 001, India.
| |
Collapse
|
4
|
Usachev KS, Yusupov MM, Validov SZ. Hibernation as a Stage of Ribosome Functioning. BIOCHEMISTRY (MOSCOW) 2021; 85:1434-1442. [PMID: 33280583 DOI: 10.1134/s0006297920110115] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
In response to stress, eubacteria reduce the level of protein synthesis and either disassemble ribosomes into the 30S and 50S subunits or turn them into translationally inactive 70S and 100S complexes. This helps the cell to solve two principal tasks: (i) to reduce the cost of protein biosynthesis under unfavorable conditions, and (ii) to preserve functional ribosomes for rapid recovery of protein synthesis until favorable conditions are restored. All known genes for ribosome silencing factors and hibernation proteins are located in the operons associated with the response to starvation as one of the stress factors, which helps the cells to coordinate the slowdown of protein synthesis with the overall stress response. It is possible that hibernation systems work as regulators that coordinate the intensity of protein synthesis with the energy state of bacterial cell. Taking into account the limited amount of nutrients in natural conditions and constant pressure of other stress factors, bacterial ribosome should remain most of time in a complex with the silencing/hibernation proteins. Therefore, hibernation is an additional stage between the ribosome recycling and translation initiation, at which the ribosome is maintained in a "preserved" state in the form of separate subunits, non-translating 70S particles, or 100S dimers. The evolution of the ribosome hibernation has occurred within a very long period of time; ribosome hibernation is a conserved mechanism that is essential for maintaining the energy- and resource-consuming process of protein biosynthesis in organisms living in changing environment under stress conditions.
Collapse
Affiliation(s)
- K S Usachev
- Kazan Federal University, Kazan, 420008, Russia
| | - M M Yusupov
- Kazan Federal University, Kazan, 420008, Russia. .,Institute of Genetics and Molecular and Cellular Biology, Illkirch-Graffenstaden, 67400, France
| | | |
Collapse
|
5
|
Mechanism of ribosome shutdown by RsfS in Staphylococcus aureus revealed by integrative structural biology approach. Nat Commun 2020; 11:1656. [PMID: 32245971 PMCID: PMC7125091 DOI: 10.1038/s41467-020-15517-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 03/05/2020] [Indexed: 11/08/2022] Open
Abstract
For the sake of energy preservation, bacteria, upon transition to stationary phase, tone down their protein synthesis. This process is favored by the reversible binding of small stress-induced proteins to the ribosome to prevent unnecessary translation. One example is the conserved bacterial ribosome silencing factor (RsfS) that binds to uL14 protein onto the large ribosomal subunit and prevents its association with the small subunit. Here we describe the binding mode of Staphylococcus aureus RsfS to the large ribosomal subunit and present a 3.2 Å resolution cryo-EM reconstruction of the 50S-RsfS complex together with the crystal structure of uL14-RsfS complex solved at 2.3 Å resolution. The understanding of the detailed landscape of RsfS-uL14 interactions within the ribosome shed light on the mechanism of ribosome shutdown in the human pathogen S. aureus and might deliver a novel target for pharmacological drug development and treatment of bacterial infections.
Collapse
|